
GreedySlide: An Efficient Sliding Window for

Improving Edge-Object Detectors

1st To Hai Thien

University of Transport Technology

Hanoi, Vietnam

thienth@utt.edu.vn

0000-0002-2099-1863

2nd Tung-Lam Duong

ASI Company

Hanoi, Vietnam

adamduong26111996@gmail.com

0000-0002-9459-4705

3rd Chi-Luan Le

University of Transport Technology

Hanoi, Vietnam

luanlc@utt.edu.vn

Abstract—The recent development in deep learning and edge
hardware architecture has provided artificial applications with a
robust foundation to move into real-life applications and allow
a model to inference right on edge. If a well-trained edge object
detection (OD) model is acquired, multiple scenarios such as
autonomous driving, autonomous hospital management, or a
self-shopping cart can be achieved. However, to make a model
well-inference on edge, a model needs to be quantized to scale
down the size and speed up at inference. This quantization
scheme creates a degradation in the model where each layer
is restricted to at most lower representations, forcing an output
layer only to have fewer options to circle an object. Furthermore,
it also limits model generalization where the behavior of the
dataset gets cut off each activation layer. We proposed a novel
method GreedySlide by sliding window that divides a capture
into windows to make an object fits better on the quantization
bound to address this problem. Even though the technique sounds
simple, it helps increase the number of options for bounding an
object and clips the variance that can have by scanning the whole
image. Our work has improved an original edge model on its
corresponding benchmark by experimenting and increasing the
model generalization on other related datasets without retraining
the model.

I. INTRODUCTION

Recent developments in artificial intelligence have given

researchers a powerful tool for data exploration and analysis in

many fields, especially in Computer Vision. Many Computer

Vision tasks have been overcome by artificial intelligence

models and have reached state-of-the-art results such as clas-

sification, detection, and recognition,... To take advantage of

this premise, researchers are now making ways to bring these

SOTA to edge devices to extend AI to another level. Bringing

a model into an edge device can blow away people’s concerns

about leaking personal data when every piece of information

and process stays inside a device, and only their encrypted

features can be transferred outside for server computing and

analysis. This helps AI operate closer to the human world and

turn into personal assistance in many tasks

However, most SOTA models contain a huge trained number

of parameters in full precision on servers, containing a huge

number of layers and parameters. This incident makes them

heavy in computation, and it is not reasonable to run the whole

model on any edge devices. While high computation causes the

edge device to lose more power, it also prevents incompatible

edge hardware from running in real-time inference. Thus, they

have to work simultaneously on building edge hardware for a

friendlier deep learning configuration and reducing the number

of bit inferences on a model that an edge has to handle. Newly

edge AI chips such as Coral, Ambient,... typically rely on in-

memory or near-memory data flow designs that place the logic

and the memory data closer together for faster inference [3].

However, even with a strong hardware configuration, some

model still takes quite a long time to generate a good result on

the server-side. Therefore, the demand of Model Compression

i.e finding a good model structure and reducing its size for

low computational and relatively small power consumption, is

leading in the latest research works. By deploying model com-

pression, a two-fold benefit of minimizing the total number

of energy-intensive memory accesses [17] and increasing the

inference time due to effectively higher memory bandwidth,

reducing the overall latency [12].

Regardless of the promising benefits, model compres-

sion has limited the capacity for generalization. In a well-

inferencing model that can perform well after a model’s

compression, weights, biases, and activation values have to

be retrained to match the new configuration. This step can

be time-consuming and prohibit researchers from exploiting

SOTA results that take days and months to complete. However,

this is not the biggest problem that model compression can

cause to a model. In Kim’s work [6], he proposed a position-

based scaled gradient as a training optimizer that scales the

gradient depending on the position of a weight vector for

friendly model compression. While for previous work of [9],

[7] and [5], they focus on mimicking activation by mean

and variance to represent the distribution of activation in the

training dataset. By forcing the model to choose the parameters

lower bit that fit with the distribution of weights and biases in

a network in a higher precision scheme, it has taken away

the uncertainty of a model and made it too robust to the

training data’s behavior, ie. poor model generalization. The

lower the bit range, the less degree of freedom to tune with the

parameters, which restricts the search space [8]. In addition,

the validation for a deep learning model compression from

previous work addresses only the same package’s testing data,

which can not verify a compressed model’s true generalization.

