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Abstract4A Tagaki-Kang-Sugeno fuzzy brain emotional 

controller (TFBEC) for decoupling control of underactuated 

nonlinear systems is developed in this paper. The decoupling 

sliding mode technique is used to achieve decoupling control 

performance. An amygdala cortex and a prefrontal cortex 

comprise the brain emotional model. The prefrontal cortex is an 

emotional neural network, while the amygdala cortex is a 

sensory neural network. The proposed TFBEC is adaptive, and 

the parameters can be adjusted to achieve efficient control 

performance. A TFBEC is used as the main controller to 

approximate an ideal controller and achieve the desired control 

performance, and a robust compensator is used to eliminate the 

remaining approximation error and achieve system stability. A 

particle swarm optimization is used to find the optimal learning 

rates of the proposed method. Finally, the TFBEC control 

system is demonstrated by controlling a bridge crane system 

with one degree of under actuation. Simulation results have 

confirmed the validity of the proposed approach. 

Keywords4Takagi-Kang-Sugeno fuzzy system, brain 

emotional controller, bridge-crane system. 

I. INTRODUCTION 

For a specific type of underactuated nonlinear systems, the 
decoupling sliding mode control (DSMC) was developed. 
Separated into their own second-order systems, all subsystems 
need both a primary and secondary control function. Discrete 
subsystems' state variables can be thought of as sliding 
surfaces. For these sliding surfaces, we develop a primary goal 
condition and a secondary goal condition, with an 
intermediate variable taken from the sub-sliding surface 
condition to account for these subsystems [1]. The concept of 
sliding mode control (SMC) has recently been introduced as a 
means of controlling nonlinear systems whose dynamics are 
unknown. 

LeDoux [3] initially observed in 1992 that emotions are 
critical to human perception and action. In 2001, Balkenius 
and Moren [4] created a model of emotional learning in the 
brain that was grounded in neurophysiology. To this end, they 
developed and tested in virtual reality a brain with a synthetic 
amygdala and frontal lobe. The creation of a model of 
emotional learning has received a lot of attention in recent 

years. The Brain Emotional Learning Controller (BELC), 
introduced by Lucas et al [5], is a notable example of a system 
built using this paradigm. The amygdala cortex and the 
sensory network in this BELC are in constant dialogue with 
one another, just as the orbitofrontal cortex and its counterpart 
do in the human brain. The BELC performs well in dynamic 
systems because of its rapid self-learning capability, low 
implementation complexity, and great robustness. 

Decoupled sliding mode control (DSMC) alone is not 
enough to make highly nonlinear objects easier to control. 
Recent research that combines DSMC with neural networks, 
like the fuzzy neural network [6], has produced impressive 
results. Based on this direction of growth, this study suggests 
combining DSMC with a new controller called Takagi-Kang-
Sugeno fuzzy brain emotional controller (TFBEC). 

There are two kinds of fuzzy systems: 1) Takagi-Sugeno-
Kang (TSK) fuzzy systems and 2) Mamdani fuzzy systems 
[7]. In TSK fuzzy systems, the "IF" parts of the TSK rules 
match the "IF" parts of other fuzzy inference rules. In general, 
the "THEN" part of TSK rules is a polynomial function of the 
input variables. This BELC has a new fuzzy neural network 
called TSK Fuzzy Brain Emotional Controller (TFBEC), 
which uses the TSK fuzzy inference algorithm. Both the TSK 
fuzzy neural network and the BELC have advantages that the 
TFBEC also has. The parameter update laws of the TFBEC 
are worked out, and a Lyapunov function is used to show that 
the control system is stable. A second controller is needed to 
act like the ideal controller. The auxiliary controller might be 
a good one [8]. 

The remainder of this paper can be summarized as follows: 
Section II discusses the problem formulation, Section III 
discusses the proposed TFBEC and the PSO method, Section 
IV discusses the simulation results, and Section V concludes 
the paper. 

