Logo PTI Logo FedCSIS

Proceedings of the 18th Conference on Computer Science and Intelligence Systems

Annals of Computer Science and Information Systems, Volume 35

VICRA: Variance-Invariance-Covariance Regularization for Attack Prediction

,

DOI: http://dx.doi.org/10.15439/2023F1151

Citation: Proceedings of the 18th Conference on Computer Science and Intelligence Systems, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 35, pages 10751080 ()

Full text

Abstract. In cybersecurity, accurate and timely prediction of attacks plays a crucial role in mitigating the risks and impacts of cyber threats. However, traditional attack prediction methods that rely on training Machine Learning (ML) algorithms directly on raw data often suffer from high false alarm rates and low detection rates, leading to inaccurate and unreliable results. To overcome these limitations, this paper presents a novel approach that integrates attack prediction with self-supervision using variance-invariance-covariance regularization (VICReg). The proposed method harnesses VICReg to enhance raw data and generate representations while leveraging self-supervision to learn meaningful features without supervision. Training classic ML algorithms on these refined representations improves prediction accuracy and enhances the robustness of the learning process. We provide a comprehensive description of the proposed method and present an evaluation of its performance on several benchmark datasets. The experimental results demonstrate the superiority of the proposed method over classic ML algorithms.

References

  1. N. Paltrinieri, L. Comfort, and G. Reniers, “Learning about risk: Machine learning for risk assessment,” Safety Science, vol. 118, pp. 475–486, 2019. http://dx.doi.org/https://doi.org/10.1016/j.ssci.2019.06.001. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925753518311184
  2. F. Ullah, H. Naeem, S. Jabbar, S. Khalid, M. A. Latif, F. Al-turjman, and L. Mostarda, “Cyber security threats detection in internet of things using deep learning approach,” IEEE Access, vol. 7, pp. 124 379–124 389, 2019. http://dx.doi.org/10.1109/ACCESS.2019.2937347
  3. X. Fang, M. Xu, S. Xu, and P. Zhao, “A deep learning framework for predicting cyber attacks rates,” EURASIP Journal on Information Security, vol. 2019, no. 1, p. 5, May 2019. http://dx.doi.org/10.1186/s13635-019-0090-6. [Online]. Available: https://doi.org/10.1186/s13635-019-0090-6
  4. O. A. Akanbi, I. S. Amiri, and E. Fazeldehkordi, “Chapter 1 - introduction,” in A Machine-Learning Approach to Phishing Detection and Defense, O. A. Akanbi, I. S. Amiri, and E. Fazeldehkordi, Eds. Boston: Syngress, 2015, pp. 1–8. ISBN 978-0-12-802927-5. [Online]. Available: https://www.sciencedirect.com/science/article/pii/B9780128029275000010
  5. [Online]. Available: https://www.wireshark.org/
  6. R. Balestriero, M. Ibrahim, V. Sobal, A. Morcos, S. Shekhar, T. Goldstein, F. Bordes, A. Bardes, G. Mialon, Y. Tian, A. Schwarzschild, A. G. Wilson, J. Geiping, Q. Garrido, P. Fernandez, A. Bar, H. Pirsiavash, Y. LeCun, and M. Goldblum, “A cookbook of self-supervised learning,” 2023.
  7. G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006. http://dx.doi.org/10.1126/science.1127647. [Online]. Available: https://www.science.org/doi/abs/10.1126/science.1127647
  8. R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by learning an invariant mapping,” in 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 2, 2006. http://dx.doi.org/10.1109/CVPR.2006.100 pp. 1735–1742.
  9. D. Wang, Y. Zhang, K. Zhang, and L. Wang, “Focalmix: Semisupervised learning for 3d medical image detection,” 06 2020. http://dx.doi.org/10.1109/CVPR42600.2020.00401 pp. 3950–3959.
  10. A. Radford, K. Narasimhan, T. Salimans, I. Sutskever et al., “Improving language understanding by generative pre-training,” 2018.
  11. X. Chen, H. Fan, R. Girshick, and K. He, “Improved baselines with momentum contrastive learning,” arXiv preprint https://arxiv.org/abs/2003.04297, 2020. http://dx.doi.org/https://doi.org/10.48550/arXiv.2003.04297
  12. C. Zhang, K. Zhang, C. Zhang, T. X. Pham, C. D. Yoo, and I. S. Kweon, “How does simsiam avoid collapse without negative samples? a unified understanding with self-supervised contrastive learning,” in International Conference on Learning Representations, 2022. [Online]. Available: https://openreview.net/forum?id=bwq6O4Cwdl
  13. A. Bardes, J. Ponce, and Y. LeCun, “VICReg: Variance-invariance-covariance regularization for self-supervised learning,” in International Conference on Learning Representations, 2022. [Online]. Available: https://openreview.net/forum?id=xm6YD62D1Ub
  14. T. Emmanuel, T. Maupong, D. Mpoeleng, T. Semong, B. Mphago, and O. Tabona, “A survey on missing data in machine learning,” Journal of Big Data, vol. 8, no. 1, p. 140, Oct 2021. http://dx.doi.org/10.1186/s40537-021-00516-9. [Online]. Available: https://doi.org/10.1186/s40537-021-00516-9
  15. W. I. D. Mining, “Data mining: Concepts and techniques,” Morgan Kaufinann, vol. 10, pp. 559–569, 2006.
  16. M. Asaduzzaman, M. S. Majib, and M. M. Rahman, “Wi-fi frame classification and feature selection analysis in detecting evil twin attack,” 2020 IEEE Region 10 Symposium (TENSYMP), pp. 1704–1707, 2020. http://dx.doi.org/10.1109/TENSYMP50017.2020.9231042s
  17. C. Kolias, G. Kambourakis, A. Stavrou, and S. Gritzalis, “Intrusion detection in 802.11 networks: empirical evaluation of threats and a public dataset,” IEEE Communications Surveys Tutorials, vol. 18, no. 1, pp. 184–208, 2016.
  18. M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed analysis of the kdd cup 99 data set,” in 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications, 2009. http://dx.doi.org/10.1109/CISDA.2009.5356528 pp. 1–6.
  19. N. Moustafa, “Designing an online and reliable statistical anomaly detection framework for dealing with large high-speed network traffic,” Ph.D. dissertation, 2017. [Online]. Available: http://hdl.handle.net/1959.4/58748
  20. N. Moustafa and J. Slay, “Unsw-nb15: a comprehensive data set for network intrusion detection systems (unsw-nb15 network data set),” in 2015 Military Communications and Information Systems Conference (MilCIS), 2015. http://dx.doi.org/10.1109/MilCIS.2015.7348942 pp. 1–6.
  21. M. Sarhan, S. Layeghy, N. Moustafa, and M. Portmann, “NetFlow datasets for machine learning-based network intrusion detection systems,” in Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. Springer International Publishing, 2021, pp. 117–135. [Online]. Available: https://doi.org/10.1007%2F978-3-030-72802-1_9
  22. M. Jahrer, “Porto seguro’s safe driver prediction solution.” [Online]. Available: https://www.kaggle.com/c/porto-seguro-safe-driver-prediction/discussion/44629#250927