
Improving Logical Structure Analysis of Visually
Structured Documents with Textual Features

Huu-Loi Le∗, Nghia Luu Trong†, Huyen Ngo Thanh‡
∗Hung Yen University of Technology and Education, Hung Yen, Vietnam

Email: lehuuloi.cs@gmail.com
†Hanoi University of Science and Technology, Hanoi, Vietnam

Email: nghia.lt204888@sis.hust.edu.vn
‡Hung Yen University of Technology and Education, Hung Yen, Vietnam

Email: nthuyen@utehy.edu.vn
‡Corresponding author

Abstract—This paper introduces a new model to improve
the quality of logical structure analysis of visually structured
documents. To do that, we extend the model of Koreeda and
Manning [1]. In order to enhance textual features, we define
a new feature that uses the font size of texts as an indicator.
As our observation, the font size is an important indicator that
can be used to represent the structure of a document. The new
font size feature is combined with visual, textual, and semantic
features for training an analyzer. Experimental results on four
legal datasets show that the new font size feature contributes to
the model and helps to improve the F-scores. The ablation study
also shows the contribution of each feature in our model.

Index Terms—Logical structure analysis, VSDs, feature engi-
neering, information extraction.

I. INTRODUCTION

A lot of natural language processing (NLP) models, tasks,

and pipelines usually require clean texts for training and

processing. However, in real applications, raw data may be

not clean and well organized. For example, legal documents

(e.g., contracts and legal codes) are not so clean and many

documents use visually structured documents (VSDs) such as

PDFs [1]. As pointed out by Obermaier et al. [2], among

7.3 million documents found in Panama papers, approximately

30% were PDFs. Therefore, a good VSDs reader is required

to facilitate NLP tasks in actual applications.

Compared to text data (e.g., news), VSDs contain richer

information. For instance, Fig. 1 shows an example of the

difference between a VSD and the raw text. While the raw

text without logical structure analysis contains a sequence

of tokens, the VSDsincludes both text and its structure. By

reading the VSDs, we know which paragraphs are parents and

which paragraphs are children. In addition, characteristics of

the VSDs (e.g., font size, bold text, the position of a paragraph)

can be taken into account as good indicators for logical

structure analysis. We argue that an information extraction (IE)

should be aware of the structure of a document to output high-

quality extracted information, especially in specific domains

(e.g., legal or business documents) [1], [3].

So far, there are two main directions for VSDs processing.

The first direction uses rules for extracting the structure of a

VSD [4]. The second direction is to analyze the structure of

a VSD for logical structure parsing [5], [6] by using machine

learning. While the rule-based approach can achieve high ac-

curacy but it suffers from rule definition and management. On

the other hand, the machine learning approach can generalize

to new VSD types. Xu et al. introduced LayoutLM which

can analyze the structure of a VSD [7], [8]. LayoutLM uses

the Transformer architecture [9] to train a language model for

VSDs. More recently, Koreeda and Manning introduce a model

for capturing the logical structure of VSDs by using feature

engineering [1]. The authors combined visual features, textual

features, and semantic features for training a parser. The

proposed model achieved good results on four legal datasets.

This paper improves the quality of logical structure analysis

by using feature engineering. We extend the work of [1]

to take into account visual, textual, and semantic features.

For improvement, we also define a new feature that takes

advantage of font size for training the model. Experimental

on four types of datasets in the legal domain show that the

proposed model obtains promising results compared to strong

baselines. This paper makes two main contributions.

• It improves the quality of logical structure analysis by

introducing a new feature that takes advantage of font

size from texts. As our observation, the font size is an

important indicator that can be used to represent the

structure of a document. For example in Fig. 1, a title

of a section has a larger font size than the title of its

subsections. The new feature is combined with visual,

textual, and semantic features to train the analyzer.

• It validates the contribution of the new feature and the

proposed model on four datasets. Experimental results

show that the model achieves promising results. The abla-

tion study also shows the contribution of each feature that

facilitates the next studies of logical structure analysis.

