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Abstract— The performance of ultra-dense cellular networks
considering both adaptive discrete modulation (ADM) and energy
harvesting (EH) is investigated. Particularly, mobile users (MUs)
are charged its battery from all ambient radio frequency (RF)
signals. Based on the amount of harvested energy as well as
the channel conditions, MU will actively choose an appropriate
modulation scheme that not only maximizes the rate but also
satisfies the quality-of-service (QoS). Moreover, we consider the
spatial-temporal correlation at the signal-to-interference-plus-
noise ratios (SINRs) of base stations (BSs) which are totally
different from work in the literature. Several important metrics
are investigated such as, occurrence probabilities of different
modulation schemes (Poc), coverage probability (Pcov), and
achievable spectral efficiency (ASE). Finally, the results high-
light the superiority of the proposed scheme compared to the
conventional fixed modulation.

Index Terms— Adaptive Modulation, Energy Harvesting, Per-
formance Analysis, Stochastic Geometry

I. INTRODUCTION

With the growing in the number of wirelessly connected

devices, the demand for the power to feed such ultra-dense

networks has attracted researchers [1]. Moreover, another issue

of the ultra-dense networks is how to increase the spectral

efficiency (SE) since the network is in the interference-limited

regime rather than the noise-limited or neither of them. To

overcome these unavoidable issues in the ultra-dense networks

some advanced technologies are employed in the literature,

for example, the cognitive radio networks (CRNs) [2], [3]

that is proved to be an effective way to improve the SE,

the satellite communications that can provide service at ev-

ery corner of the earth without creating interference at the

terrestrial [4], the interference alignment technique that takes

the advantages of the multiple antennae at both transmitter

and receiver to suppress the interference [5] and the adaptive

discrete modulation (ADM) that significantly scales up the

average rate thus improving the SE [6]. Particularly, a properly

modulation scheme is chosen at the transmitter relying on

the practical channel conditions to maximize the average rate

thus facilitating the ASE. Nonetheless, these above techniques

generally improve the SE of the wireless networks while the

enhancement of energy efficiency (EE) is minor compared

with the SE. Fortunately, another advanced technique called

energy harvesting (EH) [7] has recently attracted many re-

searchers since it allows the low energy devices (LEDs) to

harvest energy from the surrounding radio frequency (RF) thus

providing a solid response to the question How to feed an

ultra-dense network. As a consequence, in the present work,

we explore the performance of the ultra-dense cellular network

by considering both ADM and EH techniques. Before going

to discuss the novelties as well as the contributions of the

considered networks, state-of-the-art of ADM, EH, and other

advanced techniques are first visited.

A. State-of-the-art

The performance of the key metrics in modern wireless

networks such as outage probability (OP), coverage proba-

bility (Pcov), ergodic capacity, spectral efficiency, and energy

efficiency was studied extensively in [8]–[16]. The coopera-

tive unmanned aerial vehicles (UAV) non-orthogonal multiple

access (NOMA)-based in short packet communications (SPC)

was studied in [8]. Particularly, the average end-to-end (e2e)

block-error rates (BLERs) were derived in the closed-form

expression. A novel expression of closed-form of the Pcov

in the long-range (LoRa) networks was given in [9]. A

tractable framework of both Pcov and ergodic capacity in

cellular networks based on tools from stochastic geometry

(SG) was derived by Andrews and other authors in [10].

Meanwhile, the closed-form expression of ergodic capacity

in multi-hop decode and forward (DF) was given in [11].
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Duy and others in [12] derived outage probability expressions

in cognitive radio networks. Moreover, the transmit power

of the secondary transmitter was computed in [13]. On the

other hand, the performance of the combination of optical

communications and wireless communications was conducted

in [14] where RF signals are seamlessly transmitted through

both fiber and mmWave. The impact of hardware impairment

in UAV-NOMA-based systems was investigated in [15]. Their

outcomes showed that the performance of the near user

outperforms its counterpart under the influences of hardware

impairments. A recently proposed definition of the Pcov that

takes into account the correlation of the signal-to-interference

ratios (SIRs) and signal-to-noise ratios (SNRs) at end-devices

of the LoRa was comprehensively studied [16]. They also point

out the influences of density of EDs on the performance of

the coverage probability and spectral efficiency under different

transmit power regions.

These previous works simply focus on the performance of

wireless communications without considering adaptive dis-

crete modulation and energy harvesting. These techniques,

in fact, was studied separately in [17]–[24]. More precisely,

authors in [17] investigated performance of the CRNs with

EH relay assistance. They showed that their proposed EH

relaying outperforms the conventional underlay CRN scheme

in the OP. Thanh and others investigated the performance of

the SWIPT-enabled networks [18], [19]. They proved that low

energy devices can be operated without a battery provided

that the number of transmit antennae at BS goes to infinity.

