
AI-based Maize and Weeds Detection on the Edge

with CornWeed Dataset

Naeem Iqbal∗

DFKI

Plan-based Robot Control

Osnabrueck, Germany.

naeem.iqbal@dfki.de

Christoph Manss∗

DFKI

Marine Perception

Oldenburg, Germany.

christoph.manss@dfki.de

Christian Scholz†, Daniel König‡, Matthias Igelbrink§, Arno Ruckelshausen¶

Faculty of Engineering and Computer Science

University of Applied Sciences Osnabrueck

Osnabrueck, Germany.
†c.scholz@hs-osnabrueck.de, ‡philipp-daniel.koenig@hs-osnabrueck.de,

§matthias.igelbrink@hs-osnabrueck.de, ¶a.ruckelshausen@hs-osnabrueck.de

Abstract—Artificial intelligence (AI) is used more heavily
in agricultural applications. Yet, the lack of wireless-fidelity
(Wi-Fi) connections on agricultural fields makes AI cloud services
unavailable. Consequently, AI models have to be processed
directly on the edge. In this paper, we evaluate state-of-the-art
detection algorithms for their use in agriculture, in particular
plant detection. Thus, this paper presents the CornWeed data
set, which has been recorded on farm machines, showing labelled
maize crops and weeds for plant detection. The paper provides
accuracies for the state-of-the-art detection algorithms on the
CornWeed data set, as well as frames per second (FPS) metrics
for the considered networks on multiple edge devices. Moreover,
for the FPS analysis, the detection algorithms are converted to
open neural network exchange (ONNX) and TensoRT engine files
as they could be used as future standards for model exchange.

Index Terms—plant detection, deep learning, agriculture,
maize data, data acquisition, vision transformer

I. INTRODUCTION

WHEN it comes to smart agriculture on farm devices,

the evaluation speed of obtained images plays a crucial

role [1]. If the processing of the images is too slow, the farm

device has to adjust its speed, which results in a lower time

efficiency. Object detection algorithms are already capable to

provide object recognition at real-time speed. Especially neural

networks are utilized for fast object detection, but the perfor-

mance of a neural network - inference speed and accuracy -

is influenced by its structure and size which determines if the

network can run on an edge device.

Often the desired detection is marked by a bounding box

which surrounds the identified object. Object detectors that

use bounding boxes can be categorized into one-stage and

two-stage detectors. Two-stage detectors first identify regions

of interest using a heuristic and, then, detect the object in

this region. One-stage detectors do both tasks in a single

network. One-stage detectors are therefore easier to train and

are considered to be computationally faster than two-stage

∗Both authors contributed equally.

detectors [2], [3]. Two-stage detectors generally have a higher

accuracy on the location information of the object and they

identify smaller objects much better. For one-stage detectors

this lower accuracy often originates from poor anchor boxes

and the class imbalance problem. Recently, one-stage detectors

with an anchor-less approach yielded better accuracy for

smaller objects [4]. This is useful for agricultural applications

as plants need to be detected in early growth stages and

as farm machines might have limited computational power.

Also, nowadays an new form of object detectors emerged -

transformer networks for object detection [5]. Such networks

tend to be large, but they yield high accuracies.

Yet, does it make sense to deploy algorithms directly on

farm machines? In [6], the authors discuss the importance of

deploying algorithms directly on the farm machines for better

responsiveness and reducing the load on cloud computing. On

larger farmlands the network connection might be unreliable

such that no cloud services are reachable. It might also be

possible to use alternative sensors that are already available

such as satellite images and drone imagery. These could be

preprocessed before the field work. However, satellite imagery

can only give guidance for larger patches of land and can

not provide insightful information on individual plants due to

limited geometric resolution [7]. Even the alternative of using

drones prior to field cultivation or the application of herbicides,

is not scaling well as presented in [8]. For example, drone

imagery is expensive, as it requires additional personnel, and

it is most often limited to good weather [9]. Moreover, the

collected information can be outdated by a few days or even

a week. For weeding applications, these delays can be critical

because weeds can be growing fast. Thus, sensor data should

be directly processed on the farm machine especially because

the capabilities of edge devices are increasing [10].

