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Abstract—Regarding the parameter estimation task, besides
the time effectiveness of the simulation, parameter estimates are
required to be precise enough. Usually, the estimates are Monte
Carlo-simulated using a prior estimated variability within a small
sample. However, the problem with pre-estimated variability is
that it can be estimated imprecisely or, even worse, underesti-
mated, resulting in estimation bias. In this work, we address
the abovementioned issue and suggest estimating all parameters
as probabilities. Since the probability is not only finite but has
its theoretical maximum as 1, using outcomes of Bernoulli and
binomial distribution’s upper-bounded variance and Chebyshev’s
inequality, the estimator’s variability is theoretically upper-
bounded within the Monte Carlo simulation and estimation
process. It cannot be underestimated or estimated inaccurately;
thus, its precision is ensured till a given decimal digit, with very
high probability. If there is a known process that treats the
parameter of interest in terms of probability, we can estimate
how many iterations of the Monte Carlo simulation are needed
to ensure parameter estimate on a given level of precision. Also,
we analyze the asymptotic time complexity of the proposed
estimation strategy and illustrate the approach on a short case
study of π constant estimation.

I. INTRODUCTION

I
N THIS work, we focus on the estimation of parameters
that are of a non-probabilistic fashion, e.g., simulated

estimates of claim amounts in actuaries [1] or simulated
numbers of patients at risk of disease recurrence [2]. Typi-
cally, these parameters are hardly analytically derivable, thus
estimated using Monte Carlo simulation and the following
logic [3]. Firstly, within an initial Monte Carlo simulation,
a number of iterations (100, 1000, and so) generating the
parameter estimate is run, and the parameter estimates from
individual iterations are averaged, and their standard deviation
is calculated. Then, applying the central limit theorem, a
confidence interval for the parameter is constructed, and the
Monte Carlo simulation is repeated so many times that the
interval is no wider than a given precision. A problem of
the abovementioned approach is in the parameter’s variability
estimation within the initial Monte Carlo simulation. If the
variability is underestimated, the confidence interval is falsely

narrower than it should be, and the precision is, in fact, lower
than expected. To overcome this issue, we rather refine the
simulation logic – firstly, we find a function of the parameter
equal to some probability, which is then simulated using Monte
Carlo simulation. Since the probability has a theoretically-
based upper bound, its variability is upper-bounded. Then, we
use the properties of the Bernoulli distribution to estimate the
largest possible variability of the parameter as a probability
and Chebyshev’s inequality to enumerate the number of it-
erations keeping the parameter estimate’s precision. Due to
Chebyshev’s inequality, we do not need the assumption of
the parameter estimate’s normality, which makes the proposed
approach more robust.

II. A TRADITIONAL APPROACH TO MONTE CARLO

SIMULATION AND ESTIMATION OF PARAMETERS OF

NON-PROBABILISTIC FASHION

Let us assume a parameter θ of a non-probabilistic fash-
ion that can be estimated n times using point estimates
θ̂1, θ̂2, . . . , θ̂n. Then, calculation of the estimates’ average and
standard deviation, i.e.,

θ̄ =
1

n

n
∑

i=1

θ̂i and σθ =

√

√

√

√

1

n− 1

n
∑

i=1

(θ̂i − θ̄)2,

is feasible. To estimate parameter θ using Monte Carlo sim-
ulation on a given level of precision 1 − ε, where ε ≳ 0,
reached with probability 1− α, one needs to know a number
of iterations n of the simulation [3].

A. Principles of the traditional approach to Monte Carlo

simulation and estimation of parameters of non-probabilistic

fashion

Adopting the mathematical notation from the previous sec-
tion, typical values of ε and α are, e.g., ε = 0.001 and
α = 0.05, respectively. A traditional approach to parameter
θ estimation follows.
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(i) Choose n0 for initial Monte Carlo simulation that
would pre-estimate parameter θ using individual esti-
mates θ̂0,1, θ̂0,2, . . . , θ̂0,n0

. Typically, n0 is chosen as
n0 = 100 or n0 = 1000 or similar.