The cooperative NOMA-based with SWIPT over Nakagami-

m fading channels was addressed in [20]. The self-energy

recycling (SER) scheme was studied in [21] under partial and

full relay selection. To be more specific, they proposed to

utilize the self-interference at the full-duplex relay to recharge

its battery and forward information to the destination. Besides,

Tung in [20] studied the combination of SWIPT and NOMA

over Nakagami-m channels. The potential of the application

of mmWave combined with SWIPT was thoroughly studied

in [22]. Meanwhile, the adaptive multicast streaming service

with ADM in cellular networks was addressed in [23] and the

average and potential throughput of the adaptive modulation

was derived in [24].

B. Principal novelties and contributions

Apart from works in the literature, we comprehensively

investigate the performance of the mobile networks with

the combination of adaptive discrete modulation and energy

harvesting at the system level. More precisely, we summarize

the core novelties and contributions as follows:

• We consider the Poisson point process (PPP) to model

the randomness of mobile users (MUs) and base stations

(BSs).

• We employ the power beacon scheme to charge the

battery of MUs instead of using the SWIPT protocol and

the bounded path-loss model is used as well.

• We adopt adaptive modulation to take the benefits of the

channel state information (CSI) at MUs.

• Compared with state-of-the-art, we consider the spatial-

temporal correlation at the signal-to-interference-plus-

noise ratios (SINRs) which is extremely complicated and

nontrivial.

• We investigate the performance of three key metrics i.e.,

achievable spectral efficiency, occurrence probabilities of

modulation schemes, and coverage probability.

• Numerical results based on the Monte Carlo method is

yield highlight the advantages of the considered networks

compared with a fixed modulation scheme.

II. SYSTEM MODEL

A. Cellular Networks Modeling

Considering a uplink cellular networks that both base sta-

tions and mobile users are followed by a homogeneous PPP

(HPPP) denoted by ΞBS and ΞMU with corresponding den-

sities ÅBS and ÅMU. Additionally, without loss of generality,

we consider the fully-loaded scenario, i.e., ÅMU k ÅBS. It is

noted that the most general case where the ratio of the density

of BSs and MUs is a random number is studied in [25]. The

performance is taken place at the typical cell where the serving

BS denoted by BS0 and the typical user denoted by MU0 is

situated at the origin of the 2-D plane. The results measure

the link between BS0 and MU0 can be applied to all other

transmission link thank to the Palm theory [26].

B. Transmission Procedure

The whole transmission is taken place in two phases. In the

first phase, the BS0 broadcasts high-power radio frequency

signals to charge the battery of all MUs associated with it. In

the second phase, the MU0 which is selected to send data

to the BS0
1 using the energy harvesting in the first phase

as well as on the instantaneous channel state information

which is measured via the pilot signals in the first phase.

It is emphasized that we do not consider the simultaneous

information and power transmission since it scarifies parts

of resources (time or frequency) for powering the battery.

Moroever, the BS acts as the power beacon station both

two phases. We consider the orthogonal resource allocation

inside each cell. Hence, intra-interference in each cell is not

taken into consideration, nonetheless, other-cell interference,

obviously, is appeared.

C. Channel Modelling

Considering an arbitrary connection from a generic BS to a

generic MU, it experiences small-scale fading and large-scale

path loss. Shadowing is left for future work like work in the

literature [27].

1) Small-scale fading: Considering cm as the small-scale

fading for a transmission between the BSs and MUs followed

by a Rayleigh distribution. As a consequence, |cm|2 is an

exponential distribution have mean ¼m = 1, "m (w ithout

loss of generality) denoting the channel gain.

1In the present paper, we do not focus on the user selection and leave it
for future work.
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2) Large-scale path-loss: The large-scale path-loss of an

arbitrary link between BSs and MUs is evaluated as

Wm = W0 max {dm, 1}
α
. (1)

Here dm is the transmission distance between BSs and MUs;

³ > 2 and W0 = (4Ãfc/c)
2

are the path-loss and exponent.

fc (in Hz) denotes carrier frequency, c = 3 × 108 (in meters

per second) is the light speed.

Remark 1: Direct inspection (1), we can see that the

adopted large-scale path-loss overcomes the unavoidable issue

of the popular unbounded path-loss model that the received

power approaches infinity when the transmission distance

between indistinguishable [28].