II. RELATED WORK

Hatsutori et al. [4] introduced a system that is based on

the rule that fully depends on numberings. However, our idea

and the result in Section IV can define that the system incor-

porating textual and semantic cues performs more effectively

than their method. In contrast, Sporleder and Lapata [10]

Proceedings of the Seventh International Conference on Research

in Intelligent and Computing in Engineering pp. 151–156

DOI: 10.15439/2022R26

ISSN 2300-5963 ACSIS, Vol. 33

©PTI 2022 151

Fig. 1: Sample of visualization of the logical structure analysis for VSDs [1].

proposed a system that fully depends on textual and semantic

cues to detect a paragraph boundary for plain texts. Although

their method is not focused on dealing with VSDs, we can

incorporate their ideas as an additional feature of our system.

Abreu et al. [11] and Ferrés et al. [12] had their works

in analysis of the logical structure by identifying some special

structures in VSDs like subheading, ... These studies, however,

are not handling in the paragraph-level logical structure and

too coarse-grained. Therefore, those studies cannot satisfy our

demands and fulfill our needs. Xu et al. [8] implemented

more detailed and included extracted list items. Despite its

improvement, it is still not suitable for our study because

analysis of logical structures is not the center of this work.

Despite the difference in the goal, Gillick [13] proposed

a sentence boundary detection system that has some similar

textual features to our technique. But we apply richer textual

and visual features that they do not employ to reach our

goal which is to predict structures together with boundaries

as precisely as possible.

A system proposed by Koreeda et al. [1] incorporates a

combination of textual, visual, and semantic cues to analyze

the logical structures in VSDs with a machine learning classi-

fier. This work fully meets all our needs so we apply the same

strategy for our research. In the proposed work, we improve

classification performance by extracting and adding the font

size of the text as a new feature.

III. APPROACH

A. Problem setting and formulation

In this work, we focus on the logical structure analysis of

VSDs. The input is a document that contains a series of blocks

extracted by the available layout analysis tool. Our goal is to

extricate paragraphs from the document and recognize their

relationships. To deal with this problem, we make a tree with

each block as a node. To generate this tree, we identify the

transition label between every two consecutive blocks that

describe their relationships in this tree. As in [1], we also

use five transition labels trani between bi (here before the i-th

block) and bi+1 such as:

• continuous: bi and bi+1 are continuous if they are both

in a paragraph (Fig. 1(6))

• consecutive: bi and bi+1 are consecutive if they are in

two paragraphs at the same level (Fig. 1(7))

• down: bi+1 start a new paragraph its level is lower than

the level of the paragraph that bi belongs to (Fig. 1(6))

• up: bi+1 start a new paragraph its level is higher than the

level of the paragraph that bi belongs to (Fig. 1(8))

• omitted: b1 is debris and omitted. (Fig. 1(9)) Now

transi−1 is the relationship between bi−1 and bi+1

While down here is well-defined, up is not clear and must

be considered what level we should reach. To deal with this,

a pointer is used for each up block, which bj is denoted as a

level that bi belongs to (pnti = bj where j < i) (The example

of detailed implementation is found in [1])

B. Logical structure analysis system

In this work, our logical structure analysis system is built

based on a machine learning classifier and several handcrafted

features. A machine learning model is more suitable for our

research than a deep learning model because we can include

textual, visual, and semantic cues in the model and it also

needs less training data than a deep learning one.

To consider each block, our system extracts features from

the paragraph with a group of four blocks and applies multi-

class classification over five transition labels. Because omitted

makes the target of transition changed, we delete omitted

152 PROCEEDINGS OF THE RICE. HUNG YEN, 2022

blocks in features extraction. With non-omitted transition, we

extract features from [bi−1; bi; bi+1; bi+ 2]. Because we need

to know the appearance of omitted blocks, we identify them

by running the first prediction and using this information to

identify other labels.

Our system can be changed flexibly to suitable several types

of documents. In order to do that, we need to modify the

document’s features, so we build a list of features for each type

by having a visual inspection of the training dataset (Table I).

Some features are explained in detail in the study [1]. Since

there are some different characters between TXT files and

PDFs so we consider space characters as horizontal spacing

and blank lines as vertical spacing. Therefore we can apply a

system for TXT files like PDFs.