(ii) Calculate an average and a standard deviation of the pre-
estimated parameter as

θ̄0 =
1

n0

n0
∑

i=1

θ̂0,i and σ0,θ =

√

√

√

√

1

n0 − 1

n0
∑

i=1

(θ̂0,i − θ̄0)2.

(iii) Applying Ljapunov’s central limit theorem [4], parameter
θ should lie in an interval of

〈

θ̄0 − u1−α/2
σ0,θ√
n
, θ̄0 + u1−α/2

σ0,θ√
n

〉

(1)

in (1 − α)n cases of n total cases, thus, approximately
with a probability 1−α, where u1−α/2 is the (1−α/2)-th
quantile of the standard normal distribution.

(iv) Number of iterations n of the main Monte Carlo sim-
ulation, outputting parameter estimates θ̂1, θ̂2, . . . , θ̂n, is
chosen to keep precision 1 − ε with probability 1 − α,
so the confidence interval’s half length from formula (1)
should be less than or equal to ε, thus

u1−α/2
σ0,θ√
n

≤ ε, (2)

and, equivalently, the number of needed iterations is

n ≥
(u1−α/2 · σ0,θ

ε

)2

. (3)

(v) Finally, parameter θ is estimated using θ̄ = 1
n

∑n
i=1 θ̂i,

believed to keep precision 1− ε with probability 1− α.

B. Limitations of the traditional approach to Monte Carlo

simulation and estimation of parameters of non-probabilistic

fashion

Although the abovementioned approach works in general
and is commonly applied, it can suffer from not meeting the
asymptotic properties assumed by Ljapunov’s central limit
theorem when the confidence interval from formula (1) is
constructed. This might happen particularly for low values of
n or very high demands on precision, e.g., when ε < 10−6. On
a more practical note, inspecting formula (3), if the parameter’s
standard deviation σθ is underestimated by σ0,θ, i.e., when
σ0,θ < σθ, then also number n of iterations needed to keep
imprecision ≤ ε is underestimated, which may result into
imprecise, i.e., wrong (!) decimal digits staring the i-th digit
behind (or before) the decimal point, where i = ⌊|log10(ε)|⌋,
if ε < 1 (or ε > 1, respectively).

C. The asymptotic time complexity of the traditional approach

to Monte Carlo simulation and estimation of parameters of

non-probabilistic fashion

Obviously, if one iteration of the Monte Carlo simulation
takes τ units of time, then, since the simulation is repeated

two times, firstly with n0 iterations and secondly with n ≥
(u1−α/2·σ0,θ

ε

)2
iterations as comes from formula (4), the total

asymptotic time complexity of the procedure, Θ(†), is

Θ(†) = Θ ((n0 + n)τ) ≥

≥ Θ

((

n0 +
(u1−α/2 · σ0,θ

ε

)2
)

τ

)

, (4)

so, while Θ(†) is linear in n0 and n terms, it is quadratic in
σ0,θ and 1

ε terms.

III. A PROPOSED APPROACH TO MONTE CARLO

SIMULATION AND ESTIMATION OF PARAMETERS OF

(NON-)PROBABILISTIC FASHION

Let us suppose a parameter θ of non-probabilistic fashion.
Besides the traditional approach for θ estimation as introduced
above, we may assume a link function f(•) so that f(θ) has
got a dimension of probability, so,

f(θ) = P (T ), (5)

where P (•) is a probability function as comes from σ-algebra,
and T is a random event or a proposition consisting of random
events. If occasionally θ would be apriori a probability, then
the link function f(•) is an identity, i.e., f(θ) = θ, and the
approach below still works. That is why we bound the prefix
non- into brackets in the section title.

