Bank Loan Analysis using Data Mining Techniques

Thi-Nhi Trinh Faculty of Information Technology Hung Yen University of Technology and Education Hung Yen, Vietnam nhittcntt@gmail.com

Abstract—Nowadays, a bank loan can provide people with cash to fund home improvements or start a business. However, some customers who are accepted with a loan cannot repay or someone usually repays in a delayed time. Therefore, to minimize losses, examining loan applications is particularly evident for the bank. This paper study on bank loan analysis using data mining techniques. We use association rules mining, clustering, and classification techniques on the applicant's profile to help the bank quickly decide for a loan applicant.

Index Terms—bank loan analysis, association rules mining, clustering, classification.

I. INTRODUCTION

The bank has to decide whether to go ahead with the loan approval or not, this was based on the applicants' profiles. There are two kinds of situation risks for banks that are associated with the bank's decision: (1) if the applicants can repay the loan - good credit risk, the bank approves their application, (2) if the applicants are unable to repay the loan bad credit risk, the bank does not approve this loan. Analyzing patterns from customer profiles in the dataset and making the right decisions based on patterns plays an extremely important role in the Bank's business. In this paper, we present the approaches for analyzing the credit data that contains the loan applicants. First, we use the Apriori algorithm to find associations given the rules to predict whether an applicant is 'good' or 'bad'. Second, we use K-Means clustering to group applicants with similar attributes into different groups which helps a bank manager to understand easily the characteristics of the group of applicants. Finally, we use classification algorithms including Naïve Bayes and K Nearest Neighbor to classify an applicant into 'good' or 'bad', which is an important task to help a bank manager quickly make a decision for a loan applicant.

II. BACKGROUND

A. Mining Association Rules

We summarize the association rules issue as follows:

Let $I = \{i_1, i_2, ..., i_n\}$, set I includes the elements.

D: a set of all transactions where each transaction T is a set of elements such that T \subseteq I.

X, Y be a set of elements such that X, $Y \subseteq I$. An association rule implies the form $X \Longrightarrow Y$, where $X \subset I, Y \subset I$, $X \cap Y = \emptyset$.

Support

The rule $X \Longrightarrow Y$ holds with support *s* if *s*% of transactions in D contains $X \cup Y$. Rules that have a *s* greater than user-specified support is said to have minimum support.

Confidence

Hoang-Diep Nguyen Faculty of Information Technology Hung Yen University of Technology and Education Hung Yen, Vietnam diep82003@gmail.com

The rule $X \Longrightarrow Y$ holds with confidence *c* if *c*% of transactions in D contains $X \cup Y$. Rules that have a *c* greater than user-specified confidences are said to have minimum confidence.

B. K-Means Clustering

K-means algorithm performs the following steps:

- 1. Select *k* applicants from *S* to be used as cluster centroids (random)
- 2. Assign applicants to clusters according to their similarity to the cluster centroids.
- 3. For each cluster, recalculate the cluster centroid using the newly calculated cluster members.
- 4. Go to step 2 until the process converges.

C. Classification

Classification is a data mining technique used to predict class levels for data instances. In this paper, we are using two different classification techniques to predict the class level including Naïve Bays and K Nearest Neighbors.

Naive Bayes Algorithm

The Bayesian approach determines the class of document x as the one that maximizes the conditional probability P(C | x).

$$P(C \mid x) = \frac{P(x \mid C) P(C)}{P(x)}$$
(1)

To compute P(x | C) we use equation as follows:

$$P(x \mid C) = P(x_1, x_2, \dots, x_n \mid C) = \prod_{i=1}^n P(x_i \mid C)$$
(2)

Where $P(x_i|C)$ is calculated as the proportion of items from class C that include attribute value x_i ; P(C) is the probability of sampling for class C.

K Nearest Neighbor

K Nearest Neighbor is to predict the class of a new sample using the class label of the closest sample. We can summarize K-Nearest Neighbor algorithm as the following steps:

- (1) Determine parameter K = number of nearest neighbors.
- (2) Calculate the distance between the query instance and all the training samples.
- (3) Sort the distance and determine the nearest neighbors based on the K-th minimum distance.
- (4) Gather the category *Y* of the nearest neighbors.
- (5) Use the simple majority of the category of nearest neighbors as the prediction value of the query instance.

