
Extremal algebraic graphs, quadratic multivariate

public keys and temporal rules

Vasyl Ustymenko

0000-0002-2138-2357

Royal Holloway University of London

United Kingdom

Email: Vasyl.Ustymenko@rhul.ac.uk

Aneta Wróblewska

0000-0001-9724-4586

University of Maria Curie-Skłodowska,

Lublin, Poland

Email: aneta.wroblewska@mail.umcs.pl

Abstract—We introduce large groups of quadratic transfor-
mations of a vector space over the finite fields defined via
symbolic computations with the usage of algebraic constructions
of Extremal Graph Theory. They can serve as platforms for
the protocols of Noncommutative Cryptography with security
based on the complexity of word decomposition problem in
noncommutative polynomial transformation group. The modi-
fications of these symbolic computations in the case of large
fields of characteristic two allow us to define quadratic bijective
multivariate public keys such that the inverses of public maps
has a large polynomial degree. Another family of public keys is
defined over arbitrary commutative ring with unity. We suggest
the usage of constructed protocols for the private delivery of
quadratic encryption maps instead of the public usage of these
transformations, i.e. the idea of temporal multivariate rules with
their periodical change.

I. ON POST QUANTUM, MULTIVARIATE AND

NONCOMMUTATIVE CRYPTOGRAPHY

P
OST-Quantum Cryptography (PQC) is an answer to a

threat coming from a full-scale quantum computer able to

execute Shor’s algorithm. With this algorithm implemented on

a quantum computer, currently used public key schemes, such

as RSA and elliptic curve cryptosystems, are no longer secure.

PQC is subdivided into Coding based Cryptography, Multivari-

ate Cryptography, Noncommutative Cryptography, Hash based

Cryptography, Isogeny based Cryptography and Lattice based

Cryptography. Each of these six areas is based on the complex-

ity of certain NP-hard problem. Noteworthy that fundamental

assumption of cryptography that there are no polynomial-time

algorithms for solving any NP-hard problem remains valid. So

all six directions are well justified theoretically.

The tender of US National Institute of Standardisation

Technology (NIST, 2017) is dedicated to the standardisation

process of possible real life Post-Qantum Public keys. Already

selected in July of 2022 four cryptosystems are developed via

methods of Lattice based Cryptography. This fact motivates

researchers from other four core areas of Post Quantum Cryp-

tography to continue design of new cryptographical primitives.

Noteworthy that during the NIST project an interesting results

on cryptanalysis of Unbalanced Rainbow Oil and Vinegar

digital signatures schemes were found (see [1], [2], [3]). This
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scheme is defined via quadratic multivariate public rule, which

refers to MiniRank problem. Examples of previously known

multivariate quadratic public keys a reader can find in classical

monographs [4], [5], [6].

Graph based multivariate public keys with bijective encryp-

tion maps generated via special walks on incidence graph of

projective geometry were proposed in [7] this year. It can

be count as attempt to combine methods of Coding based

and Multivariate Cryptographies. Classical multivariate public

rule is a transformation of n-dimensional vector space over

finite field Fq which move vector (x1, . . . , xn) to the tuple

(g1(x1, . . . , xn), g2(x1, . . . , xn), . . . , gn(x1, . . . , xn)), where

polynomials gi are given in their standard forms, i.e. lists of

monomial terms in the lexicographical order. The degree of

this transformation is the maximal value of deg(gi). Tradi-

tionally public rule has degree 2 or 3.

We use the known family of graphs D(n, q) and A(n, q) of

increasing girth (see [8], [9] and further references) and their

analogs D(n,K) and A(n,K) defined over finite commutative

ring K with unity for the construction of our public keys.

Noteworthy to mention that for each prime power q, q > 2
graphs D(n, q), n = 2, 3, . . . form a family of graphs of

large girth (see [8]). There is well defined projective limit

of these graphs which is a q-regular forest. In fact if K
is an integral domain both families A(n,K) and D(n,K)
are approximations of infinite dimensional algebraic forests.