Thus, to estimate parameter θ of the (non-)probabilistic
fashion, keeping precision 1 − ε with probability 1 − α, let
us first assume a random variable X following Bernoulli
distribution with an argument P (T ), i.e., f(θ) (probability
of success). A sum of n independent Bernoulli trials follows
the binomial distribution with arguments n (number of trials)
and f(θ) (probability of success in each trial). After collecting
n estimates X̂i coming from the above mentioned Bernoulli
distribution, we calculate 1

n

∑n
i=1 X̂i to estimate parameter

f(θ). The number of trials n, i.e., a number of iterations of
Monte Carlo simulation, is prior estimated using Chebyshev’s
inequality, also considering the terms of precision, 1− ε, and
confidence probability, 1− α.

A. Mathematical and statistical preliminaries of the proposed

approach to Monte Carlo simulation and estimation

As we have seen, we need to revisit Bernoulli and binomial
distribution and Chebyshev’s inequality and their statistical
properties. So let’s start with Bernoulli and binomial distri-
butions.

Definition 1 (Bernoulli distribution). A random variable X
follows Bernoulli distribution with an argument 0 ≤ p ≤ 1
(probability of success), if

X =

{

1, with probability p
0, with probability 1− p.

Formally, we write X ∼ Bernoulli(p).
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Lemma 1 (Bernoulli distribution’s expected value and vari-
ance). Let random variable X follow Bernoulli distribution

with an argument p. Then expected value of X is E(X) = p
and variance of X is var(X) = p(1− p).

Proof. According to definition 1, it is E(X) =
∑

i∈{0,1} i ·
P (X = i) = 0 ·(1−p)+1 ·p = p, and E

(

X2
)

=
∑

i∈{0,1} i
2 ·

P (X = i) = 02 · (1 − p) + 12 · p = p. Since routinely is
var(X) = E

(

X2
)

− (E(X))
2, we get var(X) = E

(

X2
)

−
(E(X))

2
= p− p2 = p(1− p).

Definition 2 (Binomial distribution). A random variable X
follows binomial distribution with arguments n ∈ N and

0 ≤ p ≤ 1, if X is sum of n independent variables following

Bernoulli distribution with an argument 0 ≤ p ≤ 1 (i.i.d.).

Formally, we write X ∼ binomial(n, p).

Lemma 2 (Binomial distribution’s expected value and vari-
ance). Let random variable X follow binomial distribution

with arguments n and p. Then expected value of X is

E(X) = np and variance of X is var(X) = np(1− p).

Proof. According to definition 2, if X ∼ binomial(n, p), it is
X = Y1+Y2+ · · ·+Yn =

∑n
i=1 Yi, where Yi ∼ Bernoulli(p)

for ∀i ∈ {1, 2, . . . , n}. So, E (Yi) = p (†) and var (Yi) =
p(1− p) (‡). Thus,

E(X) = E

(

n
∑

i=1

Yi

)

i.i.d.
=

n
∑

i=1

E (Yi)
(†)
=

n
∑

i=1

p = np, (6)

and also

var(X) = var

(

n
∑

i=1

Yi

)

i.i.d.
=

n
∑

i=1

var (Yi)
(‡)
=

n
∑

i=1

p(1− p) =

= np(1− p). (7)

Lemma 3 (Binomial distribution’s maximum variance). Let

random variable X follow binomial distribution with argu-

ments n and p. Then maximum possible variance of X is

var(X) = n
4 .

Proof. According to lemma 2 and formula (7), if X ∼
binomial(n, p), it is var(X) = np(1−p). Let mark p ≡ 1

2 +δ,
where δ ∈

〈

− 1
2 ,

1
2

〉

. Then, obviously,

var(X) = np(1− p) = n

(

1

2
+ δ

)(

1−
(

1

2
+ δ

))

=

= n

(

1

2
+ δ

)(

1

2
− δ

)

= n

(

1

4
− δ2

)

≤ n

4
. (8)

Thus, generally var(X) ≤ n
4 , and var(X) = n

4 =
n
(

1
4 − 02

)

for δ = 0, so if and only if p = 1
2+δ = 1

2+0 = 1
2 .

Finally, let’s revisit Markov’s and Chebyshev’s inequali-
ties [5], that enables us to derive the number of needed
iterations of Monte Carlo simulation.