Moreover, when considering bringing model compression

to an object detection scheme, the model is more numerically

Proceedings of the Seventh International Conference on Research

in Intelligent and Computing in Engineering pp. 243–248

DOI: 10.15439/2022R09

ISSN 2300-5963 ACSIS, Vol. 33

©PTI 2022 243



sensitive than the Image Classification process. For [6] and

[2] work of Image Classification, the final result for a model

is a certain value which is clamping by softmax distribution

between 0 and 1 and pushing its maximum a posteriori on a

correct class. While a maximum posterior distribution value

does not need to be determined exactly, the bounding boxes

represented for object detection have to be fitted with the

image’s pixel location, especially for lower scale objects in

the image.

By naively inspecting an input image for an object detection

task, the representation of output, when scaled into a lower

range bit, could be insufficient. For an input image that has

a size (weight x height) larger than the current bit range,

a set of quantization range can naively draw as a 255x255

grid for 8-bit inference. Vertices of a bounding box can fall

diversely to fit with the ground truth label as they are assigned

to each intersection of the grid, which is the corresponding

lower-bit representation. After compression, for example, if

a vertice value has not passed entirely to a new intersection

on the grid, it will be forced heavily back to the previous

intersection, which causes shifting in the entire bounding box.

A small shifting pixel may not affect big objects, but it can

cause problems for small and medium size objects in the scene

(Figure 1), which causes a drop in model performance after a

quantization process.

Fig. 1: By naively dividing an image in 255x255 grid quan-

tization range (green lines), vertices q1 and q1’ are different

by two quantized values. Same for q2 and q2’. The detection

between 2 close quantized values can affect differently on the

final result based on the different scales of objects in an image

Our paper proposes a new method called GreedySlide,

which addresses these problems dynamically within the scope

of maintaining a good generalization for the model and easy

integration on the edge interface. In GreedySlide, we take the

trained model’s outputs as the purest components to exploit

how well a model explores the hidden data pattern and its

restriction in generalization. We will then perform a greedy

sliding window policy to scan over the image to obtain sub-

location bounding boxes in the image and compare that with

the current outputs to select the global bounding boxes for the

whole image. Details of the policy will be explained in III. By

scanning over the image instead of using a single image for

detection, we emphasize better size for lower-scale objects and

create a suitable range that matches the model’s training size

during compression. Therefore, it can bypass the overfitting

compression when lowering the bit inference.

II. BACKGROUND - RELATED WORK

Existing methods for object detection using CNNs can

be classified into two-stages and one-stage approaches. In

two-stages methods such as FasterRCNN [14], R-FCN [1],

Retinanet [10] classification and localization are implemented

using two separate steps involving classification and region

proposal. In contrast to this, the ones-stage approaches (such as

Yolo [13], SSD-MobilenetV2 [11] classify and localize objects

in only one step. Generally, one-stage detection models are

faster by combining two stages as one, while the accuracy

of two-stages models is higher. However, if scale down the

accepted accuracy to a smaller intersection of the ground truth

and the predicted object (intersection of union (IoU) = 0.5),

one-stage models can achieve nearly the same accuracy of

the two-stages methods. To make use of a one-stage detection

structure for fast and real-time inference on an edge device,

researchers [9] [15] [4] have tried to replace the feature

extraction part of the one-stage scheme with a smaller model

and a roughly same efficiency on the full precision setting.

Small objects detection: However, despite fast inferenc-

ing, object detections from the one-stage model usually get

problems in detecting small-scale objects as the convolution

features of these objects generally disappear in the last layers.

