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Abstract—The aim of this tutorial is to present a brief
overview of the theory of rough sets from the perspective of
its mathematical foundations, history of development as well as
connections with other branches of mathematics and informatics.
The content concerns both the theoretical and practical aspects
of applications. The above mentioned target of the tutorial will be
covered in two parts. In the first part we would aim to present the
introduction to rough sets and the second part will focus on the
connections with other branches of mathematics and informatics.

I. INTRODUCTION TO ROUGH SETS

T
HE THEORY of rough sets, pioneered by Z. Pawlak

in 1982 [1], [2], provides a way to formalize imprecise

concepts with respect to a given set of attributes. Let us think

of a data table, where the rows represent descriptions of the

objects from a universe U with respect to a set of (conditional)

attributes A, and each column of the data table corresponds to

an attribute of A. Each such description is usually known as

information signature of an object with respect to the set of

attributes A, and it can be represented as a vector of values

over A. Formally, one can think of a pair (U,A) where for

each a ∈ A and u ∈ U , a(u) denotes the value of the

object u for the attribute a in a relevant value set. In rough

set literature such a pair is known as information system or

information table. Moreover, an information system along with

a designated attribute d for decision, say (U,A∪{d}) is called

a decision system.

Now, given an information system, with respect to any

subset X of A the whole data table can be clustered into

equivalence classes of objects where each equivalence class

contains all those objects from the universe which have the

same values with respect to each attribute of X . Thus from

(U,A) we obtain a pair (U,R) where R is the respective equiv-

alence relation, usually known as indistinguishability relation.

In rough set literature (U,R) is known as approximation space.

A subset S ⊆ U , may be called a concept, can be either

definable in terms of the union of some equivalence classes, or

may fall in the overlapping zone of a few equivalence classes;

in the latter case the concept is regarded as imprecise with

respect to the considered set of attributes. So, given any set

of objects S one can describe the intention of S in terms

of rough approximation operators. The lower approximation

of S picks up those equivalence classes which are completely

contained within S, and thus gives a flavour of ‘certainty zone

for the concept’. On the other hand, the upper approximation

of S selects those equivalence classes which have non-empty

intersection with S, and this corresponds to a ‘possibility zone

for the concept’.

With this mathematical foundation the development of

rough set theory goes further to address many useful aspects

of data mining. For example, suppose there are two decision

classes representing positive and negative decision for the

attribute d (i.e., subsets of U representing d = 1 and d = 0

respectively). Now if these decision classes are not definable

in a straightforward manner, one may require to characterize

them using rough set approximations. In this presentation, we

will try to present some of such aspects which have practical

uses in the context of data mining. A few such issues are listed

below.

1) To describe a data table in terms of comprehensible rules

so that using those rules unseen test examples can be

effectively classified.

2) To find out a smaller set of attributes, a reduct in RST

terminology, that can faithfully classify the decision

classes as it is presented with respect to the whole set

of attributes.

3) To handle a decision system where two indistinguishable

objects may have different decision values.

4) To design decision valuations describing different as-

pects of decision making by aggregating available in-

formation of the training objects (i.e., already available

objects).

5) To check similar aspects of decision making when the

available data is not clustered into disjoint equivalence

classes as the underlying notion of indistinguishability

can be based on a relation which is weaker than an

equivalence relation, such as a similarity relation.

II. CONNECTION WITH OTHER BRANCHES OF

MATHEMATICS AND INFORMATICS

Due to its simplicity and effectiveness, the concept of

approximations has found applications in various fields, es-

tablishing connections with several branches of mathematics

and computer science right from its inception. Over the years,

we have observed a substantial accumulation of results, which

we can only provide a high-level summary of.
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A. Mathematics

The main contributions relate to logic and topology, with

multiple connections also existing in algebra and graph theory.

a) Logics: Rough sets are associated with modal logics.

Indeed, given the standard syntax of the modal system S5, a

semantics can be provided by the indiscernibility relation used

as the modal accessibility relation. In this manner, the lower

and upper approximations coincide with the logic operators

of necessity and possibility [3]. It is evident that for rough

sets based on weaker forms of relations, there corresponds

weaker modal logics. Additionally, by interpreting the lower

approximation as positive (or true), the complement of the

upper approximation as negative (or false) and the remaining

elements of the universe as unknown a correspondence with

three-valued logics can be established [4]. Finally, a complete

logical framework based on a distinct notion of truth, namely

rough truth, has been defined where both syntax and semantics

are “rough” [5].

b) Topology and Algebra: The lower and upper approxi-

mations behave like a topological interior and closure operator

on a Boolean algebra. Several links between various types

of topological operators and models of rough sets have been

established [6]. Moving to a more abstract context, a hierarchy

of topological operators can be defined on a lattice structure,

each corresponding to a different model based on various

generalizations of rough sets [7]. Many authors have taken

further steps toward abstraction by defining the approximations

in different types of algebraic structures, such as rings and

groups.

c) Graph Theory: The connection with graph theory can

be interpreted in at least two ways. Firstly, by relating ideas

from rough sets to those on graph theory. One significant

result in this setting is the equivalence between computing

reducts and computing minimal transversal on hypergraphs.

The latter is a well-known problem and algorithms that solve

it in incremental polynomial time exist [8]. Another approach,

consists in applying rough-set ideas to graph theory, such as

attempting to define approximations or reducts on graphs.

B. Computer Science

We highlight the main contributions of rough sets to Arti-

ficial Intelligence and Theoretical Computer Science.

a) Knowledge Representation: Of course, the first link

with computer science and artificial intelligence concerns the

ability of rough sets to represent and handle uncertainty due

to the granularity of the universe. Particularly fruitful in this

domain has been the connection with other tools to manage

different forms of uncertainty, mainly fuzzy sets [9] and belief

functions [10].

b) Machine Learning and Data Mining: From an appli-

cation stanpoint, the main contribution of Rough sets is in

Machine Learning and Data Mining, where they have been

used in several tasks [11]. In particular, in Machine Learning

their success can be seen in feature selection and classification

by means of reducts and decision rules and in clustering where

the idea of approximations has been applied to obtain new soft
clustering methods. In Data Mining, a major contribution is the

use of rough sets to perform approximate queries in relational

databases by means of standard SQL statements, this approach

also lead to a successful industrial application [12].

c) Theoretical Computer Science: The concept of en-

tropy has been used to evaluate the uncertainty of a given

information table with an equivalence relation. Extended ap-

proaches to missing values and generalized relation has also

been provided [13] as well as applications in computing

approximate reducts [14]. Another connection with TCS con-

cerns the use of rough sets in dealing with uncertainty in

discrete dynamical systems, such as cellular automata, reaction

systems and Petri nets [15].
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