
Automated Code Generation from Use cases

and the Domain Model

1st Minh-Hue Chu

Hung Yen University of Technology and Education,

Vietnam

Email: huectm@gmail.com

2nd Anh-Hien Dao

Hung Yen University of Technology and Education,

Vietnam

Email: hienda@gmail.com

Abstract—In this paper, we propose a method to automatically
generate source code files from a use case model and a domain
class diagram named USLSCG (Use case Specification Language
(USL) based Code Generation). In our method, a use case
scenario is precisely specified by a USL model. The USL model
and the domain class diagram then are used as inputs to generate
source code files automatically. These source code files include
classes following three-layer applications and a SQL script file
to create a database and store procedures.

Index Terms—Generate source code, USL, Use case, USLSCG

I. INTRODUCTION

The software development life cycle is divided into some

main stages. In the first stage, software requirements are

documented in the SRS (Software Requirement Specification)

document. These requirements are usually documented by

UML (Unified Modeling Language) models and statements

in the natural language. In the second state, design documents

then are built from the SRS document. Models in design doc-

uments present different design views, for example, database

designs, architecture designs, object designs, user interface

designs, etc. Next state, the design models are implemented

into the code source. Finally, the testing activity is performed

to ensure the quality of software products [1]. The input of

design and test stages are the software requirements in the SRS

document that are usually documented by use case diagrams

and textual use case descriptions in the template-based natural

language [2]. Design models are then input for programmers

to transform into source code files. These activities are usually

performed manually by developers. Firstly, They will read

software requirement specification documents which are typ-

ically several hundred pages to build analysis models, design

models, and test cases. They then transform design models

into source code files. However, in software development,

requirements usually change during development. So, when

the software requirements change, analysis models, design

models, source code, and test cases must be rebuilt.

To reduce the time and cost of software development,

automation solutions are proposed and developed. A major

challenge for automation in software development is software

requirements described in the natural language and modeled

by models that are not precise enough. proposed a model

To deal with this challenge, [3] proposed a DSML (Domain-

Specific Modeling Language) named USL (Use case Specific

Language) to precisely specify textual use case descriptions

for automation aims in software development. In the research,

we discussed abilities to generate analysis, design models, and

test cases automatically from USL models. In the previous

research [4], we also proposed a method named USLTG to

generate test cases from the USL models. In another research

[5], we also proposed a method named USLCG. The USLCG

method allows generating design class diagrams automatically

from USL models and the domain class diagram. In this paper,

we focus on generating source code files automatically from

USL models and the domain class diagram. These source

code classes conform to design class diagrams generated in

the previous research [5]. We named this method USLSCG.

Firstly, functional requirements are captured by UML use case

diagrams and USL models which specify use case descriptions

precisely. In addition, the Entities of the system are captured

by a domain class diagram in UML. Secondly, for each use

case, USLSCG transforms the corresponding inputs above into

source code classes of the use case. Besides, we also generate

automatically a SQL script file containing T-SQL statements

for creating a relational database and store procedures of the

database.

To summarize, the main contributions of this paper are:

• the USLSCG method to generate automatically source

code files from use cases and the domain class diagram;

• a set of rules to map action types into source code classes

and methods of classes.

• algorithms to transform use cases into source code files

• a generator to realize the USLSCG method.

The rest of this paper is organized as follows. Section II

introduces the background and motivation for developing

USLSCG. Section III shows our proposed approach. Sec-

tion IV explains how to generate source code files of the

USLSCG method. Section V briefly discusses the tool support

of USLSCG. Section VI discusses related works. The paper

is closed with a conclusion and future works.

II. BACKGROUND AND MOTIVATION

In this section, we first discuss the basic knowledge that we

use in this research. We then present our motivations.

