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Abstract—It is argued that for analysis of Positive Unlabeled
(PU) data under Selected Completely At Random (SCAR) as-
sumption it is fruitful to view the problem as fitting of misspec-
ified model to the data. Namely, it is shown that the results on
misspecified fit imply that in the case when posterior probability
of the response is modelled by logistic regression, fitting the
logistic regression to the observable PU data which does not
follow this model, still yields the vector of estimated parameters
approximately colinear with the true vector of parameters. This
observation together with choosing the intercept of the classifier
based on optimisation of analogue of F1 measure yields a
classifier which performs on par or better than its competitors
on several real data sets considered.

I. INTRODUCTION

I
N the paper classification problem is analysed for partially

observable data scenario for which in the case of some

observations class indicators assigned to them (positive or

negative in the case of binary classification) are unknown.

More specifically, for positive and unlabeled data considered

here, it is assumed that some observations from the positive

class are labeled, whereas the rest of the observations (either

positive or negative) are unlabeled. Such scenario is called

Positive Unlabelled (PU) scenario. Thus in the PU setting

the true binary class indicator Y ∈ {0, 1} is not observed

directly but only through binary label S. One knows that if

S = 1 (labelled case), Y has to be 1 (positive), but for S = 0
(unlabeled case) Y may be either 1 or 0 (positive or negative).

Besides, each object is described by the vector of features

x. This setup encompasses a legion of practical situations,

in which effective inference methods about class indicator

Y are sought. Examples include disease data (diagnosed

patients with a specific disease detected, and patients yet to be

diagnosed who may be ill or not), web pages preferences of

a specific user (pages bookmarked as of interest and pages

not yet viewed, thus of unknown interest) and ecological

examples when environments are labeled provided a specific

specimen inhabits them, and unlabeled, where this specimen

has not been yet looked for). Such scenario is also relevant for

survey data, when questions concerning socially reproachable

behaviour may not be answered truthfully.

One of the popular approaches to learn from PU data is

to impose certain parametric assumptions on distribution of

(X,Y ) as it commonly done in classical classification task

together with some assumptions on labeling mechanism S.

This is partly necessitated by the fact that in general situation

the posterior distribution of Y as well as prior probability

P (Y = 1) is not identifiable. It is thus common to consider

logistic type of dependence for the posterior distribution

P (Y = 1|X = x) and assume that censoring mechanism

acts indiscriminately of x and is described only by the label

frequency c = P (S = 1|Y = 1) (SCAR assumption

discussed below). Majority of learning approaches has been

developed under such assumptions; see [1] for an extensive

review of the proposed methods. Recently the JOINT method

has been proposed in [11] which consists in minimisation of

empirical risk for the observed data (Xi, Si), i = 1, . . . , n
with respect to parameter of logistic distribution and label

frequency. JOINT method can be considered as a generic

method with specific algorithms depending on optimisation

technique used. The issue is delicate as it turns out that the

empirical risk is not a convex function of its parameters and

thus it may posess multiple local minima. In particular [11]

used BFGS algorithm, whereas approach in [6] has been based

on Minorization-Maximization (MM) technique. Among other

methods important group consists of approaches based on

weighted empirical risk minimisation in which weights of

observations depend on labeling frequency c (see [1], section

5.3.2).

In the present contribution attention is called to the fact that

in order to construct a reasonable classifier one can use a

logistic model fitted to observable data (Xi, Si), i = 1, . . . , n
in order to recover the direction of the separating hyperplane

and then shift it to the optimal position by maximising

observable analogue of F1 score. In this approach the direction

is obtained by minimising the misspecified convex empirical

risk (equal to minus log-likelihood) for the observed data. The

justification of the method is based on properties of misspec-

ified logistic regression which are valid for PU model under

SCAR condition considered here. It is argued that considering
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fitting parametric models to PU data as the misspecification

problem gives new insights to the established properties and

leads to new solutions. In particular, results on behaviour of

estimators under misspecification (see e.g. [14], [12]) can be

used to assess the performance of the naive classifier and its

modifications.