C. Pointer recognition system

We use a machine learning classifier to implement the

pointer recognition system with handcrafted features. Because

a down label is called, it creates a new level of the block so

we need to point to this level when the up label is called. We

extract all pair [bj , bi] that transj = down and transi = up,

then we use features extracted from those pair to train a

classifier to predict the pointer (pnti = bj)
When the pointer at the block with down label (bj), some

features of the beginning block in the paragraph that contain

bj (we denote this as bbegin(j)) are so important. Therefore, we

use bbegin(j) to extract features from the pair [bj , bi] such as:

• Consecutive numbering: Consider a number in bi is con-

tiguous to it in bj and bbegin(j) or not: Boolean features.

• Indentation: Consider the relationship about indentation

of [bj , bi] and [bbegin(j), bi+1]: Categorical features in

[larger, smaller, stays the same].

• Left aligned: Consider bj , bi+1, bbegin(j) are left aligned

or not: Binary features.

• Transition counts: The number of blocks between bi
and bj with down or with up, respectively: Numerical

features.

We use those features for all document types despite the

customizable pointer features. We used this strategy because

of the successful implementation in those studies [1], [14].

D. Fontsize Extraction

In this section, we detail our workaround and algorithm

for extracting font size. We experimented with four types of

visually structured documents (VSDs) in different file formats

and languages.

• Contractpdf
en : English NDAs in PDF format.

• Lawpdf
en : English executive orders from local authorities.

• Contracttxt
en : English NDAs in visually structured plain

text format.

• Contract
pdf
ja : Japanese NDAs in PDF format.

For PDFs, we use PDFMiner1 and extract each LTTextLine,

roughly corresponding to each line of text, as a block. We have

merged multiple LTTextLines where the LTTextLines overlap

1https://euske.github.io/pdfminer/

(a)

(b)

Fig. 2: Layout objects (a) and its tree structure (b)

vertically (Fig. 2). For plain text, we just need to use each

non-blank line of plain text as a block.

The focus of this research was to suggest more information

for each block extracted from the PDF file, which is the font

size. So why font size? In VSDs, we can easily see that the

title is often larger than the content within it. Therefore, with

the desire to increase the accuracy of the transition labels, we

add to each block information about its font size.

In the following, we will show how we extract font size

from PDF files. First, we perform layout analysis for the PDF

datasets. Parsing a PDF file is generally time and memory-

consuming because a PDF file has such a large and complex

structure. However, we do not use all parts for most PDF

processing tasks, instead only a few needed parts are used.

Therefore PDFMiner only parses the content when it is

necessary, also known as the lazy parsing strategy. You need

to use at least two classes: PDFPaser and PDFDocument to

parse PDF files. These two objects are associated with each

other. PDFParser fetches data from a file, and PDFDocument

stores it. In addition to the two classes mentioned above,

You will also need PDFPageInterpreter to process the page

contents and PDFPageAggregator extract the deceive to page

HUU-LOI LE ET AL.: IMPROVING LOGICAL STRUCTURE ANALYSIS OF VISUALLY STRUCTURED DOCUMENTS 153

TABLE I: List of features for feature extraction.

Relationship Blocks
Document type

Contract
pdf
en /Law

pdf
en Contracttxt

en Contract
pdf
ja

Visual features
V1 Indentation 1-2,2-3 v v v
V2 Indentation after erasing numbering 1-2,2-3 v v
V3 Centered 2,3 v v v
V4 Line break before right margin 1,2 v v v
V5 Page change 1-2,2-3 v
V6 Within top 15% of a page 2 v v
V7 Within bottom 15% of a page 2 v v
V8 Larger line spacing 1-2,2-3 v v v
V9 Justified with spaces in middle 2,3 v v v
V10 Similar text in a similar position 2 v v
V11 Emphasis by spaces between characters 1,2 v
V12 Emphasis by parentheses 1,2 v
Textual features
T1 Numbering transition 2 v v v
T2 Punctuated 1,2 v v
T3 List start (/[-;:,]$/) 1,2 v v v
T4 List elements (/(;|, |and|or)$/) 2 v v
T5 Page number (strict) 1,2,3 v v v
T6 Page number (tolerant) 1,2,3 v v v
T7 Starts with “whereas” 3 v v
T8 Starts with “now, therefore” 3 v v
T9 Dictionary-like (includes “:” & not V4) 2,3 v v
T10 All capital 2,3 v v
T11 Contiguous blank field (underbars) 1-2,2-3 v v v
T12 Horizontal line (“*-=#% +” only) 1,2,3 v
T13 Font-size (our feature) 2 v v
Semantic features
S1 Language model coherence 1-2-3 v v v