Proceedings of the Seventh International Conference on Research

in Intelligent and Computing in Engineering pp. 75–81

DOI: 10.15439/2022R27

ISSN 2300-5963 ACSIS, Vol. 33

©PTI 2022 75

a) Use cases: A use case describes a sequence of in-

teractions between a system and an external actor that results

in the actor being able to achieve some outcome of value

[6]. In the SRS documents, use cases are commonly used

for capturing and structuring the functional requirements of

software systems. Use cases are widely modeled by UML

use case diagrams and each use case is loosely structured by

textual descriptions following the structure as in [2]. Use case

models are central models in software development. These

models will be used as inputs to build different software

artifacts including activity diagrams, class diagrams, sequence

diagrams, source code, functional test cases, and so on. For

example, Figure 1 shows a simplified use case model of an

ATM system, Table 1 shows a specification of the use case

Withdraw describing event flows of this use case. In this paper,

we used the Withdraw use case for illustrative examples.

Fig. 1. A simplified use case model of the ATM system.

TABLE I
A TEMPLATE-BASED DESCRIPTION OF THE Withdraw USE CASE

Use case name: Withdraw

Brief description: The customer withdraw cash.

Primary actors: Customer

Precondition: The Insert Card use-case was success.

Postcondition: If the use-case was successful, the system updates the balance,

dispenses the cash, prints a receipt for the user. If not, the system displays an

error message.

Trigger: User selects the Withdraw function.

Special requirement: There is no special requirement.

Basic flow

1. The customer enters the withdrawal amount.

2. The system validates that the ATM has enough funds in the user account. If

the user account has not enough funds go to step 2a.1.

3. The system generate the withdrawal transaction information.

4. The system sends the withdrawal transaction information to the Bank system.

5. The Bank system gets the withdrawal transaction information.

6. The Bank system sends the withdrawal transaction approval to the ATM

system.

7. The system gets the withdrawal transaction approval from the Bank system.

If the bank do not approve the withdrawal transaction, then go to step 7a.1.

8. The system updates the balance of the user account; The system dispenses

the cash in the cash dispenser.

9. The customer gets the cash from the cash dispenser.

10. The system records the withdrawal transaction information.

11. The withdrawal transaction ends.

Alternate flows

2a. If the user account has not enough money.

1. The system displays an error message on the customer console and go to

step 1.

7a. The bank do not approve the withdrawal transaction.

1. The system displays an error message on the customer console.

2. The system records the withdrawal transaction information.

3. The withdrawal transaction end.

b) Domain model: A domain model captures entities

in a system. In software development, this model is usually

specified by a UML class diagram including three types of

elements: (1) domain conceptual classes, (2) attributes, and (3)

relationships among conceptual classes. Domain conceptual

classes represent objects used in the system use cases. Figure 2

shows the ATM domain model is picked from the work [7].

shows the ATM domain model in UML. In this research, a

domain model in the UML class diagram is called a domain

class diagram.

Fig. 2. The domain class diagram of the ATM system.

c) Three-layer architecture: Layers indicate the logical

separation of components. A Layered architecture concentrates

on grouping related functionality within an application into

distinct layers that are stacked vertically on top of each other.

Each layer has unique namespaces and classes. In the three-

layer architecture, there are three layers. The first layer is the

presentation layer where users can interact with the applica-

tion. The second layer is the business logic layer. This layer is

the middle layer - the heart of the application. It contains all

the business logic of the application and describes how busi-

ness objects interact with each other, where the presentation

layer and data access layer can indirectly communicate with

each other. The third layer is the data access layer. This layer

enforces rules regarding accessing data, providing simplified

access to data stored in persistent storage, such as SQL Server,

and MySQL. It is noteworthy that this layer only focuses on

data access instead of data storage. Besides, we have an extra

layer called the business objects layer. This layer contains

objects that are used in the application and common helper

functions (without logic) used for all layers. In the three-layer

architecture, the business objects layer is optional. However,

as we follow the OOP, we should reduce the duplicate codes as

much as possible. Therefore, using this layer to keep common

76 PROCEEDINGS OF THE RICE. HUNG YEN, 2022

codes instead of holding them in each layer is essential. In this

article, we choose three-layer architecture to build template

files for our solution

In software development, the source code of an application

is transformed by programmers from design models manually.