Cubical transformation groups GA(n,K) and GD(n, k) of

Kn (see [10], [11]), were used for the design of key exchange

protocols of Noncommutative Cryptography (see [11], [12],

[13]), elements of this groups were used for the creation of

stream ciphers.

II. ON GRAPHS, GROUPS AND QUADRATIC MAPS WITH THE

INVERSES OF HIGH DEGREE

Let K be a commutative ring. We define A(n,K) as

bipartite graph with the point set P = Kn and line set L = Kn

(two copies of a Cartesian power of K are used). We will use

brackets and parenthesis to distinguish tuples from P and L.

So (p) = (p1, p2, . . . , pn) ∈ Pn and [l] = [l1, l2, . . . , ln] ∈ Ln.

The incidence relation I = A(n,K) (or corresponding bi-
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partite graph I) is given by condition pIl if and only if the

equations of the following kind hold:

p2 − l2 = l1p1,

p3 − l3 = p1l2,

p4 − l4 = l1p3,

p5 − l5 = p1l4,

. . .

pn − ln = p1ln−1 for odd n,

or pn − ln = l1pn−1 for even n.

(1)

We can consider an infinite bipartite graph A(K) with

points (p1, p2, . . . , pn, . . . ) and lines [l1, l2, . . . , ln, . . . ]. We

proved that for each odd n girth indicator of A(n,K) is at

least 2n+ 2.

Another incidence relation I = D(n,K) is defined below.

The following interpretation of a family of graphs D(n,K)
in case of general commutative ring K is convenient for the

computations. Let us use the same notations for points and

lines as in previous case of graphs A(n,K). Points and lines

are elements of two copies of the affine space over K. Point

(p1, p2, . . . , pn) is incident with the line [l1, l2, . . . , ln] if the

following relations between their coordinates hold:

p2 − l2 = l1p1,

p3 − l3 = p1l2,

p4 − l4 = l1p3,

. . .

li − pi = p1li−2 if i congruent to 2 or 3 modulo 4,

or li − pi = l1pi−2 if i congruent to 1 or 0 modulo 4.

(2)

Let Γ(n,K) be one of graphs D(n,K) or A(n,K). The

graph Γ(n,K) has so called linguistic colouring ρ of the set

of vertices. We assume that ρ(x1, x2, . . . , xn) = x1 for the

vertex x (point or line) given by the tuple with coordinates

x1, x2, . . . , xn. We refer to x1 from K as the colour of vertex

x. It is easy to see that each vertex has a unique neighbour

of the chosen colour. It means that the path in this graph

is uniquely determined by initial vertex and the sequence of

colours of the vertices. Let Na and Ja be operators of taking

the neighbour with colour a and jump operator changing the

original colour of point or line for new colour a from K.

Let [y1, y2, . . . , yn] be the line y of Γ(n,K[y1, y2, . . . , yn])
and (α(1), α(2), . . . , α(t)) and (β(1), β(2), . . . , β(t)) are the

sequences of colours from K[y1] of the length at least 2.

We consider the sequence 0v = y, 1v = Jα(1)(
0v), 2v =

Nβ(1)(
1v), 3v = Nα(2)(

2v), 4v = Nβ(2)(
3v), . . . , 2t−2v =

Nβ(t−1)(
2t−3v),2t−1 v = Nα(t)(

2t−2v),2t v = Jβ(t)(
2t−1v).

Assume that v =2t v = [v1, v2, . . . , vn] where vi are from

K[y1, y2, . . . , yn]. We consider polynomial transformation

g(α(1), α(2), . . . , α(t), β(1), β(2), . . . , β(t)), t ≥ 2 of affine

space Kn of kind y1 → y1 + β(t), y2 → v2(y1, y2), y3 →
v3(y1, y2, y3), . . . , yn → vn(y1, y2, . . . , yn).