II. NOTIONS AND AUXILIARY RESULTS

We first introduce basic notations. Let X be a multivariate

random variable corresponding to feature vector, Y ∈ {0, 1}
be a true class label and S ∈ {0, 1} an indicator of an example

being labeled (S = 1) or not (S = 0). We consider X as a

column vector and let X = (1, X̃T )T ∈ Rp+1, where the first

coordinate of X corresponds to an intercept and coordinates of

X̃ relate to p collected characteristics of an observation. We as-

sume that there is some unknown distribution PY,X,S such that

(Yi, Xi, Si), i = 1, . . . , n are independent observations drawn

from this distribution. Observed data consists of (Xi, Si),
i = 1, . . . , n. This is the single sample scenario as opposed

to case-control scenario when the samples from positive class

and the general population are given. Only positive examples

(Y = 1) can be labeled, i.e. P (S = 1|X,Y = 0) = 0.

Thus we know that Y = 1 when S = 1 but when S = 0,

Y can be either 1 or 0. Our primary aim is to construct a

classifier which predicts Y class based on PU data. Note that

this corresponds to a specific censored data problem as we only

observe samples from distribution of (X,S), where S = Y
with a certain probability.

To this end we define binary posterior probability of S = 1
given X = x equal s(x) = P (S = 1|x) and propensity

score function e(x) = P (S = 1|Y = 1, X = x). In this

paper we adopt Selected Completely At Random (SCAR)

assumption which stipulates that e(x) does not depend on

x, thus e(x) = P (S = 1|Y = 1) := c, where c will

stand for labeling frequency. This means that labeling is not

influenced by feature vector x and in this case labeled data

is a random sample (of a random size) from a positive class.

This commonly adopted assumption is restrictive but it serves

as an useful approximation especially in situations when the

possibility of labeling bias is recognised and one tries to avoid

it. We note that as we have P (S = 1, Y = 0|X = x) = 0 it

holds

s(x) = P (S = 1|x) = P (S = 1, Y = 1|x)
= P (S = 1|Y = 1, x)P (Y = 1|x)
= e(x)× y(x) = c× y(x), (1)

where we let y(x) = P (Y = 1|X = x) denote posterior

probability of class 1 and the last equality follows from SCAR

assumption. We note that SCAR is equivalent to the property

that S and X are conditionally independent given Y . We

stress, however, that it is valid only when the label value is

assigned with a fixed probability regardless of characteristics

of an item. Under this assumption it is easy to see that

PX|S=1 = PX|Y=1 whereas PX|S=0 is a mixture

PX|S=0 =
α− αc

1− αc
PX|Y=1 +

1− α

1− αc
PX|Y=0

and α = P (Y = 1) is a prior probability of Y = 1. We also

note that c = P (S = 1|Y = 1) = P (S = 1)/P (Y = 1) =
P (S = 1)/α. We do not assume any previous knowledge of

c (although it is frequently imposed see, e.g. [1]) and thus we

only know that 0 < c ≤ 1.We will adopt an parametric model

for posterior probability y(x) assuming that Y is governed by

logistic response:

y(x) =
exp

(
xTβ

)

1 + exp(xTβ)
= σ(xTβ), (2)

where σ(s) = exp(s)/(1 + exp(s)) is a logistic function, βT

stands for transposed column vector β and β = (β0, β
T
−0)

T ∈
R × Rp is an unknown but fixed vector value. Thus in view

of (1) and (2) we have

P (S = 1|x) = c× σ(xTβ).

III. MISSPECIFIED LOGISTIC MODELLING

Assume that (2) holds and consider naive approach when

the logistic model is fitted to (X,S) data using Maximum

Likelihood method i.e. we maximise a log-likelihood

Ln(b) =

n∑

i=1

Si log
(
σ(XT

i b)
)
+ (1− Si) log

(
1− σ(XT

i b)
)
.