However, when software requirements are changed late, the

design and source code must be rebuilt. To reduce efforts in

software development, design models and source code need

to be generated from software requirements automatically. A

motivating question is how source code can be generated

automatically from a use case what generated source code

follows the design class models? This solution helps to semi-

automate the implementation process. In order to automatically

transform use cases and the domain model into source code

files, we need to address the following main challenges.

• How do generate the source code of classes from a use

case specification? Here, each generated class belongs

to one of three layers (Presentation, Business Logic,

Data Access). Besides, the domain class diagram is

transformed into classes in the business objects layer.

• How are methods of source code classes defined? Opera-

tions of classes are defined based on the message passing

among objects, i.e, objects collaborate together to realize

a use case. We also define the parameters of the generated

methods.

III. OVERVIEW OF OUR APPROACH

Our USLSCG approach is illustrated in Figure 3. This

approach uses USL to specify each use case description by

a USL model conforming to the USL metamodel as shown

in Figure 4. We take a USL model, a UML class model

Fig. 3. Overview of the USLSCG Approach.

capturing domain concepts of the system, and source code

templates as inputs to generate source code automatically. In

SubSection III-A, we briefly explain the language USL. Our

USLSCG method includes two main steps: Step 1 aims to

extract actions with constraints from a USL model; Step 2

takes inputs including extracted actions, domain classes, and

source code templates aim to generate source code classes

and a SQL Script file. A detailed explanation of these steps is

presented in Section IV.

A. Capturing Use Case descriptions in USL models

The USL language is a DSML to specify use cases precisely.

This language was introduced in other research [3]. The

USL is defined based on the metamodeling technique. The

metamodel of the USL was determined as in Figure 4. The

USL approach aims to specify use case descriptions as USL

models that could be automatically transformed into other

software artifacts, including analysis, design models, source

code, and test cases. The following explains how to specify a

use case description in natural language by a USL model:

• The use-case-overview field is specified by the Descrip-

tionInfo object properties.

• Steps of the basic flow are specified by FlowSteps, that

are connected by BasicFlowEdges and ControlNodes.

These steps are either ActorSteps or SystemSteps.

• Steps of each alternate flow are specified by FlowSteps

that are linked by ControlNodes and AlternateFlowEdges.

• An ActorStep can include one or more ActorRequests and

ActorInputs.

• A SystemStep can include one or more SystemInputs, Sys-

temDisplays, SystemRequests, SystemStates, SystemOut-

puts, SystemIncludes, and SystemExtends.

• Use case constraints, guard conditions, and actions in

SystemSteps or ActorSteps are captured by Constraints

associated with InitialNode, FinalNode, BasicFlowEdges,

AlternateFlowEdges, and Actions.

The USL model representing the use case Withdraw is shown

as in Figure 5. This model captures the description fields of the

use case Withdraw by the use-case-overview field, the basic

flow by steps from s1 to s10, the alternate flow 2a by steps

s11, the alternate flow 7a by steps s12 and s13, the actions

in the steps by actions from a1. . . a14, the guard constraints

to select between the flows by Constraints from g1. . . g4, and

the postcondition of actions by Constraints from p1. . . p3. In

particular, s1, s5, s6, s9 are ActorSteps; the other Steps are

SystemSteps; a1 and a6 are ActorInputs (the actor of a1 is

a person, the actor of a6 is an external system); a5 and a10

(requesting object of a10 is a device) are ActorRequests; a3 is

a SystemOperation; a4, a7, and a9 are SystemRequests; a2, a8,

a11, a14 are SystemStates; a12 and a13 are SystemOutputs.

IV. TRANSFORMING USE CASE INTO SOURCE CODE

In this section, we present about two steps of USLSCG as

shown in Figure. 3 and explain how USLSCG can automati-

cally generate source code files from a USL model and a UML

domain class diagram.