II. PROBLEM FORMULATION 

Consider a nonlinear system with underactuated expressed in 
the following form [1] 
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where 1 1 2 2 1 2( , ),  ( , )g y y g y y  and 
1 1 2 2 1 2( , ),  ( , )b y y b y y  are 

bounded nominal nonlinear functions, 

û ý 4
1 2 3 4   

T
y y y y= þòy  is the state vector, u  is the control 

input; and 
1d  and 

2d  are the external disturbances. This 

system can be viewed as two subsystems, each with a second-
order canonical two subsystems with second-order canonical 
form that includes the corresponding states 1 2( ,  )y y  and 

3 4( ,  )y y . The decoupling control seeks to develop a single 

input u that simultaneously controls the states 1 2( ,  )y y  and 

3 4( ,  )y y  to achieve the desired performance. The tracking 

error is defined as follows: 
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where û ý 4
1 2 3 4

T

d d d d d
y y y y= þòy  is the reference 

trajectory. Defining the coupling sliding surface for this 
system as [8] 

1 1 2( )s e eø ÷= 2 +   (3) 

2 3 4z e eø= +   (4) 

where 1 2,  ø ø  selected coefficients correspond to those of a 

Hurwitz polynomial, and ÷  is derived from z  and is 
defined as 

sat( / ) , 0 1u uz ÷÷ ÷ ÷= ö ü ü   (5) 

where ÷ö  is the boundary layer of z . ÷ö  transfers z to the 

correct range of 1y , and the definition of sat(.) function is: 

sgn( / ), if / 1
sat( / )

/ , if / 1

z z
z

z z

÷ ÷
÷

÷ ÷

ü ö ö óÿö = ý ö ö üÿþ
  (6) 

where 1u÷ ó  therefore ÷  is a decaying oscillation signal  

From (1), an ideal controller 
idealu  can be represented as 

( )1
1 1 2 1 1 1 1 2 1ideal d du b y g y y dø ø÷ ø2= 2 2 2 + + 2   (7) 

idealu  in (7) is unavailable due to an unidentified problem. 

Thus, a TFBEC is presented as a controller that approaches 
perfection. 

III. TAKAGI-KANG-SUGENO FUZZY BRAIN EMOTIONAL 

CONTROLLER 

 

 

Fig. 1. The structure of TFBEC 
 

The suggested TFBEC is depicted in Figure 1. The TFBEC 
employs the TSK fuzzy inference rules: 
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where 
iI  is the input of the fuzzy inference system; 

ijok  and 

ou  are respectively the TSK weight and the TFBEC output. 

Signal propagation and fundamental function in each TFBEC 
space are described as follows: 

A. Input Space 

For the input data, 1 2,  ,..., i

i

n

nI I I Iù ù= þòû û , ni is the input 

dimension. 

B. Association Memory Space  

In Sensory cortex space, the sigmoid function is adopted 
represented as: 

2exp ( )
B

i ij

ij B

ij

I m
ù

ó

ö ö2
= 2÷ ÷÷ ÷

ø ø
 (9) 

where 
ijù  is the Gaussian function of prefrontal system input 

and amygdala system input for sensory cortex output, B

ijm  

and B

ijó  are respectively mean and variance. 

C. Emotional Weight Space 

This space uses the inference fuzzy rules as follows: 

If 1 1 2 2 is ,   is j jI Iù ù , &., and  is 
i in n jI ù then 

1

( )  
in

jo i ijo

i

v I k
=

=õ  (10) 

for 1,..., ;   1,..., ;  1,...,
o j i

o n j n i n= = =   

D. Output Space  

The output space is represented as follows 
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for 1,  2,...,  oo n=  

A cost function is defined as 2
1

1
2

V s= , then the derivate of 

it is 1V ss= . Using the gradient descent method to find the 

proposed method's updating laws. The following equations 
describes the updated laws. 
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where , ,  and k m óü ü ü  are learning rates with positive values. 

The learning rates can be optimized by the PSO algorithm. 
The approach error causes a tracking error in the control 
system because the TFBEC cannot perfectly replicate the 
ideal controller. As a result, a compensating controller is 
required to ensure the control system's robust stability. The 
control system is depicted in Figure 2. 

 
Fig. 2. Block diagram of TFBEC control system 

 
When we take the derivative of (3), we get the following: 

( )1 1 2 1 1 1 2 2( ) d ds e e y y y yø ÷ ø ÷= 2 + = 2 2 + 2  (18) 

Due to the inevitability of an approximation error between the 
TFBEC and the ideal controller, the latter can be expressed 
as the sum of the former and the latter, with the assumption 
that the approximation error is defined as 

ideal TFBECu uô = 2   (19) 

The control system is structured as follows to account for the 
approximation error: 

TFBEC RBu u u= +  (20) 

Æsign( )RBu sý=  (21) 

where Æý  is an estimated value of the variable ý being 

looked up. Then the adaptive law of Æý  is as follows. 

