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F
UZZY set theory (Zadeh [22], 1965) is a popular AI

tool designed to model and process vague information.

Specifically, it is based on the idea that membership to a

given concept, or logical truthhood of a given proposition,

can be a matter of degree. On the other hand, rough set

theory (Pawlak [14], 1982) was proposed as a way to handle

potentially inconsistent data inside information systems. In

Pawlak’s original proposal, this is achieved by providing

a lower and upper approximation of a concept, using the

equivalence classes of an indiscernibility relation as building

blocks.

Noting the highly complementary characteristics of fuzzy

sets and rough sets, Dubois and Prade [7] proposed the first

working definition of a fuzzy rough set, and thus paved the

way for a flourishing hybrid theory with numerous theoretical

[8] and practical [18] advances.

In this tutorial, we will explain how fuzzy rough sets may be

successfully applied to a variety of machine learning problems.

After a brief discussion of how the hybridization between

fuzzy sets and rough sets may be achieved, including an

extension based on ordered weighted average operators (see

e.g. [1], [4]–[6]), we will focus on the following practical

applications:

1) Fuzzy-rough nearest neighbor (FRNN) classification

[10], [11], [21], along with its adaptations for imbal-

anced datasets [15], [19] and multi-label datasets [20]

2) Fuzzy-rough feature selection (FRFS) [2], [3]

3) Fuzzy-rough instance selection (FRIS) [9] and Fuzzy-

rough prototype selection (FRPS) [16], [17]

We will also demonstrate software implementations of all

of these algorithms in the Python library fuzzy-rough-learn

[12], [13].
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