A. Extraction of Actions

In the first step of USLSCG as in previous research,

we develop an algorithm named ExtActions to extract a set

of actions from a USL model, as shown in Algorithm 1.

Algorithm ExtActions takes D, a USL model, as input. The

output of this Algorithm is a set of Actions.

Example IV.1. Algorithm ExtActions will return thirteen

Actions (a1 . . . a13) from the use case Withdraw. The extracted

actions belong to one of nine action types as in the part (d)

of Figure. 4.

MINH-HUE CHU, ANH-HIEN DAO: AUTOMATED CODE GENERATION FROM USE CASES AND THE DOMAIN MODEL 77

Fig. 4. The USL metamodel.

Fig. 5. The USL model specifies the use case Withdraw.

B. Generating automatic source code files

In order to generate source code files automatically, We

use the Acceleo project. Specifically, Acceleo is a model

Algorithm 1: EXTACTIONS

1 ExtActions(D)

Input: D is a USL model

Output: la is a set of actions extracted from D

2 BEGIN

3 la ← ∅;

4 foreach s in D.USLNodes do

5 if s is SystemStep then

6 foreach a in ((SystemStep)s).SystemActions do

7 la ← la ∪ a;

8 if s is ActionStep then

9 foreach a in ((ActorStep)s).ActorActions do

10 la ← la ∪ a;

11 END

transformation language M2T of the Eclipse framework [8].

Acceleo can automatically generate source code files by using

templates such as illustrated Figure 6.

Fig. 6. Templates are used as inputs for the Accleo Project to automatically
generate source code files[9].

Firstly, USLSCG uses a Business Object template file, a

SQL Script template file as inputs for the Acceleo project

to generate source code classes at the business objects layer,

and a SQL script file automatically. Specifically, each class

78 PROCEEDINGS OF THE RICE. HUNG YEN, 2022

in the UML domain class diagram is mapped to a business

object class, and each attribute of a UML class or association

relationship between two UML classes is transformed into a

property of the code class. Each generalization relationship

is mapped into the inheritance relationship between the child

and parent class. In addition, the generated SQL script file is

a file script including statements to create a database, tables,

and store procedures.

Secondly, USLSCG uses Data Access template files as

inputs for the Acceleo project to generate classes automatically

at the data access layer. In particular, each class in the UML

domain class diagram is mapped to a code interface and class

at the data access layer. To use in different situations and use

cases, classes at the data access layer can be generated full

of methods. We use a Data Access frame template shown as

List 1 to generate classes at the data access layers. In addition,

each method has one template to replace DataAccess part of

the frame template, for example, List 2 is a template of the

Delete method.

1 using System;

2 using System.Data;

3 using System.Collections.Generic;

4 using Example.Common;

5 using {{ProjectName}}.DataModel;

6 using System.Linq;

7 namespace {{ProjectName}}.DataAccess {

8 public partial class {{tableName}}Repository : I

{{tableName}}Repository

9 {

10 private IDatabaseHelper _dbHelper;

11 public {{tableName}}Repository(IDatabaseHelper

dbHelper)

12 {

13 _dbHelper = dbHelper;

14 }

15 {{DataAccess}}

16 }

17 }

Listing 1. DataAccess Template

1

2 /// <summary>

3 /// Delete records in the table {{tableName}}

4 /// </summary>

5 /// <param name="json_list_id">List id want to

delete</param>

6 /// <param name="updated_by">User made the deletion

</param>

7 /// <returns></returns>

8 public List<{{tableName}}Model> Delete(string

json_list_id,Guid updated_by)

9 {

10 string msgError = "";

11 try

12 {

13 var dt = _dbHelper.