The “Blocks” columns list blocks used to extract features for trans2 (e.g. “1-2, 2-3” means [bi−1; bi] and [bi; bi+1] are
used to extract two sets of features). Features with similar intended functionality are assigned the same feature name and
implementations may vary for different document types.

aggregator to get LT object elements. PDFResourceManager

is used to store shared resources such as fonts or images.

A layout analyzer returns a LTPage object for each page in

the PDF document. This object contains child objects within

the page, forming a tree structure (Fig. 2). After we have

performed the layout analysis, we use these layouts to extract

the necessary information. We use For loop to traverse objects

inside layouts. We set it as lt obj. If lt obj is an instance of

LTTextLine then extract the text content. Continue the for loop

to go up one more level in the structure tree (Fig. 2(b)). i.e.

character traversal in lt obj. If character is an instance of

LTChar, then extract the font size. After extracting the font

size, we check the condition that our text length is greater than

0 or not. If the text we extracted above has a length greater

than zero, then return text and font size. Going back to the first

branch condition, else if lt obj is an instance of LTTextBox

or LTFigure, we can not extract anything, so we use recursion

to continue. At this point, the input is no longer the layout,

the new input is lt obj.

IV. EXPERIMENTS AND RESULTS

A. Evaluation metrics

In experiments, we use F-score for the task that identifies

relationships between the pairs of blocks including (1) the

same paragraph, (2) sibling, and (3) ancestor-descendant rela-

tionships, respectively.

The number of K-folds we use in the evaluation pro-

cess are customized individually for each dataset. Specifi-

cally, for Contractpdfen and Lawpdf
en , we used five-folds cross-

validation. But, we used twelve for Contracttxten and fifteen for

Contract
pdf
ja .

B. Baselines

We compared our system against the following baselines:

a) Visual: This baseline is purely based on visual cues;

i.e. indentation and line spacing. For each consecutive pair of

blocks, this baseline outputs (1) continuous when indentation

is unchanged and line spacing is normal, (2) consecutive when

indent is unchanged change and line spacing is larger than

normal, (3) down for larger indents and (4) up for smaller

indents. On up, it points back to the closest block with the

same indentation.

b) NB: This baseline presents a method for preprocess-

ing unstructured documents in general to estimate document

structure. The method consists of three algorithms and the

recommendation follows a rule-based approach. The three

algorithms are: (1) one is based on style information, such

as bold font; (2) another is based on numbered objects, such

as sections; and (3) the other is based on a document’s Table

of Contents, which summarizes the document’s structure. We

focus on algorithm 2 because our implementation is the same

as the feature numbering transition (T13) (Table I) [4].

154 PROCEEDINGS OF THE RICE. HUNG YEN, 2022

TABLE II: Results for evaluation on IE perspective.

Relationship
Contract

pdf
en Law

pdf
en Contracttxten Contract

pdf
ja

Visual NB MTP Ours Visual NB MTP Ours Visual NB MTP Ours Visual NB MTP Ours

Same paragraph

M
ic

ro P 0.982 0.484 0.944 0.947 0.891 0.219 0.858 0.835 0.993 0.540 0.983 0.988 0.446 0.402 0.973 0.968
R 0.683 0.947 0.951 0.952 0.681 0.969 0.957 0.954 0.708 0.917 0.978 0.971 0.552 0.985 0.966 0.967
F 0.806 0.641 0.947 0.948 0.772 0.357 0.905 0.890 0.826 0.680 0.980 0.979 0.494 0.571 0.969 0.968