For example, in [11], the authors present an object detection

algorithm for sugar beets that is able to detect the sugar beets

and count their leaves based on red, green, and blue (RGB) and

Proceedings of the 18
th Conference on Computer

Science and Intelligence Systems pp. 577–584

DOI: 10.15439/2023F2125

ISSN 2300-5963 ACSIS, Vol. 35

IEEE Catalog Number: CFP2385N-ART ©2023, PTI 577 Thematic track: AI in Agriculture



near infra red (NIR) data. The data set is described in [12]. In

[13], a robotic platform is presented that utilizes the detector

from [11]. This system is able to distinguish weeds from crops

such that it can destroy the weeds with a mechanical stamp.

As this robot relies on the aforementioned object detector, the

system requires RGB and NIR data. However, often only RGB

data is available.

In this paper, we empirically evaluate typical object de-

tection networks for their applicability on the edge for the

detection of maize and weeds with RGB data. Because such

networks require large amounts of data to be trained, we also

present a data set that provides box labelled maize and weeds.

The networks are then trained from scratch with the presented

data set. Our contribution is therefore as follows:

• We present an agricultural dataset, named CornWeed

dataset where maize and weeds plants have been labelled

for box object detection*.

• We evaluate object detection algorithms with various

neural network architectures based on their detection

accuracy (mean average precision (mAP)).

• Each of the detection algorithms is evaluated on farm

edge devices based on a Nvidia Jetson Xavier NX and

Jetson AGX Orin regarding their real-time capabilities

(frames per second).

II. DATA SET

A. Hardware Setup and Data Acquisition

For data acquisition, we utilized a previously designed

sensor system [14]. This system comprises a computer, power

supplies, and sensors. System and sensors communicate via

the robot operating system (ROS)† such that data can be

stored into ROS Bags (see Fig.1) which is a ROS specific data

format for time-dependent data. The benefit of this system is

Fig. 1. System perspective of the utilized sensor system.

that it is sensor agnostic, i.e. any sensor can be integrated

and connected. Here we used an Intel Realsense D435i (3D

stereo camera) and a real time kinematic (RTK) enabled global

navigation satellite systems (GNSS) receiver, as presented in

Fig. 1. For a robust and consistent data base, data collection

was conducted using two different agricultural machines, an

implement on a tractor and on a remotely steered research

platform BoniRob [15], see Fig. 2. In a first step, we integrated

*Dataset Zenodo DOI 10.5281/zenodo.7961764
†Open Source Robotics Foundation https://www.ros.org, accessed on 25th

of June, 2023

Fig. 2. Platforms for data acquisition. On the left an implementation on the
tractor on a conventional hoe with shifting frame (Sensorbox 1). On the right
the BoniRob with Sensorbox 2.

the sensor system into the BoniRob platform (Sensorbox 2)

to evaluate optimal camera angles, heights, resolution, light

conditions, etc. on a small scale.In a second step, the sensor

system (Sensorbox 1) was mounted on a conventional hoe

with a shifting frame and pulled through the field trials with

a tractor. For this setup, based on the first data acquisition

with Sensorbox 2 (640 x 480 pixel), the resolution of the RGB

camera on Sensorbox 1 was increased to 1280x720 pixel for a

higher quality of the image data. Yet, both resolutions are kept

in the data set for variability. In both sensor setups, the Intel

Realsense D435i camera with a vertical field of view (FOV)

of 69 ° was mounted at a height of 0.5 m, looking downwards.

Therefore, the geometric size of the each obtained image spans

a distance of 0.68 m along the driving direction.

B. Data Variability

To represent different stages of growth and weed pressures,

we conducted the field trials on multiple days. Therefore, the

data samples were recorded over a period of three weeks to

ensure different growth stages. Here, the primary focus of the

application was to root out the weeds early enough to ensure

maximum crop growth. Thus, only the early growth stages of

maize crops were considered for the detection application be-

cause only at that time crops compete with weeds for resources

(water, sunlight, etc.) and otherwise the crops outgrow the

weeds. Hence, later growth stages of maize are less relevant

for weeding applications. The data set only contains samples

in the daylight with cloudy and sunny weather conditions,

however, evening and early morning samples in future could

be added to extend the domain knowledge for deep neural

networks. The field trials always took place on the same field

such that the same soil conditions and the same types of weeds

persist throughout the data set.

