Logo PTI Logo FedCSIS

Proceedings of the 18th Conference on Computer Science and Intelligence Systems

Annals of Computer Science and Information Systems, Volume 35

A Stochastic Optimization Technique for UNI-DEM framework

, , ,

DOI: http://dx.doi.org/10.15439/2023F8893

Citation: Proceedings of the 18th Conference on Computer Science and Intelligence Systems, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 35, pages 11671172 ()

Full text

Abstract. This paper introduces a sophisticated multidimensional sensitivity analysis incorporating cutting-edge stochastic methods for air pollution modeling. The study focuses on a large-scale long-distance transportation model of air pollutants, specifically the Unified Danish Eulerian Model (UNI-DEM). This mathematical model plays a pivotal role in understanding the detrimental impacts of heightened levels of air pollution. With this research, our intent is to employ it to tackle crucial questions related to environmental protection. We suggest advanced Monte Carlo and quasi-Monte Carlo methods, leveraging specific lattice and digital sequences to enhance the computational effectiveness of multi-dimensional numerical integration. Moreover, we further refine the existing stochastic methodologies for digital ecosystem modeling. The main aspect of our investigation is to analyze the sensitivity of the UNI-DEM model output to changes in the input emissions of human-induced pollutants and the rates of a number of chemical reactions. The developed algorithms are utilized to calculate global Sobol sensitivity measures for various input parameters. We also assess their influence on key air pollutant concentrations in different European cities, considering the diverse geographical locations. The overarching goal of this research is to broaden our understanding of the elements influencing air pollution and inform potent strategies to alleviate its negative impacts on the environment.

References

  1. I. Antonov, V. Saleev, An economic method of computing LPτ - sequences, USSR Comput. Math. Phys. 19, (1979), 252–256.
  2. Bahvalov, N. On the Approximate Computation of Multiple Integrals. Vestn. Mosc. State Univ. 1959, 4, 3–18.
  3. I. Dimov, Monte Carlo Methods for Applied Scientists, New Jersey, London, Singapore, World Scientific, (2008).
  4. I.T. Dimov, R. Georgieva, Tz. Ostromsky, Z. Zlatev, Advanced algorithms for multidimensional sensitivity studies of large-scale air pollution models based on Sobol sequences, Computers and Mathematics with Applications 65(3), “Efficient Numerical Methods for Scientific Applications”, Elsevier, (2013), 338–351.
  5. F. Ferretti, A. Saltelli, S. Tarantola, Trends in sensitivity analysis practice in the last decade, Journal of Science of the Total Environment 568, (2016), 666–670.
  6. J. Halton, On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals, Numerische Mathematik 2, (1960), 84–90.
  7. J. Halton, G.B. Smith, Algorithm 247: radical-inverse quasi-random point sequence, Communications of the ACM 7, (1964), 701–702.
  8. S. Joe, F. Kuo, Remark on algorithm 659: implementing Sobol’s quasirandom sequence generator, ACM Transactions on Mathematical Software 29(1), (2003), 49–57.
  9. T. Homma, A. Saltelli, Importance measures in global sensitivity analysis of nonlinear models, Reliability Engineering and System Safety 52, (1996), 1–17.
  10. A. Karaivanova, E. Atanassov, T. Gurov, R. Stevanovic, K. Skala, Variance reduction MCMs with application in eEnvironmental studies: sensitivity analysis. AIP Conference Proceedings 1067(1), (2008), 549–558.
  11. A Karaivanova, I. Dimov, S. Ivanovska, A quasi-Monte Carlo method for integration with improved convergence, In International Conference on Large-Scale Scientific Computing, Springer, Berlin, Heidelberg, (2001), 158–165.
  12. L. Kocis, W. J. Whiten, Computational investigations of low-discrepancy sequences, ACM Transactions on Mathematical Software 23(2), (1997), 266–294.
  13. N.M. Korobov (1960) Properties and calculation of optimal coefficients, Soviet Mathematics Doklady 1, 696–700.
  14. N.M. Korobov, Number-theoretical methods in approximate analysis (Fizmatgiz, Moscow, 1963).
  15. J. Matousek, On the L2-discrepancy for anchored boxes, Journal of Complexity 14(4), (1998), 527–556.
  16. G. Ökten, A. Göncüb, Generating low-discrepancy sequences from the normal distribution: Box–Muller or inverse transform?, Mathematical and Computer Modelling 53, (2011), 1268–1281.
  17. A. Saltelli, S. Tarantola, F. Campolongo, M. Ratto, Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models, Halsted Press, New York, (2004).
  18. I. Sobol, Numerical methods Monte Carlo, Nauka, Moscow, (1973).
  19. I.M. Sobol, Sensitivity estimates for nonlinear mathematical models, Mathematical Modeling and Computational Experiment 1(4), (1993), 407–414.
  20. I.M. Sobol, S. Tarantola, D. Gatelli, S. Kucherenko, W. Mauntz, Estimating the approximation error when fixing unessential factors in global sensitivity analysis, Reliability Engineering & System Safety 92, (2007), 957–960.
  21. S.L. Zaharieva, I.R. Georgiev, V.A. Mutkov, Y.B. Neikov, Arima approach for forecasting temperature in a residential premises part 2, in 2021 20th International Symposium INFOTEH-JAHORINA (INFOTEH), IEEE, (2021), 1–5.
  22. Z. Zlatev, Computer Treatment of Large Air Pollution Models, KLUWER Academic Publishers, Dorsrecht-Boston-London, (1995).
  23. Z. Zlatev, I. Dimov and K. Georgiev, Relations between Climatic Changes and High Pollution Levels in Bulgaria, Open Journal of Applied Sciences, Vol. 6 (2016), pp. 386-401, http://dx.doi.org/10.4236/ojapps.2016.67040.
  24. Z. Zlatev, I.T. Dimov, K. Georgiev, Three-dimensional version of the Danish Eulerian model, Z. Angew. Math. Mech. 76(S4), (1996), 473–476.
  25. Z. Zlatev, I.T. Dimov, Computational and Numerical Challenges in Environmental Modelling, Elsevier, Amsterdam, (2006).
  26. Z. Zlatev, I. Faragó and Á. Havasi, Impact of Climatic Changes on Pollution Levels, in Mathematical Problems in Meteorological Modelling, Springer Series on “Mathematics in Industry”, Vol. 24 (2016), pp. 129-161, A. Bátkai, P. Csomós, I. Faragó, A. Horányi and G. Szépszó, eds., Springer, https://doi.org/10.3390/atmos2030201.
  27. Z. Zlatev, K. Georgiev and I. Dimov, Influence of Climatic Changes on Pollution Levels in the Balkan Peninsula, Computers and Mathematics with Applications, Vol. 65 (2011), pp. 544-562, https://doi.org/10.1016/j.camwa.2012.07.006.
  28. Z. Zlatev, Á. Havasi and I. Faragó: “Influence of Climatic Changes on Pollution Levels in Hungary and Its Surrounding Countries”, Atmosphere, Vol. 2 (2011), pp. 201-221, https://doi.org/10.3390/atmos2030201.
  29. Z. Zlatev and L. Moseholm, Impact of Climatic Changes on Pollution Levels in Denmark, Ecological Modelling, Vol. 217 (2008), pp. 305-319, http://dx.doi.org/10.1016/j.ecolmodel.2008.06.030.