It is easy to see that:

g(α(1), α(2), . . . , α(t), β(1), β(2), . . . , β(t))·

·g(γ(1), γ(2), . . . , γ(s), σ(1), σ(2), . . . , σ(t)) =
= g(α(1), α(2), . . . , α(t), γ(1)(β(t)), γ(2)(β(t)), . . . ,
γ(s)(β(t)), β(1), β(2), . . . , β(s), σ(1)(β(t)),
σ(2)(β(t)), . . . , σ(s)(β(t)).

Proposition II.1. [11] Transformations of kind g =
g(α(1), α(2), . . . , α(t), β(1), β(2), . . . , β(t)), t ≥ 2 generate

a semigroup S(Γ(n,K)) of transformations of Kn.

Lemma II.1. [11] The degree of transformation g of the II.1

is at least [deg(α(1))+deg(α(1)−α(2))+deg(α(2)−α(3))+
· · ·+deg((α(t−1)−α(t))]+[deg(β(1)+(deg(β(1)−β(2))+
(deg(β(2)− β(3)) + · · ·+ (deg(β(t− 2)− β(t− 1))].

Lemma II.2. [11] Transformation g as in the II.1 is bijective

if and only if β(t)(x) = a has a unique solution for each a

from K.

Proposition II.2. [11] Transformations of kind ng =
g(α(1), α(2), . . . , α(t), β(1), β(2), . . . , β(t)), t ≥ 2 such that

deg(α(i)) = 0 and β(i) = y1 + c(i), c(i) ∈ K generate a

subgroup 2G(Γ(n,K)) of transformation of maximal degree 2.

Remark II.1. The inverse element of ng =
g(α(1), α(2), . . . , α(t), β(1), β(2), . . . , β(t)), t ≥ 2 as in the

II.2 can be written as ng(α(t), α(t − 1), . . . , α(1), β(t −
1)(β(t)− 1), β(t− 2)(β(t)−1, . . . , β(1)(β(t)−1), β(t)−1).

Remark II.2. In the case of two quadratic transformations of

Kn of “general position” their composition will have degree 4.

We associate with the sequence α(1), α(2), . . . , α(t),
β(1), β(2), . . . , β(t) of II.2 another quadratic transforma-

tion h = H(α(1), α(2), . . . , α(t), β(1), β(2), . . . , β(t)) con-

structed via the sequence of vertices 0v, 1v, 2v, . . . , 2t−2v =
Nβ×(t−1)(

2t−3v), 2t−1v = Nα(t)(
2t−2v). We compute 2tv =

Ja(t)(
2t−1v) = v where a(t) = (y1)

2 + β(t) and define h as

the quadratic map yi → vi, i = 1, 2, . . . , n.

Theorem II.1. (see [26], [11]) Let K be the finite field Fq ,

q = 2r. Then transformation h = h(α(1), α(2), . . . , α(t),
β(1), β(2), . . . , β(t)) is a quadratic transformation of the

vector space (Fq)
n. The polynomial degree of its inverse

transformation is at least 2r−1.

Let us consider the linear projection τ : Kn + d → Kn of

deleting last d coordinates of the tuple.

The map (p) → (τ(p)), [l] → [τ(l)] is an automorphism

of the graph Γ(n + d,K) onto Γ(n,K). It induces the

homomorphism θ of S(Γ(n + d,K)) onto S(Γ(n,K)) such

that θ(2G(Γ(n+ d,K)) = 2G(Γ(n,K)).

Tame Homomorphism (TH) protocol (see [14]).

Alice selects ring K of kind Fq or Zq where q is a prime

power > 2 , parameters n and d, d > 3. She takes tuples

of elements of K of kind a(ti) = (iα(1), iα(2), . . . , iα(ti))
and b(ti) = (ib(1), ib(2), . . . , ib(ti)), i = 1, 2, . . . , t,
t ≥ 2 such that iα(j) ̸= iα(j + 1) and ib(j) ̸=
ib(j + 1), j = 1, 2, . . . , ti−1 together with affine trans-

formation T from AGLn+d(Fq) and Y from AGLn(Fq).
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Alice computes the standard forms of elements ai =
Tn+dg(iα(1), iα(2), . . . , iα(ti), y1+

