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Abstract—This paper presents an application of a mixture of
Hidden Markov Models (HMMs) as a tool for verification of IoT
fuel sensors. The IoT fuel sensors report the level of fuel in tanks
of a petrol station, and are a key component for monitoring
system reliability (billing), safety (fuel/oil leak detection) and
security (theft prevention). We propose an algorithm for learning
a mixture of HMMs based on a continual learning principle, i.e. it
adapts the model while monitoring a sensor over time, signalling
unexpected or anomalous sensor reports. We have tested the
proposed approach on a real-life data of 15 fuel tanks being
monitored with the FuelPrime system, where it has shown a
very good performance (average area under ROC curve of 0.94)
of detecting anomalies in the sensor data. Additionally we show
that the proposed method can be used for trend monitoring and
present qualitative analysis of the short and long term learning
performance. The proposed method has promising performance
score, the resulting model has a high degree of explainability,
limited memory and computation requirements and can be easily
generalized to other domains of sensor verification.

I. INTRODUCTION

A
Key element of a recent change in the industry – dubbed

‘Industry 4.0’ or ‘The Fourth Industrial Revolution’ –

is the proliferation of ‘smart’, connected Internet of Things

(IoT) sensors, which have an ever increasing role in process

monitoring, and as such require verification to achieve reliable,

safe and secure systems [1]. In case of fuel tank sensors,

which measure the state of large tanks e.g. within a petrol

station, lack of sensor verification leads to problems being not

detected, which results in reliability issues (billing errors) but

can also have serious consequences for safety (not detecting a

leak and subsequent environmental contamination) and secu-

rity (facilitate theft of the fuel).

A sensor verification, or validation, is an internal, external

or combined process to detect sensor faults and prevent

control failures [2]. In case of IoT sensors, this consists of
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Development no POIR.01.01.01-00-0376/17-00 ‘A system for gathering and
analysis of streaming data for fuel stations, for optimization of distribution
costs and fuel sales as well as on-line monitoring for leakages-related issues’
(FuelPrime).

tasks like preparing models for denoising and missing data

imputation, anomaly outlier detection, accuracy and semantic

analysis [1]. The nature of the analysis can be complex, e.g.

for subsequence outliers (set of consecutive data points that

jointly behave unusually) [3]. On the other hand, sequen-

tial accumulation of data provides opportunity of continual

learning of the properties of sensor behaviour over time; the

challenge is to maintain learning ability without forgetting

previously learned patterns [4]. Sensor verification method

thus should be effective at its tasks [3], but at the same

time provide adequate, explainable diagnostic data for the

operator or maintenance engineer [2], support data processing

within the technical constraints of the IoT sensor suite [1]

while correctly dealing with new incoming data [4]. Recently,

there has been an emphasis on proposing a approaches both

explainable and comprehensive, which are able to deal with

real world data, e.g. mobile networks scenarios [5] or oil well

monitoring [6].

A large number of approaches have been proposed for

application-oriented modelling of time series [7] and quality

control [8], [9], including statistical tests, decomposition

methods, autoregressive models, neural networks, and prob-

abilistic models. Among them, the Hidden Markov Models

(HMMs) [10], [11], [12] have proven to be versatile and

effective across many fields, including fault diagnosis [13],

[14]. HMM models are attractive, as they have three attractive

properties: effective among many application fields; popular,

thus well-studied; explainable, as their decisions can be easily

traced to parameters of the underlying model. Original single-

model HMM formulation have been extended with mixture or

ensemble HMM models [15], [16], [17], [18], to further im-

prove their modelling capability. However, while in continual

learning setting incrementally learned HMMs can be almost

as good as batch learned models [19], corruption of previously

learned patterns is one of the main issue [20].

This paper proposes a mathematical model based on a

mixture of Hidden Markov Models (HMMs), to be used as

a tool for verification of IoT fuel sensors, together with
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experiments documenting its performance. Our proposition

leads to essentially nonparametric, lightweight (in terms of

required computational resources, especially memory), con-

tinually learning modelling approach that is able to provide

a verification of a sensor data series through the detection of

structural changes, outliers and anomalies. Additionally, we

present a case study, or experience report, of running the pro-

posed approach through real-life historic data of 15 fuel tanks,

with verification of detected patterns; the proposed method

achieves a high average area under ROC curve of 0.94. While

our study is, for the sake of clarity of presentation, limited

to the case of IoT fuel sensor verification, the method can be

easily generalized to other domains of sensor verification.