ExecuteSProcedureReturnDataTable(out msgError, "

sp_{{tablename}}_delete_multi",

14 "p_json_list_id", json_list_id,

15 "p_updated_by", updated_by);

16 if (!string.IsNullOrEmpty(msgError))

17 {

18 throw new Exception(msgError);

19 }

20 return dt.ConvertTo<{{tableName}}

Model>().ToList();

21 }

22 catch (Exception ex)

23 {

24 throw ex;

25 }

26 }

Listing 2. Template of Delete method in the Data Access class

Finally, Business Logic and Presentation template files are

used as inputs for USLSCG to generate classes at the business

logic and presentation layer automatically. We develop Algo-

rithm 2 to create these classes automatically. Note that the

article only generates the source code class at the presentation

layer and does not discuss the interface design based on the

domain classes because this problem has been handled very

well by editors supporting the programming languages.

Algorithm 2: GENBP

1 GenBP(la, tems)

Input: la, a set of actions;

tems are template files;

Output: lcbps, classes at business and presentation layer

2 BEGIN

3 Create a business class following templates corresponding to the use case

named BC;

4 foreach a in la do

5 switch TypeOf(a) do

6 case ActorInput do

7 if Business(a.ActorName) don’t exit then

8 Create a presentation class corresponding to

a.ActorName;

9 CreatePresentationMethod(a);

10 case ActorRequest do

11 if Presentation(a.ActorName) don’t exist then

12 Create a presentation class corresponding to

a.ActorName;

13 if a.RequestObjectType is system then

14 CreatePresentationMethod(a);

15 case

SystemOperation or SystemExtend or SystemRequest
do

16 CreateBusinessMethod(a);

17 case SystemDisP lay or SystemOutput do

18 CreatePresentationMethod(a);

19 case SystemState do

20 CreateBusinessMethod(a);

21 END

Algorithm GenBP takes the set of constrained actions la

which are extracted from Algorithm GenActions as input. The

output of GenBP is classes conforming to class diagram ACD

in the research [5].

Firstly, Algorithm GenBP generates a business class called

BC and a presentation class called PC for each USL model.

Nextly, Algorithm GenBP travers actions in la and trans-

forms each action to corresponding methods of the BC

or PC. Algorithm GenBP employs the functions Presenta-

tion(a.ActorName), CreatePresentationMethod(a), CreateBusi-

nessMethod(a) that are explained below.

• The function Presentation (a.ActorName) checks whether

a presentation class corresponding to the actor of action

a exists. this function will return true if this class exists.

• The function CreatePresentationMethod(a) generates a

method for the presentation class PC corresponding to

MINH-HUE CHU, ANH-HIEN DAO: AUTOMATED CODE GENERATION FROM USE CASES AND THE DOMAIN MODEL 79

action a. The generated method is based on properties

ActionName and Parameters of action a.

• The function CreateBusinessMethod(a) generates a

method for the business class BC. The generated method

is based on the properties ActionName and Parameters of

action a.

Specifically, methods CreatePresentationMethod(a), Create-

BusinessMethod(a) will use a template corresponding to the

type of action a. For example, List 3 shows a template

corresponding to the action SystemOperation mapped to the

update method. List 4 shows the generated business class of

use case Withdrawal.

1 using {{ProjectName}}.Common;

2 using {{ProjectName}}.Common.Caching;

3 using {{ProjectName}}.DataAccess

4 namespace {{ProjectName}}.Business {

5 public partial class {{tableName}}Business : I{{

tableName}}Business {

6 private I{{tableName}}Repository _res;

7 private ICacheProvider _redis;

8

9 public {{tableName}}Business(I{{tableName}}

Repository {{tableName}}Res, ICacheProvider

redis)

10 {

11 _res = {{tableName}}Res;

12 _redis = redis;

13 }

14

15 {{BusinessLogic}}

16 }

17 }

1 /// <summary>

2 /// Update information in the table{{tableName}}

3 /// </summary>

4 /// <param name="model">the record updated</param>

5 /// <returns></returns>

6 public bool Update({{tableName}} model)

7 {

8 return _res.Update(model);