M
ac

ro P 0.980 0.644 0.955 0.956 0.906 0.328 0.936 0.944 0.990 0.595 0.969 0.976 0.481 0.478 0.971 0.959
R 0.670 0.966 0.951 0.951 0.634 0.974 0.951 0.944 0.746 0.934 0.976 0.973 0.527 0.985 0.956 0.952
F 0.782 0.736 0.948 0.949 0.731 0.452 0.933 0.929 0.847 0.687 0.971 0.973 0.450 0.617 0.955 0.947

Siblings

M
ic

ro P 0.332 0.677 0.841 0.808 0.430 0.647 0.849 0.828 0.397 0.780 0.784 0.849 0.106 0.151 0.699 0.770

R 0.323 0.765 0.736 0.779 0.283 0.504 0.712 0.793 0.481 0.763 0.723 0.725 0.506 0.571 0.691 0.754
F 0.328 0.718 0.785 0.793 0.341 0.567 0.774 0.810 0.435 0.772 0.752 0.782 0.176 0.238 0.695 0.762

M
ac

ro P 0.443 0.678 0.791 0.779 0.598 0.493 0.793 0.797 0.482 0.677 0.814 0.803 0.347 0.237 0.719 0.769

R 0.427 0.691 0.751 0.781 0.417 0.379 0.696 0.720 0.557 0.603 0.758 0.701 0.506 0.536 0.663 0.740
F 0.337 0.650 0.748 0.750 0.410 0.385 0.724 0.734 0.435 0.605 0.754 0.729 0.292 0.283 0.671 0.738

Descendants

M
ic

ro P 0.381 0.184 0.502 0.596 0.717 0.132 0.456 0.535 0.239 0.190 0.541 0.664 0.536 0.125 0.577 0.788
R 0.123 0.879 0.807 0.831 0.303 0.881 0.858 0.855 0.048 0.888 0.771 0.836 0.340 0.580 0.826 0.811
F 0.186 0.304 0.619 0.694 0.409 0.229 0.596 0.658 0.080 0.313 0.635 0.740 0.416 0.205 0.679 0.799

M
ac

ro P 0.295 0.242 0.655 0.678 0.438 0.173 0.581 0.608 0.193 0.269 0.639 0.699 0.462 0.122 0.737 0.832
R 0.194 0.848 0.798 0.822 0.314 0.764 0.837 0.855 0.072 0.859 0.735 0.758 0.358 0.519 0.834 0.819
F 0.203 0.340 0.641 0.681 0.327 0.230 0.617 0.651 0.096 0.367 0.625 0.673 0.372 0.195 0.739 0.803

Accuracy
Micro 0.772 0.778 0.914 0.921 0.827 0.685 0.908 0.922 0.587 0.674 0.828 0.863 0.618 0.623 0.940 0.958
Macro 0.686 0.679 0.889 0.891 0.732 0.427 0.840 0.853 0.571 0.580 0.841 0.852 0.623 0.492 0.899 0.916

Average F1
Micro 0.440 0.555 0.784 0.812 0.507 0.384 0.758 0.786 0.447 0.588 0.789 0.834 0.362 0.338 0.781 0.843

Macro 0.441 0.576 0.779 0.793 0.489 0.356 0.758 0.771 0.459 0.553 0.783 0.792 0.372 0.365 0.788 0.829

”Micro”: Micro-average, ”Macro”: Macro-average, ”P”: Precision, ”R”: Recall, ”F”: F1 score

c) MTP: [1] This baseline is a combination of multime-

dia markers. i.e. visual (such as indentation and line spacing),

textual (such as section numbering and punctuation), and se-

mantics (such as language model coherence) cues. The formula

used here is a transition parser that predicts a transition label

between each consecutive pair of text fragments.

C. Implementation Details

Our system makes use of a modular and customizable

design and is implemented in Python. Users can put in force

a brand new function extractor clearly through writing a new

function extractor class wherein every function is applied as

its class function. For example, @single input feature([1])
denotes that the following function should be carried out to

the second block of every context. Likewise, the functions

for pointer identity may be carried out with the aid of using

marking a function with @pointer feature(), which takes

a candidate block bj (tb1), a goal block bi (tb2), the block

subsequent to the goal block bi+1 (tb3) and bhead(j) (head tb)

as an input. For each document, a feature extractor object is

initialized. In which all features are automatically gathered to

become a feature vector. To facilitate implementation, a new

feature extractor can inherit from an existing feature extractor.