(3)

Maximisation of Ln(·) is a concave optimisation problem.

Note that this is equivalent to assuming (erroneously) that

all unlabeled observations belong to the negative class and

thus misspecified logistic model is fitted to the data for

which posterior probability is governed by (1). Obviously,

one can write down the complete correct log-likelihood for

(Xi, Si)
n
i=1:

L̃n(b, c) =

n∑

i=1

Si log
(
cσ(XT

i b)
)
+(1−Si) log

(
1− cσ(XT

i b)
)

(4)

and maximise it wrt (b, c). Such method, named JOINT, has

been proposed and investigated in [11]. However, finding

global maximum of (4) is hindered by the fact that due

to the presence of multiplicative constant c in the form of

posterior probability P (S = 1|x) given in (1) log-likelihood

L̃n(b, c) is no longer concave wrt b, in contrast to Ln(b).
There are some attempts to account for this, either by using

Minorization-Maximization algorithm or modelling L̃n(·, c)
as the difference of two concave functions ( [13]).

Frequently, our aim is not to approximate (β, c) but

to construct a classification rule based on training data

(Xi, Si)
n
i=1. For review of such methods see e.g. [1]. In such

a case one can ask whether the classifier based on maximiser

of Ln(b) can not be modified to yield approximation of

Bayes classifier of Y . The answer is affirmative and it relies

on the crucial observation that Ln(b) can be viewed as

log-likelihood of misspecified logistic regression fitted to data

corresponding to posterior probability q(xTβ) = c× σ(xTβ).
This was noticed already in the context of estimation of

β in [11] using Ruud’s theorem [9] stated below, however

its useful consequences have been never explored for PU
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classification. Here we try to fill this gap by showing that the

naive classifier can be improved by adjusting its intercept,

the step which has significant influence on its performance.

Below we state Ruud’s theorem [9] for a logistic loss, for the

general statement see [8].

A. Colinearity under misspecification: general case

Assume that the distribution of random vector (X,S) is

such that posterior probability P (S = 1|X = x) = q(xTβ)
for some unknown response function q : R → (0, 1) which

is possibly different from logistic function. Let β∗ be the

maximiser of expected normalised log-likelihood in (3) for

such distribution:

n−1E(X,S)Ln(b) = EX{q(xTβ) log σ(xT b)
+ (1− q(xTβ)) log

(
1− σ(xT b)

)
}(5)

We note that β∗ can be interpreted as the minimiser of the

averaged Kullback-Leibler (KL) divergence between binary

distribution (q(XTβ), 1 − q(XTβ)) and family of logistic

models {σ(XT b)}b∈Rp+1 (see [3] for the definition and prop-

erties of KL divergence) and thus corresponds to the Kullback-

Leibler projection of the true distribution on this family. It also

follows that β∗ satisfies the following vector equality

EXq(XTβ) = EXσ(XTβ∗). (6)

The obvious consequence of (6) is that when q(s) ≡ σ(s) and

the projection is unique, then β∗ = β.

We say that X satisfies Linear Regressions Condition

(LRC(b)) for vector b ∈ Rp+1 if

E(X̃|b̃T X̃ = w) = γw + γ0 (7)

for some γ = γ(b̃), γ0 = γ0(b̃) ∈ Rp. We note that LRC(b)
condition is satisfied for the multivariate normal distribution

for any b ∈ Rp+1 and, more generally, by the class of

eliptically contoured distributions.

Theorem 1: [9] Assume that X satisfies LRC(β) condition

and moreover covariance matrix of ΣX̃ of vector X̃ is strictly

positive definite. Additionally, P (Y = 1|X = x) = q0(x
Tβ)

for some unknown function q0 and for some β ∈ Rp+1. Then

minimiser β∗ of (5) satisfies

β∗
−0 = ηβ−0,

where β = (β0, β
T
−0)

T and β∗ = (β∗
0 , β

∗T

−0)
T . Moreover, η >

0 provided that Cov(Y,X) > 0 and LRC(β∗) holds.