9 }

Listing 3. Update method template of business class

1 using System;

2 using System.Collections.Generic;

3 using ATM.BusinessObject;

4 using ATM.DataAccess;

5

6 namespace ATM.BusinessLogic

7 {

8 public class WithdrawalBusiness :

IWithdrawalBusiness

9 {

10 private IWithdrawalRepository _res;

11 public EmployeeBusiness(

IWithdrawalRepository res)

12 {

13 _res = res;

14 }

15

16 /// <summary>

17 /// Validate the record Withdrawal

18 /// </summary>

19 /// <param name="model">the record validated

</param>

20 /// <returns></returns>

21 public bool ValidateFund(Withdrawal model)

22 {

23 return _res.Validate(model);

24 }

25

26 /// <summary>

27 /// Create a new record Withdraw

28 /// </summary>

29 /// <param name="model">The record is

recorded </param>

30 /// <returns></returns>

31 public bool GenerateWithdraw(Withdrawal

model)

32 {

33 if (model.Withdrawal_id == null || model

.Withdrawal_id == Guid.Empty.ToString())

34 { var c_guid = Guid.NewGuid().ToString()

; model.Withdrawal_id = c_guid; }

35 return _res.Create(model);

36 }

37

38 //...

39

40 }

41 }

Listing 4. The business class is generated for use case Withdraw

V. TOOL SUPPORT

We have added a code generation feature named USLSCG

for the USL tool in the research [3] as depicted in Figure 7.

The USL tool allows the integration of use cases into model-

driven software engineering (MDSE). Firstly, this tool reads

use case diagrams and a UML domain class diagram. Sec-

ondly, we specify each use case description as a USL model

by the USL Editor tool. Finally, the code generator USLSCG

reads the source code template files and transforms the UML

domain class diagram into source code classes at the business

objects layer, data access layer, and a SQL script file and

it also transforms each use case into source code classes in

presentation and business layer by using model transformation

languages Model to Text (M2T).

Fig. 7. The support tool USL contains the source code generation feature.

The architecture of the USLSCG generator is shown as in

Figure 8. This tool takes as input a USL model and a UML do-

main class diagram and source code templates. The output of

this tool is classes at presentation, business logic, data access,

business object layers; a SQL script file to create Database and

store procedures. In order to build the USLSCG generator, we

implement two modules, Module (1) and Module (2) as shown

80 PROCEEDINGS OF THE RICE. HUNG YEN, 2022

Fig. 8. The architecture of the generator USLSCG.

in Figure. 8. Module (1) is implemented by an Acceleo project.

Module (1) aims to parse the USL model in Java and Its output

is taken as input for Module (2). Module (2) extracts actions

from the USL model and returns a list of actions for Module

(1). Finally, Module (1) transforms the inputs into source code

files by transformations in Acceleo. Firstly, Module (1) reads

the UML domain class diagram and template files as inputs

for Module (1) functions. Function 1.GenbDomainClass gets

inputs including the UML domain class diagram, a SQL script

template file, an object template file, and data access template

files to generate a SQL script file, classes in the business

objects layer, and classes at the data access layer, respectively.

Next step, Module (1) read each USL model to pass Module

(2) written in java to extract actions from the USL model and

return a list of actions for Module (1). Function 2.GenbAcction

reads presentation template files, business template files and

actions returned from Module (2) to generate classes at the

presentation and business logic layer.

VI. RELATED WORK

We position our work in the automatic generation of source

code classes from use cases and a UML domain class diagram.

Within this context, source code classes are often manually

built from design class diagrams of use cases. In order to

automatically generate source code classes from a use case

model to reduce cost when software requirements are changed,

several approaches [10], [11], [12], [13] have been proposed.

Sunitha el al. [11] proposed a methodology to automatically

code generate from state chart diagrams. This paper presents

a method to convert hierarchical states, concurrent and history

states to Java code with a design pattern-based approach.