After establishing the feature that we propose, we conduct

experiments on datasets where for each dataset we evaluate the

contribution of features using random forest (Fig. 3). It can be

observed that our feature (font size) is one of the features that

has contributed a lot. In addition, we found that the page like2

and mask continuation features made little or no contribution.

Therefore, we have considered removing these features.

Finally, we used Random Forest and Decision Tree as the

transition and pointer classifiers respectively. The settings for

both models are described in Table III and IV.

TABLE III: Set of hyperparameters for each dataset for

transition classifier

Document Type
RandomForestClassifier

n estimators min samples split max features

Contract
pdf
en 400 5 ’log2’

Law
pdf
en 300 5 ’sqrt’

Contracttxten 300 5 ’sqrt’

Contract
pdf
ja 300 2 ’sqrt’

TABLE IV: Set of hyperparameters for each dataset for pointer

classifier

Document Type
DecisionTreeClassifier

max leaf nodes criterion random state

Contracttxten 2 ’entropy’ None

Contract
pdf
ja 2 ’gini’ 0

RandomForestClassifier
n estimators min samples split max features

Contract
pdf
en 400 5 ’log2’

Law
pdf
en 100 2 ’sqrt’

D. Results and Discussion

1) F-score comparison: Structure evaluation is shown on

Table II. Our system obtained micro-average structure pre-

diction accuracy of 0.921 for Contractpdfen , 0.922 for Lawpdf
en ,

0.863 for Contracttxten and 0.958 for Contract
pdf
ja , significantly

outperforming the best baselines with 0.914, 0.908, 0.828 and

0.940, respectively. Micro-average transition label prediction

accuracies are 0.948 (Contractpdfen), 0.936 (Lawpdf
en), 0.959

(Contracttxten) and 0.929 (Contract
pdf
ja).

For Average F1, our model is superior to the baselines.

Compared to MTP [1], our system shows larger gaps of

6.2% for Contract
pdf
ja , 4.5% for Contracttxten , 2.8% for both

Contractpdfen and Lawpdf
en . For relationships, our model also

HUU-LOI LE ET AL.: IMPROVING LOGICAL STRUCTURE ANALYSIS OF VISUALLY STRUCTURED DOCUMENTS 155

TABLE V: Results for feature sets on IE perspective.

Feature Set 1 Feature Set 2 Feature Set 3

Accuracy
Micro 0.895 0.892 0.860
Macro 0.862 0.822 0.801

Average F1
Micro 0.760 0.728 0.676
Macro 0.761 0.701 0.678

outweighs the baseline in some scenarios, for example, 6.7%
and 18% in the Siblings and Descendants respectively. These

experimental results verify the effectiveness of the proposed

work by extracting and adding font size as a new feature.

Fig. 3: Importance measurement of features (Contractpdfen)

2) Feature contribution: In this section, we go deeper into

assessing the contribution of the remaining features. To do

that, we evaluate the proposed model under three feature sets

based on measuring feature importance (as shown in Fig. 3).

In particular, we divide features into 3 subsets: Feature set 1

includes features from numbered list state to footer region in

Fig. 3; Feature set 2 includes numbered list state to Fontsize;

Feature set 3 is the top 5 features with the highest contribution.

The experimental results are presented in Table V. As

shown in the table, adding more features results in higher

performance. This means that all selected features contribute

to the performance of classification.

V. CONCLUSION

This paper introduces a new model to improve the logical

analysis of visually structured documents. In order to do

that, we introduce a new feature named font size that takes

advantage of textual aspects to distinguish the structure of a

VSD. The new feature based on the observation that the font

size is an important indicator that can be used to represent the

structure of a document. The new feature is combined with

other visual features, textual features, and semantic features

for training an analyzer. Experimental results on four legal

datasets show that the new feature contributes to improving

the performance of the model. The ablation study also shows

the contribution of each feature.

Future work will investigate new features to improve the

quality of the analysis. The model should be also tested on

other genres and datasets.