ib(1), y1+
ib(2), . . . y1+

ib(ti))T
−1 and bi = Y ng(iα(1), iα(2), . . . , iα(ti), y1 +

ib(1), y1 +
ib(2), . . . y1 +

ib(ti))Y
−1. She sends pairs (ai, bi),

i = 1, 2, . . . , t to Bob. Bob writes word w(z1, z2, . . . , zt)
in formal alphabet z1, z2, . . . , zt of length at least t which

uses each letter zi. He computes the specialisations wA =
w(a1, a2, . . . , at) and c = w(a1, a2, . . . , at) in the groups of

polynomial transformations of vector spaces Kn+dand Kn.

Bob sends wA to Alice and keeps c for himself. Alice com-

putes T−1wAT = 1c, uses the homomorphism θ for getting

θ(1c) = 2c. She computes the collision map as Y 2cY −1.

Noteworthy that c is a quadratic map from the group of

kind y1 → c1(y1, y2, . . . , yn), y2 → c2(y1, y2, . . . , yn),. . . ,

yn → cn(y1, y2, . . . , yn).

Remark II.3. Adversary has to decompose the standard form

wA into the word in the alphabet of generators a1, a2, . . . , at.
Solution of this task in a polynomial time even with usage of

Quantum Computer is unknown. So this is NP hard problem

of Postquantum Cryptography.

Remark II.4. The complexity is determined by the complexity

of computation of composition of two polynomial maps of

degree 2 written in their standard forms. It is O(n7).

Inverse TH protocol (see [14])

Alice selects the same data as in presented above

protocol. She computes the standard forms of elements

ai = Tn+dg(iα(1), iα(2), . . . , iα(ti), y1 + ib(1), y1 +
ib(2), . . . y1 + ib(ti))T

−1. Instead of bi Alice computes

their inverses ci = b−1
i and sends pairs (ai, ci) to Bob.

He selects j(1), j(2), . . . , j(r) , 1 ≤ j(i) ≤ t and

forms wA = aj(1)aj(2) . . . aj(r) for Alice. Bob keeps

b = cj(r)cj(r−1), . . . , cj(1) for himself. Alice computes

T−1wAT = 1c, uses the homomorphism θ for getting θ(1c) =
2c. She computes the element a as Y 2cY −1. It is easy to see

that a and b are mutually inverse quadratic transformations

of Kn.

Remark II.5. Correspondents can use the protocol as a

cryptosystem working with plaintexts from Kn. Alice can

convert her message x to ciphertext a(x) = y. Bob decrypts

y via the usage of his quadratic map b. After the usage of up

to [n2/2] sessions they renovate their encryption/decryption

tools via the new session of the inverse TH protocol.

III. CRYPTOSYSTEMS WITH QUADRATIC MULTIVARIATE

RULES

A. On the public key over Fq and its temporal form

Alice selects finite field Fq , q = 2r , dimension n of the

vector space over Fq , 1T and 2T from AGLn(Fq) defined by

matrices with most entries distinct from zero.

She chooses parameter t = O(n), elements

α(1), α(2), . . . , α(t), β(1), β(2), . . . , β(t) for which

α(i) ̸= α(i), β(i) ̸= β(i + 1), i = 1, 2, . . . , n
and compute the standard form of F =
1Th(α(1), α(2), . . . , α(t), β(1), β(2), . . . , β(t))2T . She

presents F of kind yi → f(y1, y2, . . . , yn), i = 1, 2, . . . , n as

public map. Public user Bob use this transformation to encrypt

his plaintext p in time O(n3). Alice knows the decomposition
1Th2T and sequences α(i) and β(i), i = 1, 2, . . . , t. It allows

her to decrypt in time O(n2).

Remark III.1. II.1 insures that multivariate map 1Th2T has

inverse of polynomial degree at least 2r−1. So if r ≥ 16
then the cryptosystem is resistant to a differential linearisation

attacks. We implement the case with r = 32. We suggest

this classical type multivariate public key as the object for

standardisation studies.