III. EXPERIMENTS

1																	
	A	B	С	D	E	F	G	Н		J	K	L	M	N	0	Р	Q
1	checking_sta	a duration	credit_history	purpose	amount	savings_statu	employment	personal_sta	t other_parties	property_mag	other_payme	housing	existing_cred	job	own_telephon	foreign_worker	class
2	<0	lo_1_year	critical/other	radio/tv	1000_2000	no known sav	>=7	male single	none	real estate	none	own	two	skilled	yes	yes	good
3	0<=X<200	up_2_years	existing paid	radio/tv	up_2000	<100	1<=X<4	female div/de	none	real estate	none	own	one	skilled	none	yes	bad
4	no checking	lo_1_year	critical/other	education	up_2000	<100	4<=X<7	male single	none	real estate	none	own	one	unskilled resi	none	yes	good
5	<0	up_2_years	existing paid	furniture/equip	up_2000	<100	4<=X<7	male single	guarantor	life insurance	none	for free	one	skilled	none	yes	good
6	<0	1_2_years	delayed previo	new car	up_2000	<100	1<=X<4	male single	none	no known pro	none	for free	two	skilled	none	yes	bad
7	no checking	up_2_years	existing paid	education	up_2000	no known sav	1<=X<4	male single	none	no known pro	none	for free	one	unskilled resi	yes	yes	good
8	no checking	1_2_years	existing paid	furniture/equip	up_2000	500<=X<1000	>=7	male single	none	life insurance	none	own	one	skilled	none	yes	good
9	0<=X<200	up_2_years	existing paid	used car	up_2000	<100	1<=X<4	male single	none	car	none	rent	one	high qualif/se	yes	yes	good
10	0 no checking	lo_1_year	existing paid	radio/tv	up_2000	>=1000	4<=X<7	male div/sep	none	real estate	none	own	one	unskilled resi	none	yes	good
11	1 0<=X<200	up_2_years	critical/other	new car	up_2000	<100	unemployed	male mar/wid	d none	car	none	own	two	high qualif/se	none	yes	bad
12	2 0<=X<200	lo_1_year	existing paid	new car	1000_2000	<100	<1	female div/de	none	car	none	rent	one	skilled	none	yes	bad
13	3 <0	up_2_years	existing paid	business	up_2000	<100	<1	female div/de	none	life insurance	none	rent	one	skilled	none	yes	bad
14	4 0<=X<200	lo_1_year	existing paid	radio/tv	1000_2000	<100	1<=X<4	female div/de	none	car	none	own	one	skilled	yes	yes	good
1	5 <0	1_2_years	critical/other	new car	1000_2000	<100	>=7	male single	none	car	none	own	two	unskilled resi	none	yes	bad
16	6 <0	1_2_years	existing paid	new car	1000_2000	<100	1<=X<4	female div/de	none	car	none	rent	one	skilled	none	yes	good
17	7 <0	1_2_years	existing paid	radio/tv	1000_2000	100<=X<500	1<=X<4	female div/de	none	car	none	own	one	unskilled resi	none	yes	bad
18	8 no checking	1_2_years	critical/other	radio/tv	up_2000	no known sav	>=7	male single	none	life insurance	none	own	two	skilled	none	yes	good
19	9 <0	up_2_years	no credits/all	business	up_2000	no known sav	<1	male single	none	car	bank	own	three	skilled	none	yes	good
20	0 0<=X<200	1_2_years	existing paid	used car	up_2000	<100	>=7	female div/de	none	no known pro	none	for free	one	high qualif/se	yes	yes	bad
2	1 no checking	1_2_years	existing paid	radio/tv	up_2000	500<=X<1000	>=7	male single	none	car	none	own	one	skilled	yes	yes	good
22	2 no checking	lo_1_year	critical/other	new car	up_2000	<100	1<=X<4	male single	none	car	none	own	three	skilled	yes	yes	good
23	3 <0	lo_1_year	existing paid	radio/tv	up_2000	500<=X<1000	1<=X<4	male single	none	real estate	none	rent	one	skilled	none	yes	good

Figure 1: The German Credit data set

A. Dataset

In this paper, we use the German Credit Data that contains data on 17 variables of 1000 past applicants for credit. Each applicant was rated as "good credit" (700 cases) or "bad credit" (300 cases). The attributes of each credit applicant are included as follows:

1. Status of account	10. Property				
2. Time in a month	11. Payment plans				
3. History of credit	12. Housing				
4. Purpose	13. Number of existing				
5. Credit money	credits				
6. Savings bonds/account	14. Job				
7. Employment since	15. Telephone				
8. Personal status and sex	16. foreign worker				
9 Other debtors /	17. Class				
guarantors					

B. Experimental Results

Weka is a software that helps people analyze data and build predictive models quickly and accurately. In this paper, we use Weka to run the Apriori algorithm, K-means clustering, Naïve Bays, and K Nearest Neighbor. We dynamically change the parameter to obtain a better result.