Due to this problem, the normal solution is enlarging the

input image so that the small object’s pixels will increase

in the training pictures or applying adding features map of

upper layers. While upsampling the image size costs more

time of inferencing and hyperparameters volume, the feature-

map of upper layers makes the one-stage model behave as

the second-stage model [16]. As the original model for the

single stage has already struggled to handle small objects,

a quantized version of it can not assure better performance

and small object detection at the edge remains challenging.

In our work, we fused both these ideas together. Instead of

upsampling the whole image, we emphasize only the area

may contain small objects through sliding windows and by

providing a subsequent of the original image, we have naively

provided the raw feature map of the model.

III. PROPOSED GREEDYSLIDE ALGORITHM

As briefly discussed our method focus on the post-training

phase rather than bringing it into the training pipeline. By

applying at the post-training stage, GreedySlide allows to take

advantage of any model inference performance ie. different

bit scale and improve model generalization. To perform our

GreedySlide Algorithm, we divide our work into three phases:

Sliding Windows Detection, Bounding Boxes Suppression and

244 PROCEEDINGS OF THE RICE. HUNG YEN, 2022



Fig. 2: Top picture is the result of bounding boxes by SSD-

MobilenetV2 quantized edge model "occurring shifting detec-

tion"; Middle picture is the "partition" bounding boxes after

Sliding Windows Detection; Bottom picture is the final bound-

ing boxes after Bounding Boxes Suppression and Greedily

Bounding Boxes Selection

Greedily Bounding Boxes Selection. The illustration of this

whole pipeline is shown in Figure 2.

A. Sliding Windows Detection

Instead of taking only the whole image as an input for the

model, the first phase of the GreedySlide algorithm divided the

image into overlapped windows W size (l, l) combined with

the original image I for inferencing. There are two main points

in this basic approach. First, by overlapping windows on each

other by µ threshold, we aim to avoid big objects being sliced

into separated parts. Each window through the same ConvNet

model only tells what object is detected in them, without

knowledge of the whole image. Therefore, we combined the

windows with the whole image as a true input for the model.

For the second point, the optimal sliding width of the window l
should be close to the training size of the model as the resizing

do not distort much on the original image, and the image from

each window can fit better to the quantized layer’s behavior

of low-bit range model which can overcome the problem of

shifting bounding box for quantization scheme.

SLW (W, I, l, µ) = W 2, I 2 (1)

This can be considered batch inference for multi-segment

of the same image, which gives the model more elucidated

input of the original image and supports multiple resolutions.

Each subsequent range of the image will emphasize low-scale

objects better as the appearance of those are dynamically

bigger in a window. In addition, the window image can

represent again the raw feature location of the image, which

is useful for the model that has been trained without looking

in this data and especially for the quantized model where the

feature learning can be saturated.

B. Bounding Boxes Suppression

The reason we called this phase suppression is that there

will be a lot of partial bounding boxes coming from big

objects that can be scattered in the results. This phase will

act as a constrained filter to remove those by greedily remove

from the output. In detail, depending on the frequent location

of the objects as well as the baseline performance of the

model, GreedySlide algorithm takes into account another two

threshold numbers to help suppress the bounding boxes. ³ is

designed as the confidence to select a bounding box for each

window, and ´ is the confidence to believe in the baseline

model. In general, most object detection models are confident

in getting high-scale objects rather than low-scale objects.

By selecting correct ´ we can take out the most confident

bounding boxes (global bounding boxes) from the whole

image and use it to suppress scattered partial bounding boxes

(local bounding boxes) from the windows.