Theorem 1 (Markov’s inequality). Let X be a non-negative

random variable with expected value E(X). For a > 0 is

P (X ≥ a) ≤ E(X)

a
. (9)

Proof. Surely, since a > 0 and X ≥ 0, it is E(X | X < a) ≥
0 and E(X | X ≥ a) ≥ a (†). Because E(X | X < a) ≥ 0
and P (X < a) ≥ 0, it is also E(X | X < a)P (X < a) ≥ 0.
So, E(X) ≥ E(X) − E(X | X < a)P (X < a). Also, due
to the total expectations theorem, it is E(X) = E(X | X <
a)P (X < a) + E(X | X ≥ a)P (X ≥ a), and E(X)− E(X |
X < a)P (X < a) = E(X | X ≥ a)P (X ≥ a). Thus,

E(X) ≥ E(X)− E(X | X < a)P (X < a) =

= E(X | X ≥ a)P (X ≥ a)
(†)

≥ a · P (X ≥ a),

and, finally,

P (X ≥ a) ≤ E(X)

a
.

Theorem 2 (Chebyshev’s inequality). Let X be a random

variable with expected value E(X), and non-zero and finite

variance 0 < var(X) < ∞. For b > 0 is

P (|X − E(X)| ≥ b) ≤ var(X)

b2
. (10)

Proof. If we realize that var(X) = E
(

(X − E(X))2
)

(†) and
formally put X ≡ (X−E(X))2 and a ≡ b2 into formula (9) of
Markov’s inequality, we directly get Chebyshev’s inequality,

P (X ≥ a) ≤ E(X)

a

P
(

(X − E(X))2 ≥ b2
)

≤ E
(

(X − E(X))2
)

b2

P (|X − E(X)| ≥ b)
(†)

≤ var(X)

b2
.

B. Number of needed iterations of Monte Carlo simulation for

parameter estimation keeping the estimate’s given precision

Let’s assume a random variable X following Bernoulli dis-
tribution with an argument P (T ), i.e., X ∼ Bernoulli(P (T )).
Thus, probability of a success in each Bernoulli trial is
P (T ) = f(θ). If we repeat Bernoulli trials n times, based on
definition 1, we can get a random variable

∑n
i=1 Xi, where

Xi ∼ Bernoulli(P (T )) for i ∈ {1, 2, . . . , n}. Since lemma 2,
it is E (

∑n
i=1 Xi) = nP (T ) = nf(θ) and var (

∑n
i=1 Xi) =

nP (T )(1−P (T )) = nf(θ)(1−f(θ)) (†). Using Chebyshev’s
inequality from formula (10), we get
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P

(
∣

∣

∣

∣

∣

n
∑

i=1

Xi − E

(

n
∑

i=1

Xi

)
∣

∣

∣

∣

∣

≥ b

)

≤ var (
∑n

i=1 Xi)

b2

P

(∣

∣

∣

∣

∣

n
∑

i=1

Xi − nf(θ)

∣

∣

∣

∣

∣

≥ b

)

(†)

≤ nf(θ)(1− f(θ))

b2

We can simplify the right-hand side using lemma 3, i.e.,
var (

∑n
i=1 Xi) ≤ n

4 , so

P

(
∣

∣

∣

∣

∣

n
∑

i=1

Xi − nf(θ)

∣

∣

∣

∣

∣

≥ b

)

≤ nf(θ)(1− f(θ))

b2

(8)

≤ n

4b2

P

(∣

∣

∣

∣

∣

1

n

n
∑

i=1

Xi −
nf(θ)

n

∣

∣

∣

∣

∣

≥ b

n

)

≤ n

4b2

P

(

∣

∣X̄ − f(θ)
∣

∣ ≥ b

n

)

≤ n

4b2
,

let’s set b ≡ nε, then we get

P
(

∣

∣X̄ − f(θ)
∣

∣ ≥ nε

n

)

≤ n

4(nε)2

P
(∣

∣X̄ − f(θ)
∣

∣ ≥ ε
)

≤ 1

4nε2
,

and by setting the probability’s uncertainty as 1
4nε2 ≤ α is

P
(∣

∣X̄ − f(θ)
∣

∣ ≥ ε
)

≤ 1

4nε2
≤ α. (11)

Formula (11) tells us that a probability of getting a distance
between the parameter f(θ) and its estimate X̄ greater than ε,
is lower than α. Thus, to keep imprecision ≤ ϵ, i.e., to keep

1
4nε2 ≤ α, we need n iterations of the Monte Carlo simulation,

n ≥ 1

4αε2
, (12)

and unlike (3), formula (12) does not include a stochastic term.