Our approach falls within the task-agnostic category de-

scribed in [21], as we assume unknown both task boundaries

– in our case changes in fuel tank usage characteristics over

time – and task labels – in our cases the classes of anomalies

to be detected. We note that this is the most general, and

hence most desired in a practical application setting. Our

learning setting from the point of view of anomaly detection is

unsupervised, as all data is used without explicit consideration

of the labels [22]. According to the taxonomy given in [23],

our approach falls into the Task-Free Continual Learning

(TFCL), with disjoint data label spaces and no task identities

provided.

II. METHOD

A. Hidden Markov Models

A Hidden Markov Model is a model of a system that

at any time is in one of n distinct states. At discrete time

intervals, state switching occurs in time independent, first

order Markovian dynamics (i.e. depends only on the cur-

rent state). HMM states are not directly observable, however

each state has an associated set of parameters describing the

emission probability of observable symbols. For the fuel tank

monitoring, the observed sequence is the volume of the fuel or

its delta, while states correspond to the current situation (idle,

refill from a tanker, distribution of fuel to clients, etc.).

A HMM λ of n states is described by initial state proba-

bility vector Π =
[

πi

]

n×1
, state transition probability A =

[

aij
]

n×n
, emission probability – typically Gaussian, with

mean and standard deviation µi, σi defined for each state.

Three main algorithms – Forward, Vitterbi, Baum-Welch –

provide tools for finding a probability of a sequence for a

given model, state sequence for given data, and learning a

model from data [10]. Other parameter identification schemes

are possible [24]. In this work, all HMMs are ergodic, i.e.

transition from a state to all other states is possible at the start

of the training.

B. Mixture of HMMs

Mixed (hidden) Markov models were originally introduced

for latent class models [15] in social sciences, and further

adapted e.g. for accelerometer measurements [16] or data im-

putation [17]. Those models introduce hierarchical structure,

with class membership dictating Markov model parameters. A

different approach has been proposed in [18], where an en-

semble of HMMs is generated over time through incremental

Boolean combination in the receiver operating characteristic

(ROC) space.

In contrast to the above-mentioned propositions, we use

a different approach. Our physical sensor model does not

require latent class modelling, and absence of labels prevents

from using ROC-based verification within the model operation.

Our objective with using mixtures is to capture rare historical

data patterns, and thus prevent them from being subject to

catastrophic forgetting [4]. Our proposition is to model a

IoT sensor time sequence with a set of m HMM models

H = {λ1, . . . , λm}. We assume that the sensor data x ∈ R
d

is processed in windows or batches (e.g. a day’s worth of

data, d can vary between windows). We propose the following

algorithm for mixed HMM sensor verification:

1) Initialize H = ∅.

2) Read next window of sensor data x. Use the Baum-

Welch algorithm to identify parameters of a model for

this data, λx, for a predefined range of number of states

(see Section II-C).

3) If H is empty, then H = {λx} and goto 2. Otherwise

use the Forward algorithm to compute probabilities

P (x|λ) and N(λ) function to compute numbers of free

parameters of the models

px = P (x|λx) nx = N(λx) (1)

pH = max
λ∈H

P (x|λ) nH =
∑

λ∈H

N(λ) (2)

4) Compute the information criteria values (e.g. AIC or

BIC) for two cases: (C1) extending the current set of

models with λx – possibly with better likelihood, but at

the cost of expanding the total number of parameters –

and (C2) staying with previous contents of the H:

bH+λx
= IC(px, nH + nx) bH = IC(pH, nH) (3)

5) If bH+λx
< bH add the new model for the next iteration

H′ = H∪{λx}; if not, leave models as they were H′ =
H.

6) Regardless of decision in 5, calculate the anomaly score

as ax = px−pH. If there are remaining sequences, goto

2, otherwise stop.

The motivation for the algorithm presented above is as

follows. While a HMM model has a very good performance

in modelling time series, building a model of a long (monthly,

yearly) series would require frequent, expensive re-training on

a very long data history. For our case, initial observation of

the data exposed dominant cycle or seasonality, in a similar

way it is seen in energy consumption, water usage or weather

patterns. Hence it’s natural to treat the signal as a collection

of cycle periods, in our case days, keeping in memory only

an ensemble of HMM models, as the memory cost of a

HMM model is much smaller than daily data sequence (see

Section IV-A). Changes in the ensemble of HMMs occur

between daily batches of data.
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The proposed algorithm balances model complexity (num-

ber of parameters) and the ability to describe the signal (data

fit). The collection of models retained on algorithm’s progress

over individual cycles serves additionally as a signal descriptor

and source of diagnostic information.