For the proof of the first part see e.g. [8]. The second part

follows from normal equations (6) and the fact that vector γ
in (7) equals (βT

−0ΣX̃β−0)
−1ΣX̃β−0.

Theorem above implies that under the stated conditions

despite the misspecification of the fitted model we still retain

colinearity of true parameter β and the vector β∗ of its

Kullback-Leibler projection when the first coordinate in both

vectors corresponding to intercept is omitted. This has an

obvious relevance in classification if one recalls that Bayes

classifier when logistic model is valid equals under conditions

of Theorem 1:

Ŷ (X) = I{(X̃Tβ−0 + β0 > 0}
= I{ηX̃Tβ−0 + ηβ0 > 0} = I{X̃Tβ∗

−0 + ηβ0 > 0}.(8)

Thus the direction of the optimal separating hyperplane

X̃Tβ−0 + β0 = 0 is given by projection β∗
−0 which is easily

estimable and only the intercept ηβ0 needs to be recovered.

Let β̂∗ denote maximiser of (3). As Maximum Likelihood

estimator β̂∗ consistently estimates β∗ under mild conditions

(see [14]) one can use β̂∗
−0 as the vector defining the direction

of the separating hyperplane wTx + w0 and then adjust its

intercept appropriately.

B. Collinearity under misspecification: PU case

Consider now Positive Unlabeled data case and assume that

posterior probability of Y given X is given by logistic model

defined in (2). Then in the view of (1) when logistic model is

fitted to (S,X), the model is misspecified as P (S = 1|X =
x) = c×σ(Tβ). However, under conditions of Theorem 1 we

have β∗
−0 = ηβ−0 and moreover (6) yields

cEXσ(XTβ) = EXσ(β∗
0 + ηX̃Tβ−0).

This shows how parameter η depends on labeling frequency c
and distribution of XTβ. When X is multivariate normal this

can be restated more explicitly.

Theorem 2: Assume that X ∼ N(0,Σ) and conditions of

Theorem 1 are satisfied. (i) Then we have for any j = 1, . . . , p:

η

c
= η

EXjσ(β0 + X̃Tβ−0)

EXjσ(β∗
0 + ηX̃Tβ−0)

=
Eσ′(β0 + X̃Tβ−0)

Eσ′(β∗
0 + ηX̃Tβ−0)

(9)

(ii) If c ≤ 1/2 then β∗
0 < 0 for any β0.

Proof. The first equality in (9) is just a consequence of (6)

when jth coordinate is considered. The second equality fol-

lows from Stein’s lemma, which states that Cov(h(Z1), Z2) =
Eh′(Z1)Cov(Z1, Z2) for bivariate normal vector (Z1, Z2). It

implies that

EXjσ(β0 + X̃Tβ−0) = Cov(Xj , σ(β0 + X̃Tβ−0))
= Eσ′(β0 + X̃Tβ−0)Cov(Xj , β0 + X̃Tβ−0) (10)

and, analogously

EXjσ(β
∗
0 + ηX̃Tβ∗

−0) = Cov(Xj , σ(β
∗
0 + X̃Tβ∗

−0))

= Eσ′(β∗
0 + ηX̃Tβ−0)Cov(Xj , β

∗
0 + ηX̃Tβ∗

−0). (11)

Applying normal equations again we obtain the second equal-

ity.

In order to prove (ii) note that for any symmetric univariate

random variable Z we have

Eσ(a+ Z) < 1/2 ⇐⇒ a < 0.