C. A scheme of the proposed approach to Monte Carlo

simulation and estimation of parameters

The previous paragraphs and particularly formulas (11)
and (12) suggest Monte Carlo simulation for not only
probabilistic-like parameters, keeping non-underestimated pre-
cision, that consists of the following steps.

(i) Setting the tuning parameters of the simulation – preci-
sion 1− ε and probability 1− α.

(ii) Assuming formula (5), constructing a generative
Bernoulli process X ∼ Bernoulli(P (T )). We want to
estimate parameter θ’s value since we don’t know it using
link function f and a different random process, known
from theory, with outcome P (T ) where P (T ) = f(θ).

(iii) Repeating Bernoulli process n times, where n ≥ 1
4αε2 ,

and collecting the outcomes X̂1, X̂2, . . . , X̂n.

(iv) Finally, averaging the outcomes, X̄ = 1
n

∑n
i=1 X̂i, by

getting estimate f(θ) on precision level 1 − ε with
probability 1− α.

(v) Parameter θ’s estimate is f−1 (f(θ)) = f−1
(

X̄
)

. While
parameter f(θ) is estimated with imprecision ε, parame-
ter θ = f−1

(

X̄
)

is estimated with imprecision f−1 (ε).
An algorithm for the proposed Monte Carlo simulation is

in Algorithm 1.

Algorithm 1: The proposed approach to Monte Carlo
simulation and estimation of parameters of not only
probabilistic fashion

Data: generative Bernoulli process with probability of
success P (T ), link function f ensuring that
P (T ) = f(θ), precision 1− ε, probability 1− α

Result: parameter θ’s estimate

1 X = {∅} // a vector for;
2 // estimates saving;
3 nmin = 1

4αε2 // # of iterations;

4 for i = 1 : nmin do

5 generate outcome X̂i from X ∼ Bernoulli(P (T ));
6 X = {X, X̂i} // update the vector;
7 end

8 estimate θ as θ = f−1
(

X̄
)

= f−1
(

1
n

∑n
i=1 X̂i

)

;

D. The asymptotic time complexity of the proposed approach

to Monte Carlo simulation and estimation of parameters

The simulation is repeated n times where n ≥ 1
4αε2 , as

comes from formula (12). Assuming one iteration of the Monte
Carlo simulation takes τ time units, the total asymptotic time
complexity of the procedure, Θ(‡), is

Θ(‡) = Θ (nτ) ≥ Θ

(

1

4αε2
τ

)

, (13)

so, while Θ(‡) is linear in n and 1
α terms, it is quadratic in

1
ε term. To compare asymptotic time complexity Θ(†) from
formula (4) for the traditional estimation procedure and Θ(‡)
from formula (13) for the proposed one, assuming that n0 ≪
n, it is Θ(‡) > Θ(†), since, in general, is 1

α > u1−α/2. Both
functions 1

α and u1−α/2 are monotonous and decreasing while
α increases, but for α ≤ 0.05 is u1−α/2 ≳ 2 while 1

α ≥ 20.
So, while the traditional approach is "faster" in terms of time
complexity, it may suffer from false underestimating of the
parameter estimate’s variability.