In this section, we present the evaluation of three data mining techniques for analyzing credit data. We run four algorithms in Weka including Apriori, K-means, Naïve Bays, and K-Nearest Neighbor, and analyze their results.

(1) Mining Association Rule with Apriori Algorithm

• Run Apriori with default value of parameters by Weka

Scheme: weka.associations.Apriori -N 10 -T 0 -C 0.9 -D 0.05 -U 1.0 -M 0.1 -S -1.0 -c -1

Set Minimum support is 0.6 (600 instances)

Set confidence is 0.9

Set number of executed is 8

Return best results

1. other_parties=none 907 ==> foreign_worker=yes 880 <u>conf:(0.97)</u>

2. job=skilled 630 ==> foreign_worker=yes 611 <u>conf:(0.97)</u>

3. other_parties=none other_payment_plans=none 742 ==> foreign_worker=yes 718 <u>conf:(0.97)</u>

4. other_parties=none housing=own 647 ==> foreign_worker=yes 625 conf:(0.97)

5. other_parties=none class=good 635 ==> foreign_worker=yes 611 <u>conf:(0.96)</u>

6. existing_credits=one 633 ==> foreign_worker=yes 609 <u>conf:(0.96)</u>

7. housing=own 713 ==> foreign_worker=yes 685 conf:(0.96)

8. other_payment_plans=none 814 ==> foreign_worker=yes 782 <u>conf:(0.96)</u> 9. class=good 700 ==> foreign_worker=yes 667

configure to a second for the second

10. other_payment_plans=none foreign_worker=yes 782 ==> other_parties=none 718 <u>conf:(0.92)</u>

Run Apriori with customization value of parameters

In this case, we change parameter car = 'true' to enable class association rules to be mined instead of (general) association rules. Then we use *classIndex* = -1 to make the last attribute taken as a class attribute. Here, the 'class' attribute in our dataset is the last attribute that has a 'good' or 'bad' applicant. Then, we run Apriori again, and the results are as follows.

Set minimum support is 0.2 (200 instances)						
Set confidence is 0.9						
Set number of executed is 16						
Return best results						
1. checking_status=no checking other_parties=none other_payment_plans=none housing=own 244 ==> class=good 228 conf:(0.93)						
2. checking_status=no checking other_parties=none other_payment_plans=none housing=own foreign_worker=yes 236 ==> class=good 220 <u>conf:(0.93)</u>						

3.checking_status=nocheckingother_parties=noneother_payment_plans=nonejob=skilled 217 ==> class=good 202conf:(0.93)
4. checking_status=no checking other_payment_plans=none housing=own 256 ==> class=good 238 <u>conf:(0.93)</u>
5. checking_status=no checking other_payment_plans=none housing=own foreign_worker=yes 247 ==> class=good 229 <u>conf:(0.93)</u>
6. checking_status=no checking other_parties=none other_payment_plans=none 313 ==> class=good 290 <u>conf:(0.93)</u>
7. checking_status=no checking other_payment_plans=none job=skilled 230 ==> class=good 213 conf:(0.93)
8. checking_status=no checking other_parties=none other_payment_plans=none foreign_worker=yes 303 ==> class=good 280 conf:(0.92)
9. checking_status=no checking other_payment_plans=none job=skilled foreign_worker=yes 223 ==> class=good 206 conf:(0.92)
10. checking_status=no checking other_payment_plans=none 330 ==> class=good 303 _ conf:(0.92)

(2) K-Mean Clustering

We run K-means algorithm with various the number of clusters from 2 to 6. And we found the averaged Sum of Squared Error as shown in Figure 2.

Figure 2: The averaged Sum of Squared Error

The knee point with k=3 shows that this data set should be grouped into 3 clusters. The results for running K-means with 3 clusters are illustrated in Figure 3 and Figure 4.