Normally, two bounding boxes are the same if their IOU is

high. However, because partial bounding boxes are relatively

smaller than the groundtruth bounding boxes, using IOU is

insufficient. Thus, we use self-intersection factor (f ) to eval-

uate how strong the local bounding boxes attach to the global

bounding boxes. A self-intersection factor f is calculated by

the amount of the intersection of a bounding box over its own

size, as described in (2).

f =
intersection

bounding box area
> ÷ (2)

For each local bounding box, it will be compared to global

bounding boxes by a matrix relationship between bounding

boxes. Each row of the matrix is a self-intersection factor f .

Multiple local bounding boxes think to belong to one if f
is bigger than ÷ amount. However, the selected ÷ is tricky to

obtain a good result. A small ÷ can leave duplicating bounding

boxes, while a big ÷ can leave small bounding boxes that

scatters around an object due to its low certainty. A good

÷ forces the bounding boxes that are heavily related to a

bigger box to be one and avoid wrongly taking close contacted

bounding boxes of another objects.

C. Greedily Bounding Boxes Selection

After filtering the partial bounding boxes of the global

bounding boxes, there can be the partial bounding boxes of

small and medium-scale of objects in among the windows.

However, these bounding boxes have no global bounding

boxes to suppress them. Therefore, in this phase, the procedure

is slightly different from the previous stage. GreedySlide will

perform to compare each local bounding box together by

the self-intersection-factor f . Then, bounding boxes that are

strongly related to each other will be merged as a group G
represents for an object. From the group of bounding boxes

G, GreedySlide selects a bounding box that represents all of

other boxes by select the top vertex x1,y1 and the bottom

TO HAI THIEN ET AL.: GREEDYSLIDE: AN EFFICIENT SLIDING WINDOW FOR IMPROVING EDGE-OBJECT DETECTORS 245



TABLE I: COCO BenchMark of two models (SSD-MobilenetV2, Retina) with its Greedy version in different precision. The

benchmark COCO protocol allows to addess the IoU from 0.5 to 0.95 and estimate the performance in terms of recall and

precision. The SSD-Mobilenetv2 is conducted on Google Coral Board, while the heavy Retina is measured on Jetson-Nano

300x300-91 classes-Int8 640x640-80 classes-Fp16 640x640-80 classes-Fp32

Metrics
Models Mobinet

SSD

Greedy
Mobile

SSD
Retina

Greedy
Retina

Retina
Greedy
Retina

AP(0.5) - (S,M,L) 0.21 0.24 0.35 0.41 0.39 0.41

AP(0.5) - S 0.02 0.06 0.11 0.22 0.14 0.21

AP(0.5) - M 0.13 0.25 0.39 0.45 0.44 0.46

AP(0.5) - L 0.45 0.42 0.55 0.54 0.55 0.54

AR(0.5) - (S,M,L) 0.21 0.26 0.37 0.46 0.41 0.45

AR(0.5) - S 0.02 0.06 0.11 0.23 0.15 0.23

AR(0.5) - M 0.14 0.27 0.41 0.51 0.47 0.51

AR(0.5) - L 0.49 0.47 0.60 0.62 0.60 0.62

AP(0.5:0.95) - (S,M,L) 0.14 0.16 0.23 0.26 0.28 0.28

AP(0.5:0.95) - S 0.01 0.03 0.07 0.13 0.09 0.13

AP(0.5:0.95) - M 0.07 0.16 0.25 0.29 0.30 0.31

AP(0.5:0.95) - L 0.31 0.29 0.39 0.38 0.41 0.39

AR(0.5:0.95) - S 0.01 0.03 0.07 0.14 0.10 0.14

AR(0.5:0.95) - M 0.08 0.18 0.29 0.35 0.34 0.36

AR(0.5:0.95) - L 0.36 0.35 0.46 0.46 0.48 0.47

Overall Score 4/15 11/15 3/15 13/15 3/15 12/15

vertex x2,y2 by (3) with a group mean confidence c (4). The

reason that this method is called GreedySlide is because of

this final execution as it takes the biggest box consisting of

every box in the group. By taking the biggest bounding boxes

instead of the intersection, we enlarge the area of capturing an

object rather than taking a bounding box that can be a partition

of an object. Furthermore, to neglect tiny boxes that are bare

to tell due to the zooming feature of this method, every box

needs to be large than ¶ scale concerning the window.