Æ sýý ü=  (22) 

Picking a Lyapunov function using the formula 

21

2 2
V s

ý

ýý
ü

= +  (23) 

Then, the derivate of V  is attained 

( )Æ = ( ) sign( )
RB

V s u s s
ý ý

ýý ýýó ó ý
ü ü

2 + = 2 +  

Æ=s s
ý

ýýó ý
ü

2 +  (24) 

Because Æý ý ý= +  is constant so: Æ sýý ý ü= 2= 2  

therefore 

( ) ( )Æ Æ= 0V s s s só ý ý ý ý ó2 2 2 = 2 2 ó  (25) 

Since 0V ó , (0)V Vó , provides that ý  and s  are 

bounded. Defining ( ) ( )s s Vý ó ý óü = 2 ó 2 ó 2 . 

Integrating ü  with respect to time, obtains: 

0
( )  (0) ( )

t

d V V tô ôü ó 2ò  (26) 

Since (0)V and ( )V t  are both constrained, ( )V t  is not 

increased, so 
0

lim ( ) .
t

t dô ô³õ ü ü õò  This points to the fact 

that t ³õþ 0s ³ . As a result, the TFBEC control 
method that was suggested has a high degree of guaranteed 
stability. 

E. Particle Swarm Optimization (IPSO) 

Particle swarm optimization (PSO) is an efficient 
optimization method recommended by Eberhart and 
Kennedy [12]. To obtain suitable learning rates 

, ,  and k m óü ü ü  for the update laws of TFBEC, the improved 

PSO algorithm is used [12]. The algorithm calculates the 
fitness function of each set, and then each set can be adjusted 
based on the local optimization position of the particles 
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 and the global optimization position of the swarm 

. In this study, the fitness function is chosen as follows. 

1
0.1

F
e

=
+

 (27) 

( )ip t , ( )i tñ  are respectively the current velocity and the 

current velocity of the particle. The update of ( )ip t  and 

( )i tñ  are given as follows. 

( 1) ( ) ( 1)i i ip t p t tñ+ = + +  (28) 

( )
( )

1 1

2 2

( 1) . ( ) . . ( )

                  . . ( )

i i best i
i

best i
i

t t P p t

G p t

ñ ú ñ û ý

û ý

+ = + 2 +

2
 (29) 

where ú  is inertia weight, 1û  and 2û  are learning factors, 

1ý and 2ý  are two random variables in the range [0,1], 

10 1ýó ó , 20 1ýó ó . The PSO algorithm can be 

represented as follows. 
Step 1: Initialization of the swarm, the position of the 
particles is chosen randomly. 
Step 2: Calculate the fitness function for each particle. 

( )i
Fit p  

Step 3: Comparison of the fitness function with its best 
fitness function. 

If ( ) ( )i best
i

F p F Gü  then ( ) ( )best i
i

F G F p=  and 

i best
i

p G=  

Step 4: Comparison of the fitness function ( )iF p  of each 

particle with the best global particle ( )best
i

F G  

If ( )( )i best
i

F p F Gü  then ( ) ( )
best i

i
F G F p=  and

i best
i

p G= . 

Step 5: Update the position and velocity with (28) and (29). 
Step 6: Go back to step 2 and repeat until convergence. 

IV. SIMULATION RESULTS 

For the purposes of this section, consider the control 
problem of a two-dimensional bridge crane system, as seen 
in Figure 2 and formulated as follows [9]. 

( ) ( , ) ( )M q q C q q q G q u+ + =   (30) 

where û ýTq x ñ=  and matrices and vectors are expressly 

defined as follows. 

2

cos
( ) ,

cos
xm m ml

M q
ml ml

ñ
ñ

+ ôù ù
= ú úôû û

 

0 sin
( , ) ,

0 0

ml
C q q

ñ ñù ù2 ô ô
= ú ú
û û

  

û ý( ) 0 sin ,
T

G q mgl ñ= ô  û ýTrx
u F f d= 2 . Table I 

provides a place to define the various parameters of the 
system. 

TABLE I 

THE PAREMTERS OF BRIDGE CRANE SYSTEM 

Parameter Definiton 

xm  cart mass 

m  load mass 

l  cable length 

x  cart displacement 

ñ  load swing angle 
F  control input 

rxf  non-linear friction between the cart and the bridge 

d  external disturbance 

0r xf , õ  static friction coefficients 

rxk  viscous friction 
 

0 tanh( / )rx r x rxf f x k x xõ= 2   (31) 

rxk  can be determined through offline experimental testing 

and data collection. Consider the control problem in terms of 
putting the load at the appropriate location by simultaneously 
managing the horizontal motion of the carriage and 
minimizing the load's wobble. Specifically, we wish to push 
the position of the carriage x to the required place 

dp þò  

while eliminating », which can be specified mathematically 
as. 
lim ( ) , lim ( ) 0d
t t

x t p tñ
³õ ³õ

= =   (32) 

Define 1 2 3 4( ),  ( ),  ( ),  ( )y t y t y x t y x tñ ñ= = = = .  