C. Data Labelling

The number of detected weeds instances plays a crucial

role for selective weeding. To keep track of the number

of detected objects, bounding boxes were chosen as the

medium of annotation. The data set contains 3574 outdoor

field images of maize and weeds, which are also the annotated

classes in the data set. An example image of the data set

578 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



Fig. 3. An example image of the data set taken with the setup on the
conventional hoe (Sensorbox 1). The images have resolutions of 640 × 480

pixel with Sensorbox 2 and 1280 × 720 pixel with Sensorbox 1. Here, the
labelled instances of Maize are shown in yellow and the weed instances are
shown in red.

for Sensorbox 1 with labels is displayed in Fig. 3. The

annotations were generated by human annotators and reviewed

by a different human reviewer. We used the open-source

computer vision annotation tool (CVAT) labelling tool [16]

provided by CVAT.ai corporation. The model trained on the

data set can be subsequently incorporated into this tool to

further reduce the average labelling time. Thus, to speed up

the process of annotation, intermediate object detectors have

been trained during the annotation process with the interim

data to provide proposal annotations. The annotator then fine

tuned the proposed annotations by adding not detected weeds

and maize, adjusting the class labels of false positives, and

changing the sizes of the boxes. Such an interim detector can

also be provided by models trained on a synthetic training data

as done by Naeem et. al. [17] for a similar use-case.

III. DETECTION ALGORITHMS

For a real-time detection scenario the accuracy is as impor-

tant as the achievable detection rate. In the considered use-case

of selective weeding, the movement speed of the farm device

constraints the minimum frames per second (FPS). To cover

the whole ground with an average velocity of 8 km/h (2.2 m/s),

we require at least 3-4 FPS. Higher frame-rates are of course

desirable and would make the system more reliable. Given

the low frame-rate requirement, two-stage detectors such as

Faster region-based convolutional neural network (R-CNN)

[18] can be used also as they have higher accuracy than single

stage detectors as shown by Garcia and Mateo et. al. [19].

The authors show that while one-stage detectors are generally

faster in inference speeds at lower image resolution, two-

stage detectors outperform in terms of accuracy and detecting

small objects in the image. This is especially relevant for the

considered use-case here, since most of the weeds should be

rooted out in the early growth stages, when they are small,

before they start competing with the actual crop for resources.

This leads to an accuracy aspect: while weeds are small,

detectors might have poor object detection performance. For

example, anchor-based approaches [18], [20], [21] have diffi-

culties to find very small objects in the image if the anchor

boxes are not small enough. There are, however, object detec-

tors that use an anchor-free approach [4], [22] and these are

supposed to have a substantially better performance on small

objects. More recently, object detectors based on transformer

networks yield high accuracies in multiple applications [5].

Accordingly, for the considered use-case, we chose networks

of the aforementioned categories. The networks are introduced

in the following subsections.

A. Faster R-CNN

R-CNN is a two-stage detector where the first stage pro-

duces region proposals that are then fed into the second

stage where the object detection takes place. First versions of

R-CNN have been published in 2014 [23] and the following

versions have improved to be more computationally effective

and more accurate. In this paper, the considered version is the

Faster R-CNN [18]. This version uses a convolutional neural

network (CNN) as backbone to identify feature maps, which

are then sent to a region proposal network and a detection

network.

B. RetinaNet

The RetinaNet [21] is a one-stage object detector that is

based on the single-shot detector (SSD) [24]. The main idea

of SSD is that the detection requires information at different

scales. Therefore this network pools directly from multiple

convolutional layers, which are referred to as convolutional

predictors for detection. This network utilizes default boxes

and aspect ratios, which have to be determined beforehand.

Each default box is then used for prediction on a grid on the

image. As the number of predicted boxes can become large,

hard negative mining is applied. Due to this only few candidate

boxes are considered during the training of an SSD network,

which is also known as the foreground-background class

imbalance problem [25]. To address this problem, RetinaNet

introduces the focal loss to put more emphasis on the hard

training examples instead of easy ones. The authors showed

that the focal loss substantially improves the performance of

one-stage detectors.

C. FCOS

Another one-stage detector that does not use anchor boxes

is the fully convolutional one-stage (FCOS) detector [4]. This

detector does a pixel-wise detection and computes then a

center-ness of each pixel according to the ground-truth boxes.

The benefits of this are that the intersection over union (IoU),

which is computationally expensive, does not need to be

computed and that no anchor boxes are required. A downside

of this approach is that in the detection ambiguities can occur

as one pixel might be the center of multiple boxes. In such

cases the larger box is ignored such that the detector has a

better accuracy for smaller objects. For the use-case at hand,

this is actually good as there are many small weeds.