x1 = min
X

G, y1 = min
Y

G, x2 = max
X

G, y2 = max
Y

G (3)

c =
1

N

∑

G

cg (4)

IV. EXPERIMENTAL RESULTS

A. Benchmark Settings

Our goal is to provide an algorithm that can help to improve

object detection model performance for quantized edge models

and maintain a good generalization for those. Therefore, we

addressed two experiments to verify the method’s perfor-

mance: external dataset validation and same dataset validation.

We choose the Google Coral Board (which only supports int8

for inference), and Jetson Nano (for FP16 and FP32) as two

most popular edge devices nowadays for our experiments.

Noted that, in the different dataset scenarios, we emphasize

the importance of our method at int8 settings.

Model and Dataset Selection: To test the detection per-

formance, we address the GreedySlide detector on Google-

provided models trained on the COCO dataset: SSD-

MobilenetV2 (6M params) and Retina (32M params) model

for object detections. We choose this model because it is one

of the most famous architectures for edge object detection

with fast and light capabilities. Moreover, it also emphasizes

the flexibility of our approaches. Meanwhile, we use these

three external datasets: KITTI, CrownAI and Autti, for a

throughout benchmark when bringing the general detectors

from COCO dataset to the narrow scope task like (vehicle de-

tection/pedestrian detection). For KITTI dataset requirements,

we follow their evaluation on three levels of difficulties: easy

(big and clear), medium (average-size/slightly occlusion) and

hard (small and highly occluded) with various of IoU rate. To

apply that setting into CrownAI and Autti, we define the easy

scope for bounding boxes that are bigger than 100 pixels and

the hard scope for every scale of pixels.

Hyperparameters Selection: when evaluating on KITTI

dataset, we have figured out: the ideal size k for sliding

window is roughly 1/3 of the width of the image; µ confidence

for each window should be 0.4 and µ2 for the whole image

is 0.7 to reach highest accuracy for detection. In addition, the

reason we choose 0.7 is to balance between 0.6 and 0.8 result

for generalization. Furthermore, this setting also allows our

method to catch up to 70% speed of orignal models. Therefore,

we use this configuration throughout our experiments. The

benchmark of detection result is conducted and measured mAP

in Pascal VOC Format.

B. Same Dataset Detection Performance

In this setting, we perform throughout evaluation on the pre-

trained COCO dataset model published in an open repository

of Google Coral and Jetson Nano. We omit the testing SSD-

Mobinet v2 settings in Jetson Nano due to similar behavior

results on Coralboard. We also discard the benchmark of the

Retina model on Google Coral because of the slow inference

of TPU on this device.