D. Cell Association Criterion

Each MU is handled by a BS having the shortest distance

to it. As the fully-loaded scenario is considered, all BSs are

active. The serving BS, BS0, is then formulated as

BS0 = argmin
m∈ΞBS

{Wm} . (2)

E. Adaptive Discrete Modulation

Adaptive discrete modulation is a mature technology to

boost spectral efficiency especially when the channel is favor-

able. Particularly, based on the pilot signals at the first phase,

the MU0 exactly estimates the CSI between him and BS0.

Moreover, since we consider the fully-loaded scenario that is

the worst case where all BSs are active, the MUs are then

estimated at the interference at the BS0. Based on the available

CSI, the MU0, then, selects the most appropriate modulation

scheme that satisfies the quality-of-service (QoS) requirement.

Let us first divide the whole range of SINR at BS0 into R * N

separate regions and the border of each interval is denoted by

µe
R, e * {0, . . . ,R}, as follows:

0 = µ0
R < µ1

R < . . . < µe
R < . . . < µR

R = +> (3)

The popular rectangular M -QAM modulation is adopted in

the present paper. More precisely, Mo = 2o-QAM modula-

tion is chosen provided that the SINR lies into the interval
[

µo
R, µ

o+1
R

)

, o * {1, . . . ,R2 1}. Additionally, in case the

SINR is too small or it is in the region
[

µ0
R = 0, µ1

R

)

, MU0

will immediately halt the transmission and the outage event

will appear.

In order to find out the border of all regions, we examine

bit error rate (BER) as a measured metric. Particularly, BER

of the M -QAM employing Gray coding over additive white

Gaussian channel (AWGN) is deployed:

BERR =´oQ
(√

Çoµo
R

)

(4)

óµo
R =

1

Ço

[

Q−1

(

BERR

´o

)]2

, o * {1, . . . ,R2 1} ,

where BERR is the intended bit error rate threshold; Q (.) is

the Gaussian Q function and Q−1 (.) is the inverse Gaussian

Q function.

´o =

{

1 lo = 1, 2
4/lo lo g 3

,

Ço =

{

2/lo lo = 1, 2
3/
(

2lo 2 1
)

lo g 3
(5)

where lo = log2 (Mo).

F. Transmit Power at MUs

In this work, the harvest-then-transmit protocol is employed

at the MUs that harvested energy amount in the first phase

denoted by E (in Joule) is computed as follows:

E = ÷T

(

Ptx

∑

i∈ΞBS

∣

∣c(i)
∣

∣

2

W (i)

)

/2. (6)

Here ÷ * [0, 1] denote the coefficient of energy conversion; T
is the whole transmission block and is equal to 1 for simplicity;

Ptx is the BSs transmit power. It should be noted that the

AWGN noise in (6) is ignored since it is too tiny compared

to power of interference. From (6), the MUs transmit power

is computed as follows:

P0 =
÷

2

(

Ptx

∑

i∈ΞBS

∣

∣c(i)
∣

∣

2

W (i)

)

. (7)

G. Signal-to-Interference-Plus-Noise Ratio

The SINR at BS0 is given as

µ0 =
P0

|c(0)|
2

W (0)

PMU

∑

j∈ΞMU

|c(j)|
2

W (j) + Ã2
0

, (8)

where Ã2
0 = 2174+NF+10log10 (BW) (in dBm) is the BS0

noise variance; NF (in [dB]) is the noise figure at the ED;

BW is the bandwidth; PMU = E {P0} is the transmit power

of the MUs from other cell. In this work, for simplicity, we

assume that PMU is the average over spatial (MUs locations)

and temporal (fading) of the whole networks. The spatial-

temporary correlation at the transmit power of the MUs will

be left for future work. E {.} is the expectation operator. c(s),
W (s), s * {0, j}, are the path-loss and fading between the

BSs and MU0.

Remark 2: Inspecting (8), we observe that although the

spatial-temporal correlation at PMU do not take into consid-

eration, these correlations at P0 still hold. As a consequence,

the considered networks are extremely complicated and novel

compared with work in the literature [29].

III. PERFORMANCE METRICS

We investigate three key metrics in the present work, i.e.,

the average achievable spectral efficiency, the coverage proba-

bility, and the occurrence probabilities of different modulation

schemes (Poc). More precisely, Pcov is the probability that

measures the number of outstanding transmissions out of the

total transmission while Poc measures the percentage of each
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TABLE I: Simulation parameters
Parameters [Unit] Values

RBS = 1√
πυBS

[m] 150

RMU = 1√
πυMU

[m] 50

Ptx [dBm] 30

BERR 10−3

BW [kHz] 200

÷ 0.5

R 5

NF [dB] 5

³ 2.3

fc [GHz] 0.9

scheme appearance out of all transmissions. The ASE provides

the average achievable spectral efficiency.