Number of iterations: 3 Within cluster sum of squared errors: 6123.0 Missing values globally replaced with mean/mode

Cluster centroids:

		Cluster#		
Attribute	Full Data	0	1	2
	(1000)	(518)	(209)	(273)
checking_status	no checking	no checking	<0	0<=X<200
duration	1_2_years	1_2_years	1_2_years	lo_1_year
credit_history	existing paid	existing paid	existing paid	existing paid
purpose	radio/tv	new car	used car	radio/tv
amount	up_2000	up_2000	up_2000	1000_2000
savings_status	<100	<100	<100	<100
employment	1<=X<4	1<=X<4	>=7	1<=X<4
personal_status	male single	male single	male single	male single
other_parties	none	none	none	none
property_magnitude	car	car	no known property	real estate
other_payment_plans	none	none	none	none
housing	OWN	own	own	OWD
existing_credits	one	one	one	one
job	skilled	skilled	skilled	skilled
own_telephone	none	none	yes	none
foreign_worker	yes	yes	yes	yes
class	good	good	good	good

Time taken to build model (full training data) : 0.04 seconds

=== Model and evaluation on training set ===

Clustered Instances

- 518 (52%)
- 209 (21%) 273 (27%)

Figure 3: The results run K-means with 3 clusters

Figure 4: The results run K-means with 3 clusters and plot by Property Magnitude attribute

- (3) Classification.
- Data preparation a)

The data is separated into two *.csv files in which 70% data for training is stored in credit-train.csv and 30% data for testing is stored in credit -test.csv.

TABLE 1: THE DATASET SETTING FOR CLASSIFICATION

Class	Training data (number of items)	Testing data (number of items)
Good	480	220
Bad	220	80
Total	700	300

Classification with Weka *b*)

Run Naive Bayes Classify

The results from training dataset

Classify	Charten .	Annalata	Calant attributes 10au	a beau					
Tarrifler	Liuster	Associate	seleccatorioutes visu	jize					
Choose NaiveB	ayes								
Test options			Classifier output						
Use training set			Correctly Clas	sified In:	stances	534		76.2857	
O Supplied test set	S	iet	Incorrectly Cl	assified 1	Instances	166		23.7143 4	b
O Grans unbidation	Polds.	10	Kappa statisti	.c		0.43	16		
O Cross-validation	Polds	10	Mean absolute	error		0.30	07		
 Percentage split 	%	66	Robe mean squa	red error		69.72	61 B		
More opti	ons		Relative absoluce error			86 6975 8			
			Total Number o	f Instance		700			
(Nom) class		~							
			=== Detailed A	couracy By	Class ===	e.			
Start	St	top					-	12112101010100	
Result list (right-click fo	r options	s)		TP Rate	FP kate	Precision	Recall	F-Measure	ROC Are
17:18:07 - bayes.Naive	Bayes			0.854	0.436	0.619	0.554	0.832	0.81
			Weighted Avg.	0.763	0.345	0.757	0.763	0.759	0.81
			Confusion	Matrix					
			a b <	classifie	ed as				
			410 70 I a	a = good					
			96 124 E	, = bad					
			<						>

Figure 5: Illustrates the results for training with Naive Bayes

- The results for the testing dataset

Choose NaiveBayes							
Test options	Classifier output						
O Use training set	Correctly Classi	fied Ins	stances	227		75.6667	8
Supplied test set Set	Incorrectly Clas	sified 1	Instances	73		24.3333	8
C	Kappa statistic			0.33	84		
O Cross-validation Folds 10	Mean absolute er	ror		0.30	49		
O Percentage split % 66	Root mean square	d error		0.40	78		
More options	Relative absolut	e error		73.73	22 8		
	Total Number of	Instance	FIOT	300			
(Man) dans		Inovanoe		000			
(vom) cass	Detailed Acc	uracy By	Class	-			
Start Stop							
Regult list (right-click for options)	т	P Rate	FP Rate	Precision	Recall	F-Measure	ROC Are:
17:27:47 - bayer NaiveBayer		0.868	0.55	0.813	0.868	0.84	0.78
17:28:21 - bayes NaiveBayes		0.45	0.132	0.554	0.45	0.497	0.78
	Weighted Avg.	0.757	0.438	0.744	0.757	0.748	0.78
	Confusion Ma	trix					
	a b < c	lassifie	nd as				
	191 29 a =	good					
	44 36 I b -	bad					
	1						>