Overall the result at table I shows increased performance

for the edge model regardless of int8 quantization, FP16

reduction, or full precision on 32 bits on both Jetson and

Coralboard. However, it seems to lose a bit of performance for

246 PROCEEDINGS OF THE RICE. HUNG YEN, 2022



TABLE II: COCO on traffic classes. N: non-GreedySlide. G: Greedyslide

Metrics
Classes

Person Car Truck Bus Motorcycle Bicycle

N G N G N G N G N G N G

SSD-Mobilenet V2

AP(0.5) - (S,M,L) 0.37 0.43 0.16 0.29 0.23 0.27 0.50 0.57 0.34 0.4 0.19 0.30

AP(0.5:0.95) - M 0.18 0.28 0.11 0.28 0.03 0.13 0.03 0.21 0.05 0.14 0.08 0.19

AP(0.5:0.95) - L 0.53 0.51 0.49 0.45 0.40 0.37 0.65 0.62 0.47 0.44 0.47 0.49

AR(0.5:0.95) - M 0.21 0.31 0.15 0.34 0.04 0.17 0.03 0.23 0.07 0.18 0.09 0.22

AR(0.5:0.95) - L 0.60 0.59 0.57 0.53 0.46 0.43 0.69 0.67 0.53 0.50 0.54 0.56

Overall Score 2/5 3/5 2/5 3/5 2/5 3/5 1/5 3/5 2/5 3/5 0/5 5/5

Retina

AP(0.5) - (S,M,L) 0.57 0.57 0.43 0.46 0.31 0.37 0.64 0.68 0.52 0.53 0.38 0.40

AP(0.5:0.95) - S 0.15 0.18 0.17 0.20 0.05 0.09 0.14 0.24 0.11 0.15 0.06 0.11

AP(0.5:0.95) - M 0.47 0.46 0.46 0.45 0.16 0.25 0.37 0.40 0.25 0.24 0.29 0.28

AP(0.5:0.95) - L 0.67 0.61 0.54 0.48 0.42 0.37 0.72 0.68 0.52 0.51 0.52 0.51

AR(0.5:0.95) - S 0.17 0.20 0.18 0.22 0.06 0.12 0.15 0.28 0.11 0.18 0.06 0.12

AR(0.5:0.95) - M 0.52 0.50 0.53 0.53 0.21 0.33 0.39 0.44 0.32 0.29 0.33 0.33

AR(0.5:0.95) - L 0.73 0.69 0.62 0.58 0.51 0.50 0.74 0.73 0.57 0.55 0.58 0.58

Overall Score 5/7 3/7 4/7 4/7 2/7 4/7 2/7 5/7 4/7 3/7 4/7 5/7

TABLE III: mAP results for Greedy-SSD detector in comparison with SSD-MobilenetV2 and modified on KITTI, CrownAI

and Autti Dataset

Models easy (0.5) medium (0.5) hard (0.5) easy (0.7) medium (0.7) hard (0.7)

KITTI

Greedy-SSD 0.5425 0.6421* 0.5924 0.5162 0.5244 0.4204

SSD-MobilenetV2 0.1632 0.1519 0.1517 0.1566 0.1176 0.1191

CrownAI

Greedy-SSD 0.6791* - 0.5672 0.5244 - 0.4019

SSD-MobilenetV2 0.1877 - 0.1549 0.1172 - 0.0943

Autti

Greedy-SSD 0.6123* - 0.5772 0.5342 - 0.4446

SSD-MobilenetV2 0.1784 - 0.1612 0.1123 - 0.1003

large objects but emphasizes the efficiency of small objects and

medium-size ones. This can be understood as we fragment the

picture to address, which makes the small objects more robust

but accidentally divides the big objects into pieces. However, it

is up to the shape and size of the objects in the picture. When

inspecting some specific classes in Table II, we can notice

there exists class can maintain good detection in large size like

bicycle or bus, while others can degrade roughly. However,

the results show promising in accuracy performance when

gathering the good points among AP(average precision) and

AR (average recall) that Greedyslide boosts the origin model

(roughly triple the performance 12/15 for overall classes and

5/7 for specific classes inspection). In addition, it also shows

the flexibility of our method on different model types (SSD

and Retina) and edge configurations. It also hints our method

can assist the model at full precision scale.

C. External Dataset Detection Performance

In this setting, we only address the SSD-Mobilenet as

introduced in the Benchmark Settings. Table (III) summarizes

the evaluation results from the three datasets. As shown,

Greedy-SSD has overperformed to two baselines method for

one-stage models. The accuracy mAP increases roughly five

times in comparison with SSD-MobilenetV2, which are re-

ally sufficient detectors in computers or servers. For closer

inspection, SSD-MobilenetV2, through quantization, has dra-

matically reduced its accuracy by six times according to SOTA

full precision results on KITTI open dataset benchmark (from

0.61). Furthermore, Greedy-SSD performs better regardless of

object scales in the image when the gap between easy and

hard task is not severe. One of the most important factors

for this method is that it can help the SSD-MobilenetV2

increase its accuracy to acceptable results without designing a

new deep learning model structure for quantization like other

approaches.