Particularly, each state of the system (or object) will be

mapped to a source code class. However, in the object-oriented

approach, each object type is abstracted into a class, and each

state is usually an obtainable value of a class property.

Francu el al. [10] presented a method that allows generating

an implementation of a system from the use cases written in

a natural language. This paper did not show the results of

the generator for Entity Managers which are used services for

classes of the above layers. Additionally, this paper does not

handle one-to-many or many-to-many associations among the

classes in the domain model. Besides, extracted verbs do not
classify so arguments of the procedures do not be generated

precisely.

Fatolahi el al. [12] proposed a semi-automated method

for the generation of web-based applications from use cases.

However, this approach is not fully automatic, they need to

interact with the developer to obtain the appropriate value

of required user parameters. Compared with all the works

above, our approach allows generating classes containing

full parameters following three layers architecture. Besides,

a script file is also generated which creates the database and

its store procedures. This file is not created in all of the above

research.

VII. CONCLUSION

In this work, we proposed an automatic method for generat-

ing source code files from a use case specification represented

as a USL model, a domain class diagram, and template files.

Generated source code files contain classes of the application,

a SQL script file to create the database, and store procedures

for the application. We also developed the generator USLSCG

to realize our method. In the future work, we will improve the

generator USLSCG to generate various kinds of applications.

Furthermore, generated source code files in different program-

ming languages will also be supported in our next version of

the generator USLSCG.

REFERENCES

[1] I. Sommerville, Software Engineering, 10th ed. Boston: Pearson, Mar.
2015.

[2] A. Cockburn and H. a. Technology, “WRITING EFFECTIVE USE
CASES,” Addison-Wesley, p. 113, 2001.

[3] C. Hue and D.-H. Dang, “USL: A Domain-Specific Language for Pre-
cise Specification of Use Cases and Its Transformations,” Informatica,
vol. 42, Sep. 2018.

[4] C. Hue, D.-H. Dang, and N. Binh, A Transformation-Based Method for

Test Case Automatic Generation from Use Cases, Nov. 2018, pages: 257.
[5] M.-H. Chu and D.-H. Dang, “Automatic Extraction of Analysis Class

Diagrams from Use Cases,” in 2020 12th International Conference on

Knowledge and Systems Engineering (KSE), Nov. 2020, pp. 109–114,
iSSN: 2164-2508.

[6] K. Wiegers and J. Beatty, Software Requirements, 3rd Edition, ser. 3rd
Edition, Aug. 2013.

[7] G. Ksters, H.-w. Six, and M. Winter, “Validation and verification of use
cases and class models,” 04 2001.

[8] Laurent Goubet and Laurent Delaigue, “Acceleo/Getting Started -
Eclipsepedia.” [Online]. Available: https:// wiki.eclipse.org/Acceleo

[9] a. M. W. Marco Brambilla, Jordi Cabot, Model-Driven Software Engi-

neering in Practice, 2nd ed. Morgan & Claypool, 2017.
[10] J. Francu and P. Hnetynka, “Automated Code Generation from System

Requirements in Natural Language,” e-Informatica, vol. 3, pp. 72–88,
Jan. 2009.

[11] S. E. V. and P. Samuel, “Automatic Code Generation From UML State
Chart Diagrams,” IEEE Access, vol. 7, pp. 8591 – 8608, Jan. 2019.

[12] A. Fatolahi, S. S. Somé, and T. C. Lethbridge, “Towards A Semi-
Automated Model-Driven Method for the Generation of Web-based
Applications from Use Cases,” 2008.

[13] H. Ikeda, H. Nakagawa, and T. Tsuchiya, “Towards
Automatic Facility Layout Design Using Reinforcement Learning,”
Sep. 2022, pp. 11–20. [Online]. Available: https://annals-
csis.org/proceedings/2022/drp/25.html

MINH-HUE CHU, ANH-HIEN DAO: AUTOMATED CODE GENERATION FROM USE CASES AND THE DOMAIN MODEL 81