Remark III.2. Temporal TH public rule. Alice creates

bijective F according presented above method. Together with

Bob she executes TH protocol to elaborate the collision map

and sends C+F to his partner. So correspondents can use

”public key rule” F in a private mode. The usage of F
just t(n) = [n2/2] times for the message encryption or

electronic signatures times does not allow adversary to make

the restoration of F . After the exchange of t(n) vectors

correspondents can start the new session.

B. On temporal multivariate public rules

Correspondents can execute the inverse TH protocol and get

mutually inverse outputs a and b acting on the vector space.

Alice generates the quadratic map F as it described in unit

3.1 with 1T = Y . She sends the composition Y of a and H
to Bob. He restores F as bY . They can make O(1) sessions

of the inverse protocol and get several outputs 1a, 2a, . . . , sa
and 1b, 2b, . . . , sb. After that Alice or Bob can renovate

their initial public key F via the following procedure. One

of correspondents sends the the word (i(1), i(2), . . . ., i(t)),
1 ≤ i(k) ≤ s to his/her partner. Bob uses bi(t)bi(t−1) . . . bi(1)F
for the encryption. Alice gets bi(t)bi(t−1) . . . bi(1)F (p) = c
from Bob. She computes ai(1)ai(2) . . . ai(t)(c) = d and solves

the equation F (x) = d with the usage of her knowledge on

α(1), α(2), . . . , α(t), β(1), β(2), . . . , β(t)) and affine transfor-

mations 1T and 2T of degree 1. Noteworthy that correspon-

dents do not need to compute compositions of generators ia
or ib, they will apply them consecutively.

C. Modification with direct TH protocol

Correspondents can use s-times direct TH protocol with out-

puts 1c, 2c, . . . , sc. Alice computes the standard form of kind

gi = Y g(α(1), α(2), . . . , α(t), β(1), β(2), . . . , β(t))Y −1, i =
1, 2, . . . , s from Y 2G(Γ(n,K)Y −1 and sends ci + gi to Bob.

Bob restores gi in their standard forms. After the agreement on

the word (i(1), i(2), . . . , i(t)), 1 ≤ i(k) ≤ s via open channel

he encrypts with the consecutive usage of gi(1), gi(2), . . . , gi(s)
and F . Recommended period of usage of words is [n2/2].
It does not allow adversary to approximate the quadratic

encryption transformation.

D. Remark on the implementation

We use computer simulation to generate maps of kind

y = τ1h = h(α(1), α(2), . . . , α(t), β(1), β(2), . . . , β(t))τ2(x)
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related to graphs A(n,K) and D(n,K). K is one of the

commutative rings: Boolean ring B(32), modular ring Z32
2

and finite field F 32
2 . We have implemented three cases of

invertible affine transformations. Tables and figures presenting

simulation in all cases for F 32
2 can be found in extended

reprint version of this paper. The third case is presented in

the following table.

1) τ1 and τ2 are identities, its just evaluation of time

execution of core quadratic transformation,

2) τ1 and τ2 are of kind x1 → x1+a2x2+a3x3+· · ·+anxn

(linear time of computing execution of τ1 and τ2),

3) τ1 = A1x+b1 and τ2 = A2x+b2, nonsingular matrices

A1, A2 have nonzero entries and vectors b1, b2 with

mostly all coordinates differ from zero standard forms

of the maps in the cases 2 and 3.

The program is written in C++ and compiled with the gcc

compiler. We used an average PC with processor Pentium 3.00

GHz, 2GB memory RAM and system Windows 7. Table I
present the time of encryption with symmetric algorithm for

commutative ring F232 .

IV. TREES OF INFINITE FOREST D(Fq) AND

OBFUSCATIONS OF QUADRATIC MULTIVARIATE RULES

We suggest modification quadratic D(n,K) transformations

presented before which is based on the descriptions of the

connected components of these graphs. The description uses

the following alternative definition of them.