Indeed

Eσ(a+ Z) = 1− Eσ(−a− Z) = 1− Eσ(−a+ Z),
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where the second equation is due to symmetry of Z. This,

and the fact that σ(a + Z) < σ(−a + Z) is equivalent (due

to monotonicity of σ(·)) to a < 0 justify the claim. However,

note that normal equations for the first coordinate being 1

imply that

Eσ(β∗
0 + ηX̃Tβ−0) = cEσ(β0 + X̃Tβ−0) < c ≤

1

2

and thus β∗
0 < 0.

Remark 3.1: Part (ii) explains why the naive classifier

applied to (S,X) data will work poorly, especially for small

c: its intercept is likely to be negative regardless the sign of

the intercept ηβ0 in (8). Thus it has to be modified to enhance

the performance of naive classifier.

Remark 3.2: The case when no intercept is included in both

the true and the fitted model has been considered in [11].

It is shown there that then 0 < η ≤ c < 1. Thus in this

case coefficients of logistic model corresponding to genuine

predictors are shrunk towards 0.

C. Choice of the intercept

We propose to choose the intercept ŵ0 of the separating

hyperplane x̃T β̂∗
−0 + ŵ0 = 0, where ŵ0 is an estimator of

ηβ0 (see (8)), by maximising the analogue of F1 measure on

training data. We let, for a given classifier Ŷ = Ŷ (X) learnt

on the training data Dtrain:

r = P (Ŷ (X) = 1|Y = 1) p = P (Y = 1|Ŷ (X) = 1)

be population recall and precision of Ŷ , respectively. Here,

(X,Y ) stands for unobservable random variable having dis-

tribution PX,Y which is independent of Dtrain. We define F1
measure as their harmonic mean

F1 =
r × p

(r + p)/2
. (12)

Thus in order to have large F1 value, both the precision and

recall should be large. We also note that simple derivation

yields F1 = 2×P (Y = 1, Ŷ = 1)/(P (Y = 1)+P (Ŷ = 1)).
Moreover, note that for PU data under SCAR we have that

P (Ŷ (X) = 1|Y = 1,Dtrain) = P (Ŷ (X) = 1|S = 1,Dtrain)
as Ŷ (X) given Dtrain depends on X only and P (X|Y =
1) = P (X|S = 1).

This means that the recall r can be easily estimated from

(X,S) sample. The precision, however is unobservable, and

thus we consider the following analogue of F1 introduced in

[7], Section 4, (see also [10]) defined as

F1PU =
r × p

P (Y = 1)
. (13)

F1PU is proportional to squared geometric mean of the

precision and the recall i.e. Fowlkes-Mallows index [5]. Note

that one obtains

P (Y = 1|Ŷ (X) = 1)

P (Y = 1)
=

P (Ŷ (X) = 1|Y = 1)

P (Ŷ (X) = 1)

which in terms of the precision and the recall means that

p = r × P (Y = 1)/P (Ŷ (X) = 1) and thus

F1PU =
r2

P (Ŷ (X) = 1)
. (14)

Let Ŷz(x) = I{x̃T β̂∗
−0 + z > 0}, where β̂∗ is maximiser of

(3) and define F̂1PU (z) to be a sample analogue of F1PU for

the classifier Ŷz(X). We propose to choose ŵ0 as maximiser

of

ŵ0 = argmaxzF̂1PU (z) (15)

We will call the classifier Ŷ (x) = I{x̃T β̂∗
−0 + ŵ0 > 0} the

enhanced naive classifier. The pseudo-code for enhanced clas-

sifier is given in Algorithm 1. We show below when analysing

its behaviour on real data sets that modification of the intercept

of the naive classifier is crucial for its performance.

Algorithm 1 Enhanced naive classifier

Input: Observed data (xi, si), i = 1, . . . , n.

Step 1: Obtain estimator β̂∗ = (β̂∗
0 , β̂

∗
−0) by fitting logistic

regression to observed data (xi, si).