C. Implementation of sensor verification

The verification system was incorporated into the fuel

station tank monitoring system, which consists of the three

main parts: the station part (implements software and hardware

related to data acquisition, connects directly to devices and

sends data to the central server); the server part (receives

data from many stations, automatically processes this data

and tries to draw and present preliminary conclusions [25]);

the analytical part (responsible for analysing the results of the

server part and for making decisions with human supervision).

For the actual verification, we focus on daily windows,

as this corresponds to the rhythm of normal monitor-

ing/verification applied in the system. A daily sequence of data

x is fed into the system, and it’s anomaly score ax computed;

if high enough, a ‘require inspection’ alert is generated. We

note that there are additional possible ways to get information

from the model, which are discussed in Section IV.

For each daily model identification (step 2), we use ex-

haustive search over a set of states n ∈ {1, . . . , 10}, with

Bayesian Information Criterion (BIC) [26] for selection of

the final model. As the HMM identification algorithm (the

Baum-Welch procedure) can end in local optimum, k = 10
independent searches for given n are performed, and the best

model is evaluated. The BIC is also used for mixture extension

decision (bH+λx
and bH values).

III. RESULTS

A. Description of the sensor

Fuel and water level is measured by the Automatic Tank

Gauging device (ATG). An ATG uses probes located in each

tank or compartment to measure fuel and water levels. Each

probe consists of a long rod with floats or sensors. The probe

rod also has thermistors to measure the fuel temperature. The

ATG sends an electrical impulse to both probes independently

(product level float and water level float). The probe sends

back the pulse and the ATG measures the time elapsed from

sending to receiving. On this basis, the height is calculated.

Measurements from all underground tanks are sent to a central

unit located in the station building through wired or wireless

connection. From here they are sent to the server (see Sec-

tion II-C). The common risks with this type of device are:

(1) suspension of the probe when it gets stuck at a certain

height of the rod and (2) inertia of temperature measurements

– especially important during the delivery of fuel with a

significantly different temperature. Of the available data, we

use fuel (product) level readout, which contains rich data about

the tank situation; the remaining two (temperature and water)

are used to diagnose specific, known problem conditions.

B. Selection of test cases

To test the method, data from nt = 15 fuel tanks that

have been previously known to have malfunctions and issues

were selected for analysis. Both short and long term history

sequences were selected, mean sequence length was 183 days

(8 − 646 days) while mean sample count was ≈ 591 189
(30 151− 2 531 218 samples). The sequences were annotated

by experts (analytical team in charge of verification of the

sensors), with a list of days with erroneous or anomalous

readings. There are two types of outliers in the data: (1) related

to real probe disturbances (e.g. when the float hangs on the

rod and does not represent the height of the liquid accurately;

or in the middle of a delivery and there are significant fuel

fluctuations causing the float to sink temporarily) and (2)

virtual errors (incorrect translation of the pulse length to the

real height, occurs when raw current measurement values are

mismeasured or misinterpreted).

C. Experimental procedure

As each data sequence consists of fuel volume measure-

ments at irregular intervals, the sequences were differentiated,

normalized by time delta, and standardized1 prior to inclu-

sion in the experiments. Each normalized and standardized

sequence has been cut into day’s windows x and fed subse-

quently to the algorithm presented in Section II-B. For each

sequence, the first half is treated as ‘run-in’ or training data,

without using the labels (our case assumes they are unavailable

during regular application). The resulting anomaly score ax
was recorded. The anomaly scores together with ground truth

annotations were used to prepare ROC curves, with Area

Under Curve (AUC) as the performance measure; for testing,

positive labels were assigned to anomalies, while negative

examples to normal levels.

Note that ground truth labels were generated especially for

testing the proposed method, they are not required during the

normal operation of the algorithm. We focus on evaluating

the performance on the current set of data (current day), this

is motivated by the performance measure of our underlying

application setup, which is day to day monitoring of a fuel

tank.

D. Algorithm performance

The average AUC score achieved by the method was

0.94±0.11. In nine cases (no. 1-3, 9, 10, 12-15), the anomaly

score was precise enough to correctly single out all anomalies,

achieving maximum possible AUC value of 1.0. In two cases

(no. 4 and 6) the results were strongly affected by difficulty of

the problem, as the anomalies show with small changes in the

signal, resulting in AUC values of 0.67 and 0.69. Remaining

four cases (no. 5, 7, 8, 11) achieve 0.92−0.97 (see Figure 1b).