The family of graphs D(n,K), n = 2, 3, . . . where K is

arbitrary commutative ring defines the projective limit D(K)
with points

(p) = (p10, p11, p12, p21, p22, p
′

22, . . . ,

p′ii, pi,i+1, pi+1,i, pi+1,i+1, . . . ),
(3)

and lines

[l] = [l01, l11, l12, l21, l22, l
′

22, . . . ,

l′ii, lii+1, li+1,i, li+1,i+1, . . . ].
(4)

which can be thought as infinite sequences of elements in K
such that only finitely many components are nonzero.

A point (p) of this incidence structure I is incident with

a line [l], i.e. (p)I[l], if their coordinates obey the following

relations:

pi,i − li,i = p1,0li−1,i,

p′i,i − l′i,i = pi,i−1l0,1,

pi,i+1 − li,i+1 = pi,il0,1,

pi+1,i − li+1,i = p1,0l
′

i,i,

(5)

These four relations are well defined for i > 1, p1,1 = p′1,1,

l1,1 = l′1,1.

Let D be the list of indices of the point of the

graph D(K) written in their natural order, i. e. sequence

(1, 0), (1, 1), (1, 2), (2, 1), (2, 2), (2, 2)′ . . . . Let kD be the list

of k first elements of D. The procedure of deleting coordinates

of points and lines of D(k,K) indexed by elements of D−kD
defines the homomorphism of D(K) onto graph D(k,K) with

the partition sets isomorphic to the variety Kn and defined by

the first k − 1 equations from the list (5).

Let k ≥ 6, t = [(k + 2)/4], and let

u = (ui, u11, . . . , utt, u
′

tt, ut,t+1, ut+1,t, . . . ) be a vertex

of D(k,K). We assume that u1 = u1,0 (u0,1) if u be

a point (a line, respectively). It does not matter whether

u is a point or a line. For every r, 2 ≤ r ≤ t, let

ar = ar(u) = Σi=0,r(uiiu
′

r−i,r−i − ui,i+1ur−i,r−i−1) and

a = a(u) = (a2, a3, . . . , at).

The following statement was proved in [17] for the case

K = Fq . Its generalization on arbitrary commutative rings is

straightforward, see [18].

Proposition IV.1. Let K be a commutative ring with unity

and u and v be vertices from the same connected component

of D(k,K). Then a(u) = a(v). Moreover, for any t− 1 ring

elements xi ∈ K, 2 ≤ i ≤ ⌊(k + 2)/4⌋ = t, there exists a

vertex v of D(k,K) for which a(v) = (x2, x3, . . . , xt) = (x).

So the classes of equivalence for the relation τ = {(u, v) |
a(u) = a(v)} on the vertices of the graph D(n,K) are unions

of connected components.

Theorem IV.1. [18] For each commutative ring with unity,

the graph D(k,K) is edge transitive.

Equivalences classes of τ form an imprimitivity systems

of automorphism group of D(k,K). Graph C(n,K) was

introduced in [9] as the restriction of incidence relation of

D(k,K) on a solution set of system of homogeneous equa-

tions a2(x) = 0, a3(x) = 0, . . . , at(x) = 0. The dimension

of this algebraic variety is n − t = d. Thus d = [4/3n] + 1
for n = 0, 2, 3 mod 4, d = [4/3n] + 2 for n = 1 mod
4. For convenience we assume that C(n,K) = Cd(K).
Symbol CD(k,K) stands for the connected component of

graph D(k,K). The following statement holds.

Theorem IV.2. (see [11] and further references).

The diameter of the graph Cm(K), m ≥ 2, K is a

commutative ring with unity of odd characteristic, is bounded

by parameter f(m) which does not depend on K.

Corollary IV.1. If K is a commutative ring with unity of odd

characteristics then CD(n,K) = C(n,K).