V. CONCLUSION & FUTURE WORK

In this paper, we have introduced our novel GreedySlide

method on optimizing detection performance on the differ-

ent type of datasets, especially for edge devices’ scopes. It

proves that the gap of detection performance with and without

GreedySlide is considerable and well-improved in external

dataset. Using GreedySlide can reduce the complexity and

effort to optimize a model by quantization and ensure a better

generalization for the model. In the future, we will try to

integrate this behavior into the training pipeline as a multi-

scale feature model for a better and more compact solution.

VI. ACKNOWLEDGEMENT

This research is funded by University of Transport Technol-

ogy (YTT) under grant number ÐTTÐ2021-06

TO HAI THIEN ET AL.: GREEDYSLIDE: AN EFFICIENT SLIDING WINDOW FOR IMPROVING EDGE-OBJECT DETECTORS 247



REFERENCES

[1] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn: Object detection
via region-based fully convolutional networks. In Advances in neural

information processing systems, pages 379–387, 2016.
[2] Ruihao Gong, Xianglong Liu, Shenghu Jiang, Tianxiang Li, Peng

Hu, Jiazhen Lin, Fengwei Yu, and Junjie Yan. Differentiable soft
quantization: Bridging full-precision and low-bit neural networks. In
Proceedings of the IEEE International Conference on Computer Vision,
pages 4852–4861, 2019.

[3] Samuel Greengard. Ai on edge. Commun. ACM, 63(9):18–20, August
2020.

[4] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
Mobilenets: Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017.

[5] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew
Tang, Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko.
Quantization and training of neural networks for efficient integer-
arithmetic-only inference. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 2704–2713, 2018.
[6] Jangho Kim, KiYoon Yoo, and Nojun Kwak. Position-based scaled

gradient for model quantization and pruning. 2020.
[7] Raghuraman Krishnamoorthi. Quantizing deep convolutional networks

for efficient inference: A whitepaper. arXiv preprint arXiv:1806.08342,
2018.

[8] Dongsoo Lee, Se Jung Kwon, Byeongwook Kim, Yongkweon Jeon, Bae-
seong Park, and Jeongin Yun. Flexor: Trainable fractional quantization.
arXiv preprint arXiv:2009.04126, 2020.

[9] Rundong Li, Yan Wang, Feng Liang, Hongwei Qin, Junjie Yan, and Rui
Fan. Fully quantized network for object detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pages
2810–2819, 2019.

[10] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár.
Focal loss for dense object detection. In Proceedings of the IEEE

international conference on computer vision, pages 2980–2988, 2017.
[11] W Liu, D Anguelov, D Erhan, C Szegedy, S Reed, CY Fu, and

AC Berg. Ssd: Single shot multibox detector. arxiv 2016. arXiv preprint

arXiv:1512.02325, 2020.
[12] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor

Darrell. Rethinking the value of network pruning. arXiv preprint

arXiv:1810.05270, 2018.
[13] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement.

arxiv 2018. arXiv preprint arXiv:1804.02767, pages 1–6, 2018.
[14] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn:

Towards real-time object detection with region proposal networks. In
Advances in neural information processing systems, pages 91–99, 2015.

[15] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov,
and Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear
bottlenecks. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 4510–4520, 2018.
[16] S. Zhai, D. Shang, S. Wang, and S. Dong. Df-ssd: An improved ssd

object detection algorithm based on densenet and feature fusion. IEEE

Access, 8:24344–24357, 2020.
[17] Michael Zhu and Suyog Gupta. To prune, or not to prune: explor-

ing the efficacy of pruning for model compression. arXiv preprint

arXiv:1710.01878, 2017.

248 PROCEEDINGS OF THE RICE. HUNG YEN, 2022