Almost all cases of mechanical failures (e.g. probe suspension)

and faulty sensors were identified correctly. Anomalies (e.g.

ripples or jumps within tank refill, especially in case 4)

1In actual application, the standardisation can be replaced by using mean
and variance data from other tank with known history and similar character-
istics, or estimated from physical tank properties, e.g. the total volume.
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(a) An example of ATG sensor with two floating probes (for
water and fuel).

(b) Receiver operating characteristics (ROC) and area under
ROC (AUC) values achieved in the experiments.

(c) Example of outlier detection – tank data and anomaly score
computed by the proposed method. Note high values where
outliers were identified.

(d) Example of typical HMM model – tank data unnormalized
(raw) and normalized (see Section III-C), with state labels
superimposed. Note the easy physical interpretation of identified
states (see Section IV).

(e) Illustration of model assignments over time. Colour denotes
time of identification of a model assigned to given sample.
Note two visible trend changes at 2017-04 and 2018-01; e.g.
through the second half of the 2017 most assigned models were
identified in the period right after 2017-04.

(f) Number of models as a function of days from modelling
start, for given set of tanks. Consistent patterns are visible (see
Section IV).

Fig. 1: Illustration of the proposed method and experiments’ results.
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were more difficult to spot, but the performance remained

acceptable. In rare cases of tanks with a longer history, model

adaptation (i.e. the process of conditional adding of a new

HMM to an ensemble, see step 5 in Section II-B) had been

seen interfering with a detection (outlier present within a new

pattern was learned and not detected subsequently); however

those cases could be isolated at the cost of increasing the

sensitivity and potentially the number of false positives. A

small portion of the errors were traced back to imprecise

labelling of bad cases. Example detections are presented in

Figure 1c. For our current results, a correlation study could

not be carried out (correlation coefficients not statistically

significant); an analysis of the results suggests that better AUC

scores are achieved by bigger models, but not necessarily with

longer training or test length, both when measured in number

of days or number of samples.

IV. DISCUSSION

A. Performance summary

Overall performance of the method was evaluated as very

good, both in terms of quantitative score, and qualitative eval-

uation. Detailed inspection of the models revealed additional

usage patterns, beyond the use of anomaly score. Adding a

new model is usually connected with trend change of the

series. If a high pH value comes from a rare of old model (not

matched lately, and previously matched to only a few cases),

it may be additional signal of an anomaly. Finally some of the

learned models could be tagged as interesting by the human

observer and alert could be generated when they appear. The

method has excellent aggregation properties; average number

of parameters at the end of modelling was np = 334, which

is less than 0.1% of the number of original samples.

B. Observed model behaviour

As expected, individual HMM within the ensemble repre-

sent daily behaviours of the tank being monitored. Example

is presented in Figure 1d, note how the identified states (four

in this example) correspond to known physical phenomena:

stable level (s. 2), fuel unloading (s. 1), level oscillations

after unloading (s. 3) and general or temperature induced

oscillation (s. 0). Typically, the number of states is found in

the range 3 − 7, and most of the time they can be assigned

some interpretation based on what happens inside the tank.

We consider this correspondence a qualitative validation of

our approach. Individual HMM inspection revealed that they

contain features common mainly for the fuel type (e.g. diesel,

gasoline, premium); this may make it possible to produce a

tank-independent dictionary of HMMs that could be used as

an initialization of the algorithm.

The step 5 of the algorithms prevents adding new models if

previous adequately explain current data – until there’s a trend

change, when a set of new models must be added to keep the

model accurate. In the example presented in Figure 1e two

trend changes can be easily observed. Those trend changes

are usually explainable by process or physical change (e.g.

reassignment of fuel type for the tank, seasonal changes, gen-

eral station usage type change resulting from roadworks). This

trend change could be identified through analysis of model

addition times, and provide additional monitoring information.

Another view of this phenomenon can be seen in Figure 1f,

where model count at given number of days from the start is

presented. Often addition of models is seen in batches, on the

beginning or when some trend change occurs.

C. Conclusions and future work

The proposed method has promising performance score, the

resulting model has a high degree of explainability, limited

memory and computation requirements and can be easily

generalized to other domains of sensor verification.

As the objective of this work was a case study of the

proposed algorithm, based on a mixture of HMMs, to the

application of IoT sensor verification, further work will focus

on extended analysis of the proposed approach, including:

comparison with other approaches; detailed investigation of

parameters, e.g. the effect of training sequence length; pruning

the set of models H to remove rarely used, old models.
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