Let us rename coordinates y1,0, y1,1, y1,2, y2,1, . . . of sym-

bolic line y of D(n,K) accordingly to the natural order on

them as y1, y2, . . . , yn and write equations of the graph in

the form 5. It allows as to write connectivity invariants of the

line y = [y1, y2, . . . , yn] as ai([y]) = ai(y1, y2, . . . , yn) where

i = 2, 3, . . . , t. Similar notations we will use in the case of

points. For the nonlinear map F of Kn with bounded degree

given in its standard form we define trapdoor accelerator

F = 1TGA
2T as the triple 1T , 2T , GA of transformations of

Kn, where iT , i = 1, 2 are elements of AGLn(K), G = GA

is nonlinear map on Kn depending on the piece of information

A which allows to compute the reimage for nonlinear G in

time O(n2) (see [20]). In this paper we assume that A is
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TABLE I
GENERATION TIME FOR THE MAP (MS) D(n, F

232
) ,LENGTH OF THE WORD, CASE III

n 16 32 64 128 256

16 71 136 263 518 1030

32 1220 2324 4535 8962 17824

64 21884 40412 77476 151587 299839

128 453793 812136 152678 2946017 5792884

given as a tuple of characters (d(1), d(2), . . . , d(m)) in the

alphabet K.

We use graphs D(n,K) and D(n,K[y1, y2, . . . , yn]) to

define family of quadratic multivariate maps F of kind

y1 → f1(y1, y2, . . . , yn), y2 → f2(y1, y2, . . . , yn), . . . , yn →
fn(y1, y2, . . . , yn) with trapdoor accelerator F = T1GAT2,

T1, T2 ∈ AGLn(K).

We take the line [y1, y2, . . . , yn] of the graph

D(n,K[y1, y2, . . . , yn] for the colour α1 from K we compute

[z] = Jα1
([y]) = [α1y1, y2, . . . , yn] = [z1, z2, . . . , zn] and

compute ar = ar([z]) = ar(α1, y2, . . . , yn), for r = 2, 3, . . . .

We form the quadratic expression B = (ys1+C(y2, y3, . . . , yn)
where C(y2, y3, . . . , yn) = λ2a2 + λ3a3 + · · · + λtat + λ1

with nonzero λi from K and s = 2 if the order of K∗

is odd and s = 1 in all other cases. We form the walk

in the graph D(n,K[y1, y2, . . . , yn]) starting from the

line [z] of colour α1 and consecutive vertices of colours

y1 + β1, α2, y1 + β1, α3, . . . , αl−1, y1 + βl − 1, αl such that

αi ̸= αi+1, βi ̸= βi+1 for i = 1, 2, . . . , l − 1.

We form the path with the starting line v1 = Jα1
([y]),

v2 = Ny1+β1
(v1), v3 = Nα2

(v2), . . . , v2t−1 = Nαt
(v2t−2

and consider vt = JB(v2t−1) = u. The vertex u allows

us to define the following transformation G = GA, A =
(α1, α2, . . . , αl;β1, β2, . . . , βl−1, B(y1, y2, . . . , yn)) of Kn to

itself

y1 → (y1)
s + C(y1), y2, . . . , yn),

y2 → u2(y1, y2),

. . .

yn → u2(y1, y2, . . . , yn).

We identify A = 1A with the array

(α1, α2, . . . , αl;β1, β2, . . . , βl−1, λ1, λ2, λr, B(y1, y2, . . . , yn))

Proposition IV.2. Let T1 and T2 are bijective transformations

from AGLn(K) and K is arbitrary commutative ring with

unity. Then the standard form of F = T1GlAT2, l = O(n)
has a trapdoor accelerator given by coefficients of T1 and T2

together with the array A described above.

Proof. We have to justify that the reimage x of v = GA(x) can

be computed in time O(n2). The procedure of its computation

is the following:

1) Let the value v of GA is given. We have to compute the

connectivity invariants a2(u), a3(u), . . . , ar(u) of the

line u = [αl, v2, v3, . . . , vn].
2) The computation of linear combination b = λ2a2(u) +

λ3a3(u) + · · ·+ λrar(u) + λ1.

3) The computation of the solution y1 = c of the equation

y1
2 + b = v1.