E. Keeping the first k decimal digits precise in the proposed

approach to Monte Carlo simulation and estimation

Due to avoiding the issue of variability coming from
lemma 3 and Chebyshev’s inequality (10), an appropriate
setting of precision level 1− ε can ensure the first k decimal
digits are correctly estimated within the proposed simulation
and estimation approach. Inspecting formula (11), we can
realize that X̄−ε ≤ f(θ) ≤ X̄+ε with probability 1−α. On
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a given probability level 1− α, to avoid rounding error up to
k-th decimal digit, we should set ε as

ε < 0.5 · 10−k. (14)

Moreover, if the inversion function to link function f is of an
additive (linear) form, i.e., ∀ξ, η ∈ R is f−1(ξ+η) = f−1(ξ)+
f−1(η), it is also f−1(X̄ − ε) ≤ f−1(f(θ)) ≤ f−1(X̄ + ε),
so, f−1(X̄) − f−1(ε) ≤ θ ≤ f−1(X̄) + f−1(ε), and we can
estimate also the real imprecision level εθ for parameter θ,
i.e., not only f(θ), as

f−1(εθ) < 0.5 · 10−k, or, εθ < f(0.5 · 10−k). (15)

IV. THE PROPOSED APPROACH TO MONTE CARLO

SIMULATION AND ESTIMATION APPLIED: π ESTIMATION

Revisiting the well-known example of π constant estima-
tion using Monte Carlo simulation, let us assume a quarter
circle with a radius of 1 as in Fig. 1. For a random point
A = [x, y] in the unit square around the quarter circle,
where [x, y] ∈ ⟨0, 1⟩2, the generative Bernoulli process X ∼
Bernoulli(P (T )) here returns number 1 if A lies in the quarter
circle (in gray color in Fig. 1), otherwise it returns 0. Thus, the
random event is T = {A ∈ quarter circle | A ∈ unit square}
and P (T ) =

Squarter circle

Sunit square
= π·12

4 /1 = π
4 . So, the Bernoulli

process enables us to estimate f(θ) = π
4 , which implies the

link function f as f(η) = η
4 .

x

y

A

0 1

1

Fig. 1. A quarter circle in a unit square enabling estimation of π

4
parameter

using Monte Carlo simulation of many points such as A = [x, y] ∈ ⟨0, 1⟩2.

Both for traditional and the proposed approach, we repeated
Monte Carlo simulation m = 100 times to evaluate how likely
the k-th decimal digit is not correct, with k ∈ {1, 2, 3}.
We set probability level α = 0.05 and real imprecision
εθ = f(0.4·10−k) = 0.4·10−k

4 = 0.1·10−k using formula (15).
The number of simulation iterations was estimated using
formulas (3) and (12). The initial number of iterations for the
traditional approach needed for pre-estimating the estimate’s
standard deviation σ0,θ, was n0 = 100. We used R pro-
gramming language and environment [6] for the Monte-Carlo
simulations. There are more numerical applications of R

language to various fields in [7]–[9].
Results are in Table I. While the traditional approach did not

always ensure the precise k-th digit, particularly (but rarely,
in ≤ α = 0.05 = 5 % of all cases) for k = 2 and k = 3, the
proposed approach kept the k-th digit’s precision every time.

Unlike the proposed method not considering a stochastic term
(see formula (12)), the traditional one may suffer from a pos-
sible underestimate of initial estimate’s variability σ0,θ and
needed number n of Monte Carlo iterations (see formula (3)).

TABLE I
PROPORTIONS OF CASES WHEN THE k-TH DIGIT WAS INCORRECT OUT OF

m = 100 REPETITIONS (MARKED AS r) OF MONTE CARLO SIMULATION.

traditional approach proposed approach
k εθ nmin r nmin r

1 0.01 1,028 0.00 50,000 0.00
2 0.001 102,765 0.01 5,000,000 0.00
3 0.0001 10,276,423 0.01 500,000,000 0.00

V. CONCLUSIONS REMARKS

We introduced an alternative approach to Monte Carlo
estimation, using refining all estimated parameters as prob-
abilities. That enables us to apply Bernoulli trials with upper-
bounded variability of the estimate and Chebyshev’s inequality
for a robust estimate of the number of iterations needed to
ensure the estimate’s precision on a given probability level.
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