From (3)-(5), the following specifications, we select 
1 5,ø =  

2 0.5,ø =  5,÷ö =  0.95u÷ = . The initial values are as follows: 

7 [ ]xm kg= , 1.025 [ ]m kg= , 4 [ ]l m= , 

0.6 [ ]dp m= , (0) 0x = , (0) 0ñ = . To test the effect 

of control effort in the presence of external disturbances, add 
wind speed as a disturbance during transport to validate 
 at t=7 [s] 45 [N]d = 2 , at t=8 [s] 45 [N]d = , at t=9 [s] 

55 [N]d = 2 , and at t=10 [s] 55 [N]d = . The initial 

values for TFBEC are: 

in =2, jn =8, kn =2, on =2, 

11 21 12 22 13 23

14 24 15 25 16 26

1, 0.75, 0.5,

0.25, 0, 0.25,

B B B B B B

B B B B B B

m m m m m m

m m m m m m

= = 2 = = 2 = = 2

= = 2 = = = =
 

17 27 18 280.5, 0.75B B B B
m m m m= = = = ; 

11 21 12 22 13 23

14 24 15 25 16 26

0.8, 0.6, 0.4,

0.2, 0, 0.2,

B B B B B B

B B B B B B

ó ó ó ó ó ó

ó ó ó ó ó ó

= = 2 = = 2 = = 2

= = 2 = = = =
 

17 27 18 280.4, 0.6B B B Bó ó ó ó= = = = ;
kü =0.05, 0.05mü = , and 

óü =0.01. The initial value of PSO: =0.9 ú , 

1 2 0.02û û= = , 1 2 0.001ý ý= = , and 0.002iñ = . 

The results of the simulation are presented in Figures 4-7, and 
Table II has a listing of the Root Mean Square Error (RMSE). 
The root mean square error (RMSE) of the sliding mode 
control (SMC) [10] and the FBELC [11] is smaller than the 
RMSE of the proposed TFBEC for » (RMSE_ »), which is 
2.48 times and 1.01 times smaller, respectively. And the root 
mean square error of the suggested TFBEC for X, which is 
denoted by RMSE X, is 1.67 times smaller than the RMSE of 

best
i

L

best
i

G
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SMC and 1.17 times smaller than the RMSE of FBELC, 
respectively. However, because of the complexity of TFBEC, 
the amount of time needed to complete computations using 
our method is significantly longer. The process of changing 
the learning rates , ,  and k m óü ü ü  using the PSO algorithm is 

depicted in Figure 4. This demonstrates that the PSO 
algorithm is effective since after the first fluctuation in the 
learning rate values, those values eventually settle down to a 
constant positive value. Figure 5 demonstrates that the output 
of is less volatile when utilizing the proposed TFBEC in 
comparison to the output of conventional controllers, and that 
this leads to a more rapid transition to steady state. The results 
of X that are displayed in Fig. 6 are comparable to those 
displayed in Fig. 5. Figure 7 illustrates how the control efforts 
are altered when an external disturbance is present. The 
suggested TFBEC is able to adjust to noise more quickly than 
the SMC and the FBELC. 

 

Fig. 3. A 2-dimensional underactuated bridge-crane 

 
Fig. 4. The updating of learning rates using PSO algorithm. 

 
Fig. 5. The control results for the bridge crane for » 

 

Fig. 6. The control results for the bridge cranes for X 

 

Fig. 7. The control effort F [N] for the bridge cranes 
 

TABLE II 

COMPARISION IN RMSE FOR BRIDGE CRANE SYSTEM 

Method Computation 

time [s] 
RMSE_» RMSE_X 

SMC [10] 0.085 0.380 0.01 

FBELC [11] 0.175 0.155 0.007 

The 

proposed 

TFBEC 

0.234 0.153 0.006 

V. CONCLUSION 

 It has been suggested that TFBEC can be used to 
decouple the control of nonlinear systems. In addition, the 
optimum values of the learning rates can be determined by 
the use of PSO. The results of a simulation run on a nonlinear 
bridge crane are shown, demonstrating that the effectiveness 
of the suggested control system was confirmed by the 
simulation. The developed controller is successful in properly 
tracking the target while making only minor errors and 
demonstrates rapid convergence. 
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