A. Coverage Probability

The Pcov under the considered network refers to the prob-

ability that the SINR of the BS0 is larger than µ1
R and is

computed as

Pcov = Pr
{

µ∆ g µ1
R

}

. (9)

B. Occurrence probabilities of each modulation scheme

The probability that the MU0 transmits at o modulation

scheme defines as the occurrence probabilities denoted by Ψo

and is computed as

Ψo = Pr
{

µo
R f µ0 f µo+1

R

}

, o * {1, . . . ,R2 1} . (10)

It is obvious that the summation of Ψo, o * {0, . . . ,R2 1}
is equal to one. In particular, we have

R−1
∑

o=0

Ψo = 1. (11)

C. Average Achievable Spectral Efficiency (ASE)

Under the adaptive modulation systems, the average achiev-

able spectral efficiency (in bits/s/Hz) is computed by summing

all the spectral efficiency of each region that is the multipli-

cation of the Poc and its corresponding bit and is given as

follows [6]:

ASE =

R−1
∑

o=1

loΨo. (12)

IV. NUMERICAL RESULTS

Numerical results via the Monte-Carlo simulation are em-

ployed in this section to evaluate the performance of the

considered metrics, i.e., Pcov, Poc, and ASE. If there is no

specific noticed in each figure, a set of simulation parameters

is given in Table I. Here, RBS and RMU are the average cell

radius of the BS and the average distance between MUs,

respectively. Five levels of the M -QAM modulation are con-

sidered [6], specifically, no transmission, BPSK, QPSK, 16-

QAM, and 64-QAM, respectively. It is certain that an arbitrary

modulation level and/or different modulation schemes such as
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Fig. 1. Pcov as a function of BER threshold, BERR with various values of
Ptx.
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Fig. 2. Occurrence probability vs. BER threshold, BERR.

MPSK, differential modulation, etc. can also be effortlessly

applied. Fig. 1 depicts the behaviors of the Pcov regarding

the BER threshold. We observe that if the QoS decreases, the

Pcov improves, and increasing Ptx is beneficial for the Pcov.

Particularly, Pcov enhances over 0.1 if Ptx increases from 30

to 40 dBm at BERR = 0.01.

Fig. 2 shows the behaviors of the occurrence probability

as a function of BERR. We see that under the current setup,

the QPSK has the highest probability while the 16-QAM is

the smallest one, and BPSK and 64-QAM are at the 2nd

and 3rd position. Again, increasing BERR will scale up the

Poc like the Pcov. However, the increasing pace is different

between these schemes. More precisely, the QPSK is again
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favorable for the increase of BERR while the BPSK is almost

stable when BERR g 0.01. The performance of the ASE

with respect to BERR is given in Fig. 3. It proves the

superiority of the ADM compared with the fixed modulation.

Particularly, we experience a major divergence between the

proposed scheme vs. all other modulations. Among all fixed

modulations, the QPSK achieves the best performance as like

in Fig. 2. Nonetheless, different from Fig. 2, the 16-QAM

is the 2nd best while in Fig. 2, the 2nd best is the BPSK

modulation.

V. CONCLUSION

The performance of uplink cellular networks considering

both adaptive modulation and energy harvesting was investi-

gated in the present paper. Particularly, three vital metrics,

i.e., Pcov, Poc, and ASE are addressed under the impact

of both spatial and temporary correlation. Simulation results

unveiled that adaptive modulation significantly outperforms

fixed modulation schemes in terms of spectral efficiency. This

work can be enhanced in many ways. One of these possible

ways is to deploy diversity techniques at the BSs and/or MUs

to further enhance the Pcov and ASE [30]. Additionally, the

application of reconfigurable intelligent surfaces (RIS) and

NOMA into the ultra-dense cellular networks is also promising

[31]–[33]. The heterogeneous networks architecture where cel-

lular networks co-exist with other networks such as cognitive

radio networks, low power wide area networks (LoRa, Sig-

Fox), and device-to-device communications also scales up the

system spectral efficiency [34], [35]. Facilitating the system

performance by shortening the transmission distance such as

multi-hop communications, and cooperative communications

is a potential solution too. Finally, the advantages of machine

learning and deep learning can not be ignored in order to

significantly enhance the system performance as well [36],

[37].
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