ACKNOWLEDGEMENT

We would like to thank Nguyen Hong Son, Huy-The

Vu, and Minh-Tien Nguyen for their useful comments and

supervision.

REFERENCES

[1] Y. Koreeda and C. Manning, “Capturing logical structure of
visually structured documents with multimodal transition parser,” in
Proceedings of the Natural Legal Language Processing Workshop 2021.
Punta Cana, Dominican Republic: Association for Computational
Linguistics, Nov. 2021, pp. 144–154. [Online]. Available: https:
//aclanthology.org/2021.nllp-1.15

[2] V. W. Frederik Obermaier, Bastian Obermayer and W. Jaschensky,
“About the panama papers,” in Süddeutsche Zeitung, 2016.

[3] M.-T. Nguyen, D. T. Le, and L. Le, “Transformers-based information
extraction with limited data for domain-specific business documents,”
Engineering Applications of Artificial Intelligence, vol. 97, p. 104100,
2021.

[4] Y. Hatsutori, K. Yoshikawa, and H. Imai, “Estimating legal document
structure by considering style information and table of contents,” in
New Frontiers in Artificial Intelligence, S. Kurahashi, Y. Ohta, S. Arai,
K. Satoh, and D. Bekki, Eds. Cham: Springer International Publishing,
2017, pp. 270–283.

[5] C. G. Stahl, S. R. Young, D. Herrmannova, R. M. Patton, and J. C.
Wells, “Deeppdf: A deep learning approach to extracting text from pdfs,”
Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States), Tech.
Rep., 2018.

[6] C. Soto and S. Yoo, “Visual detection with context for document
layout analysis,” in Proceedings of the 2019 Conference on Empirical

Methods in Natural Language Processing and the 9th International Joint

Conference on Natural Language Processing (EMNLP-IJCNLP), 2019,
pp. 3464–3470.

[7] Y. Xu, M. Li, L. Cui, S. Huang, F. Wei, and M. Zhou, “Layoutlm:
Pre-training of text and layout for document image understanding,” in
Proceedings of the 26th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining, 2020, pp. 1192–1200.
[8] Y. Xu, Y. Xu, T. Lv, L. Cui, F. Wei, G. Wang, Y. Lu,

D. A. F. Florêncio, C. Zhang, W. Che, M. Zhang, and L. Zhou,
“Layoutlmv2: Multi-modal pre-training for visually-rich document
understanding,” CoRR, vol. abs/2012.14740, 2020. [Online]. Available:
https://arxiv.org/abs/2012.14740

[9] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in

neural information processing systems, vol. 30, 2017.
[10] C. Sporleder and M. Lapata, “Automatic paragraph identification: A

study across languages and domains,” in Proceedings of the 2004

Conference on Empirical Methods in Natural Language Processing,
2004, pp. 72–79.

[11] C. Abreu, H. Cardoso, and E. Oliveira, “FinDSE@FinTOC-2019
shared task,” in Proceedings of the Second Financial Narrative

Processing Workshop (FNP 2019). Turku, Finland: Linköping
University Electronic Press, Sep. 2019, pp. 69–73. [Online]. Available:
https://aclanthology.org/W19-6410

[12] D. Ferrés, H. Saggion, F. Ronzano, and À. Bravo, “Pdfdigest: an
adaptable layout-aware pdf-to-xml textual content extractor for scientific
articles,” in Proceedings of the Eleventh International Conference on

Language Resources and Evaluation (LREC 2018), 2018.
[13] M. Ostendorf, M. Collins, S. Narayanan, D. W. Oard, and L. Van-

derwende, “Proceedings of human language technologies: The 2009
annual conference of the north american chapter of the association
for computational linguistics,” in Proceedings of Human Language

Technologies: The 2009 Annual Conference of the North American

Chapter of the Association for Computational Linguistics, 2009.
[14] S. Zhang, X. Ma, K. Duh, and B. V. Durme, “AMR parsing as

sequence-to-graph transduction,” CoRR, vol. abs/1905.08704, 2019.
[Online]. Available: http://arxiv.org/abs/1905.08704

156 PROCEEDINGS OF THE RICE. HUNG YEN, 2022