4) We form the parameters d1 = c + βl−1, d2 = αl−1,

d3 = c+ βl−2, d4 = αl−2, . . . , d2l−2 = α1, of “reverse

path” with the starting line [u].
5) Conducting recurrent computations Nd1

(u) = 1u,

Nd2
(2u), . . . , , Nd2l−1

(2l−2u).
6) Computing of the reimage Jc(

2l−2u). The complexity

of the algorithm is O(n2). So the map has a trapdoor

accelerator.

The standard forms of transformations F = T1GAT2 can

be used as a public keys. In fact this family is an obfuscation

of quadratic multivariate public keys suggested in [15].

The idea of D(n,K) based encryption with the usage of

connectivity invariants was suggested in [16].

V. CONCLUSION

Multivariate Cryptography in wide sense is about construc-

tions and investigations of Public Keys in a form of nonlinear

Multivariate rule defined over some finite commutative ring

K. These rule F has to be written as transformation xi → fi,
i = 1, 2, . . . , n, fi ∈ K[x1, x2, . . . , xn] over commutative

ring K. Bijective F can be used for the encryption of tuples

(plaintexts) from the affine space Kn. Multivariate rules can

serve as instruments for creation of digital signatures. In the

case of bijective transformation decryption process can be

thought as application of inverse rule G. The degree of G
can be defined as maximum of degrees of polynomials G(xi),
i = 1, 2, . . . , n. For the usage of given publicly F as efficient

and secure instrument its degree of has to be bounded by some

constant c (traditionally c = 2) but the polynomial degree of

the inverse G has to be high.

The key owner (Alice) suppose to have some additional

piece T of private information about pair (F,G) to decrypt

ciphertext obtained from the public user (Bob). Recall that

family the family Fn, n = 2, 3, . . . has trapdoor accelerator
nT if the knowledge of the piece of information nT allows to

compute reimage x of y = Fn(x) in time O(n2). Of course the

concept of trapdoor accelerator is just instrument to search for

practical trapdoor functions. As you know that the existence of

theoretical trapdoor functions is just a conjecture. In fact it is

closely connected to Main Conjecture of Cryptography about

the fact that P ̸= NP . Without the knowledge of Tn one

has to solve nonlinear system of equations which generally is

NP -hard problem. Finding of the inverse for Fn is an NP -

hard problem if these maps are in so called ”general position”.
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In the case of specific maps additional argumentation of the

complexity to find inverses Gn can be useful.

We present such heuristic arguments in the case of D(n,K)
based encryption defined for arbitrary commutative ring K
with unity with at least 3 elements and presented in previous

section. Graphs D(n,K) have partition sets Kn (set of points

and set of lines) and incidence relation between points and

lines is given by system of linear equations over K.

To define trapdoor accelerator for standard forms Fn,

n = 2, 3, . . . we use special walks on graphs (D(n,K)
and and D(n,K[x1, x2, . . . , xn]).The constructed map Fn

acts on the selected partition set Kn. In the case of trivial

affine transformations T1 and T2 the relation Fn(x) = y
for x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) vertices

x and y = (f(y1, y2, . . . , yn), y2, y3, . . . , yn) are joint in

the graph D(n,K) by the path of length > cn, where c
is positive constant and f ∈ K[y1, y2, . . . , yn] is known

quadratic expression. Finding the path will give us the trapdoor

accelerator for the computation of preimages. This can be

done by Dijkstra algorithm of complexity v log(v) where v is

the order of graphs. It could not be done in polynomial time

because of v = 2|K|n and |K| ≥ 3. Noteworthy that the usage

of nontrivial T1 and T2 will complicate the cryptanalysis.

We presented D(n,K) based platform H(n,K) of

quadratic transformations. So correspondents Alice and Bob

can use H(n,K) protocols and elaborate collision map C,

C ∈ H(n,K). So Alice can create Fn and send C + Fn

to Bob instead of public announcement of this multivariate

transformation. It gives the option to change the encryption

tool periodically.

Alternatively Alice and Bob use the inverse H(n,K) proto-

col to elaborate mutually inverse elements H and H−1 in their

possessions. So Bob can change the rule Fn for the quadratic

H−1Fn via left multiplication. These actions form a basis for

algorithms with temporal public rules presented in the paper.
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