Step 2: Calculate intercept ŵ0 as argmaxzF̂1PU (z).
Result: Parameters (ŵ0, β̂

∗
−0) of the separating hyper-

plane.

IV. NUMERICAL EXPERIMENTS

In the numerical experiments we have considered the fol-

lowing classifiers:

• Naive classifier based on fitting logistic regression model

to (X,S) data called Naive and the classifier Enhanced

proposed here;

• Classifiers based on JOINT and MM estimators discussed

above;

• Weighted classifiers introduced in [1], Section 5.3.1 using

two alternative estimators of c: proposed in [4] (denoted

by e1, p.214) and TIcE estimator introduced in [2]. For

the discussion of both estimators of c see e.g. [6]. They

will be called EN and TIcE classifiers, respectively.

The implementation of Enhanced estimator is given in github

directory1. Maximisation of F̂1PU (z) in (15) is achieved by

looking for maximal value among the values of this quantity,

noting that numerators of numerator and denominator of the

ratio defining it may change by ±1 when moving along

ordered values of intercept for which predictions of considered

classifiers change, i.e. values zi = x̃T
i β̂

∗
−0.

A. Synthetic data

In order to check how Ruud’s theorem works in practice

and the performance of the proposed classifier, we con-

sidered a simple synthetic example where vector of pre-

dictors X̃ has three-dimensional normal distribution with

mean m = (1, 1,−1)T , variances equal to 1 and covari-

ances Cov(X1, X2) = 0.2, Cov(X1, X3) = −0.2 and

1https://github.com/MateuszPlatek/PU_Enhanced_Naive_Classifier
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Cov(X2, X3) = 0. Thus X1 is positively correlated with

X2 and negatively correlated with X3. Moreover posterior

probability of Y = 1 given X = x is logistic with

β = (−1,−1, 1, 1)T . We investigated the angle between β̂−0

and β−0 for all considered estimators, the performance of

corresponding classifiers for c = 0.3, 0.6 and several values

of n ranging from 500 to 5000. The results are shown in

Figure 1 situated at the end of the paper. The first row of

the panel exhibits goodness of fit of the considered estimators

measured by the mean differences of their angles and the angle

of β−0. It indicates that in concordance with Ruud’s theorem

the direction of β−0 is approximately recovered by direction of

naive estimator β̂−0 for sample sizes larger than 1000 and the

accuracy increases with increasing sample size. Moreover the

accuracy of β̂−0 measured by mean difference of angles for

naive, MM and JOINT estimators approximately coincides and

is consistently better than that of EN and TIcE estimators. In

terms of F1 measure shown in the second row the introduced

enhanced naive classifier works consistently better than its

competitors and in terms of Balanced Accuracy (defined as

the average of the recall and the specificity; the third row) it

is only outperformed by EN classifier for c = 0.3.

B. Real datasets

We have analysed performance of the estimators on six

data sets from UCI directory with sample sizes ranging from

around 300 to 30 000 and number of features from 3 to

166 (the main characteristics of the data sets are given in

Table I). The figures show mean performance with the regard

of F1 measure (Figure 2) and Balanced Accuracy (Figure

3), for values of c ranging from 0.1 to 0.9, based on 200

random splits of the data into training and testing subsamples.

Standard errors for the mean are smaller than 0.01 in most

cases for both F1 and BA measure with the only exception

of F1 measure on credit-a and diabetes data set and

the maximal value of SE is 0.026 for JOINT estimator on

credit-a. Note that the results for the naive classifier are

truncated from below in Figure 2: F1 measure for naive

classifier is very low for c ≤ 0.5 and approach 0 for c close

to 0. The first immediate observation is that the change of the

intercept estimator, which is the only difference between the

naive classifier and its enhanced version, has a huge impact

on its performance with regard to both considered measures.