Figure 6: Illustates the results for testing with Naive Bayes

Run K-Nearest Neighbor Classify

Figure 7: Illustates the results for training with KNN

😋 Weka Explorer						-	
Preprocess Classify Cluster Associate	Select attributes Visua	lze					
Classifier							
Choose IBk ·K 1 ·W 0 -A "weka.com	neighboursearch.Linea	NNSearch -A	\"weka.core.E	uclideanDistance	-R first-last\		
Test options	Classifier output						
O Use training set	Correctly Clas	sified In:	tances	218		72.6667	4
Supplied test set Set	Incorrectly Cl	assified :	Instances	82		27.3333	N
C sopped test set	Kappa statisti	-		0.24	72		
O Cross-validation Folds 10	Mean absolute	error		0.30	29		
O Percentage split % 66	Root mean squa	red error		0.48	85		
More options	Relative absol	ice error	TOT	109.82	16 8		
	Total Number o	f Instance	10	300			
(Nom) class \sim	Detailed A	curacy B	Class				
Start Stop		10100000					
Result list (right-click for options)		TP Rate	FP Rate	Precision	Recall	F-Measure	ROC Area
17:32:35 - lazy.IBk		0.855	0.625	0.79	0.855	0.821	0.663
17:39:57 - lazy.IBk	Weighted Avg.	0.373	0.497	0.708	0.375	0.715	0.663
	Herdineed Midt	011121	01407	01700	01727	01720	01000
	=== Confusion	datrix ===					
	100 C 100 C						
	a b <	classifie	d as				
	100 32 a	= good					
	50 30 1 6	= Dad					
				_			>

Figure 8: Illustates the results for testing with KNN

Analysis. We can summarize the results as the tables below.

TABLE 2: SUMMARY OF	THE RESULTS
---------------------	-------------

Methods	Traning (Accuracy)	Testing (Accuracy)			
Naïve Bayes	534/480	227/300			
KNN	700/700	218/300			

TABLE 3: CONFUSION MATRIX FOR RUNNING NAÏVE BASE

Assigned True	C1	C2	Total
C1	191	29	220
C2	44	36	80

TABLE 4: CONFUSION MATRIX FOR RUNNING KNN

Assigned True	C1	C ₂	Total
C1	188	32	220
C2	50	30	80

As the results, we can see that the trained KNN algorithm better than the Naïve Bayes algorithm for the German Credit dataset that is given above. However, for the results of the classification on the testing dataset, Naïve Bayes outperforms the KNN algorithm.

V. CONCLUSIONS

In this paper, we present approaches for analyzing the credit data and provide the information for the bank manager to make a decision regarding loan approval. Besides, we can conclude as follows. (1) For mining association rules, (a) some association rules have very high confidence, but it is not important in particular; (b) the number of rules depends on the confidence and minimum support; (c) the confidence of a rule does not depending on the minimum support. (2) It is better to classify the German Credit dataset into 3 clusters. (3) Even though the KNN algorithm trained better than the Naïve Bayes algorithm for the German Credit dataset, Naïve Bayes outperforms the KNN algorithm for classifying new applicants for loan service.

REFERENCES

[1] G. Eason, B. Noble, and I. N. Sneddon, "On certain integrals of Lipschitz-Hankel type involving products of Bessel functions," Phil. Trans. Roy. Soc. London, vol. A247, pp. 529–551, April 1955. (*references*)

[2] J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892, pp.68–73.

[3] I. S. Jacobs and C. P. Bean, "Fine particles, thin films and exchange anisotropy," in Magnetism, vol. III, G. T. Rado and H. Suhl, Eds. New York: Academic, 1963, pp. 271–350.

[4] K. Elissa, "Title of paper if known," unpublished.

[5] R. Nicole, "Title of paper with only first word capitalized," J. Name Stand. Abbrev., in press.

[6] Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, "Electron spectroscopy studies on magneto-optical media and plastic substrate interface," IEEE Transl. J. Magn. Japan, vol. 2, pp. 740–741, August 1987 [Digests 9th Annual Conf. Magnetics Japan, p. 301, 1982].

[7] M. Young, The Technical Writer's Handbook. Mill Valley, CA: University Science, 1989.