F1 measure In all cases but one the enhanced classifier

works better (data sets musk, credit-a, diabetes,

adult) or on par (banknote) with JOINT and MM

estimators. In the case of spam it works marginally worse

than JOINT and MM. This is interesting, especially in

comparison with MM estimator which requires much more

computing effort. It also outperforms TIcE and EN estimators

on three data sets: banknote, musk and spam. On

adult data set enhanced classifier works better than EN

and on par with TIcE. Its excellent performance on musk

data set is worth pointing out. The performance of enhanced

estimator deteriorates for small values of c, possibly due to

Name Size Features Fraction of positive observations

adult 32561 57 0.24
banknote 1372 4 0.44
credit-a 690 38 0.44
diabetes 768 8 0.35
musk 6598 166 0.15
spambase 4601 57 0.39

TABLE I: Analysed datasets and their statistics

Algorithm Oracle Enhanced JOINT MM EN TIcE

Time 0.05s 0.22s 0.23s 201s 0.66s 0.9s

TABLE II: Mean training time in seconds on the largest dataset

adult with c = 0.5.

loss of accuracy of F̂1PU (note that the denominator of (14)

becomes smaller for smaller c).

Balanced Accuracy The performance of enhanced estimator

with respect of Balanced Accuracy is similar to that with

respect to F1 measure.

We have also analysed training times of the considered

classifiers. Table II shows the training times for the largest

data set adult. In the case of Enhanced and JOINT

classifiers the times are approximately the same and 2-3 times

shorter that the times for EN and TiCE classifiers. The most

computation intensive is MM classifier as it requires inner

loop of convex optimisation for each iteration of β̂.

V. CONCLUSION

We have studied a novel modification of naive classifier

for Positive Unlabeled data under SCAR assumption. The

classifier has strong theoretical underpinnings following from

Ruud’s theorem which are are established in Theorem 1. These

indicate that the coefficients of logistic classifier corresponding

to genuine predictors are consistently estimated based on

observed (X,S) data and the estimation problem boils down to

consistent estimator of the intercept. We have proposed such

an estimator based on maximisation of observable analogue

of F1 measure. Moreover, we have shown analysing real

data sets that the resulting enhanced naive estimator is a

promising alternative to classifiers based on parametric models

of posterior probability (JOINT and MM classifier) as well as

nonparametric ones (TIcE and EN classifiers). Future research

may include finding alternatives to the proposed method of

estimating the intercept as well as extension of the considered

method to the situation when SCAR assumption is violated. In

particular, note that when posterior probability y(x) satisfies

(2) and e(x) is an arbitrary function of y(x), posterior

probability s(x) of S = 1 given X = x is a function of

xTβ and it corresponds to misspecified logistic model. Thus

the conclusion of Theorem 1 applies also to this more general

situation which as its special case includes probabilistic gap

assumption when e(x) is an increasing function of y(x).
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Fig. 1: Mean difference of angles, F1 and Balanced Accuracy against sample size for artificial data.

MATEUSZ PŁATEK, JAN MIELNICZUK: ENHANCING NAIVE CLASSIFIER FOR POSITIVE UNLABELED DATA BASED ON LOGISTIC REGRESSION 231



0.1 0.3 0.5 0.7 0.9

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F1

banknote

Oracle
Enhanced
Joint
Naive
MM
EN
TIcE

0.1 0.3 0.5 0.7 0.9

0.4

0.5

0.6

0.7
adult

0.1 0.3 0.5 0.7 0.9

0.4

0.5

0.6

F1

musk

0.1 0.3 0.5 0.7 0.9

0.4

0.5

0.6

0.7

0.8

spam

0.1 0.3 0.5 0.7 0.9
c

0.4

0.5

0.6

0.7

0.8

0.9

F1

credit-a

0.1 0.3 0.5 0.7 0.9
c

0.4

0.5

0.6

0.7
diabetes

Fig. 2: F1 measure against values of c for the considered data sets.
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Fig. 3: Balanced Accuracy against values of c for the considered data sets.
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