NAEEM IQBAL ET AL.: AI-BASED MAIZE AND WEEDS DETECTION ON THE EDGE WITH CORNWEED DATASET 579



D. YOLO

The you only look once (YOLO) detector, initially published

in [26], has become very popular and has been extended in

various aspects. It is a single-stage detector that outputs class

probabilities and bounding box coordinates in a single step

that are filtered with non-maximum suppression. The YOLOv5

is an efficient implementation [27] in PyTorch, which uses

basically the same network as introduced in [28]. In this

detector, the authors make excessive use of the so called bag

of freebies – methods that only change the training strategy or

the training cost – and bag of specials – methods of plugins

that have a good performance to inference cost ratio. The bag

of freebies are, for example, data augmentation methods that

increase the robustness of the detector. The bag of specials on

the other hand are spatial pyramid pooling, a spatial attention

module, or other activation functions.

YOLOv5 comes with many variants with different model

layers and backbones. For the scope of this paper, we only

use YOLOv5 medium and large variants of the YOLO archi-

tecture.

E. DINO Transformer

Most of the above object detection models require a prior

knowledge of the task in the form of anchors (one-stage) or

region proposals (two-stage). The prior knowledge makes the

model specialized to a specific task but loses performance

when moved to a different detection task making transfer

learning difficult. Carion et. al. [29] propose detection trans-

former (DETR) that is an end-to-end object detection trans-

former. With this architecture, there is no need to post process

the bounding boxes or risk counting the same object twice due

to its bipartite matching loss function. Following the DETR ar-

chitecture, Zhang et. al. [30] came up with an improved variant

of DETR called DETR with improved denoising anchor boxes

(DINO) transformer. Zhang et. al. proposed the following

improvements to the DETR architecture: 1) Adding a noisy

version of the ground truth labels during training to speed up

the training process. 2) Mixed query selection 3) Box update

based on the current layer and the next layer during back

propogation. Despite the recent trends in the transformer-based

detector architectures, Carion et. al. pointed out the reduced

performance of DETR in detecting small objects in the image,

while Zhang et. al. argued that the anchor-based approaches

still show superior accuracy compared to the transformers. For

our experiments, we used the DINO transformer to represent

the transformer-based family of object detectors.

IV. EXPERIMENTAL SETTING

This section goes through the lifecycle of the neural net-

works:

1) Training a neural network and selecting the best variant

from the training pipeline.

2) Deployment pipeline which explains how the network

is optimized for a particular edge device to maximize

performance throughput.

3) Edge devices used to evaluate inference speed of neural

networks on an agricultural use-case.

A. Training Pipeline

For all the models mentioned above, official Github repos-

itories already exist [31] [32] [27]. Thus, for the Faster

R-CNN, the RetinaNet, and the FCOS, we used the Detectron2

repository from Meta [31]. For each of these models, we

set the batch size to 32, the learning rate to 0.01, and the

optimizer was stochastic gradient decent. For YOLOv5, we

utilized the implementation of Ultralytics [27]. There, we set

the batch size to 32 and 16 for YOLOv5 medium and YOLOv5

large variants, respectively. Also, we specified the image size

to be 800 pixel and to be rectangular to have comparable

results with the other networks. During training, we also

used the multi-scale option, where the image size is varied

during training. For the DINO transformer, we used the Detrex

research platform [32], which is based on the Detectron2

repository. Due to the size of the DINO transformer, we had

to set the batch size to 4. The learning rate was set to 0.0001.

All other parameters of the algorithms were left to the default

values. Also, we did not tune the augmentations if any are

used by the model.

We trained each model on a NVidia Tesla V100 DGXS

32GB GPU with the CUDA Version 11.1, and used a train-

validation split of 80% (2862 images) and 20% (712 images),

respectively.

B. Deployment Pipeline

After training, the best model file is selected based on the

validation data split and then converted to an open neural

network exchange (ONNX) model. ONNX is a framework that

optimizes and acts as an intermediate representation of neural

networks to support conversion to any standard frameworks

such as PyTorch, TensorFlow, OpenVINO, TensorRT, etc.

However, a user can also use this intermediate representation

directly. In this paper, both the ONNX models and TensorRT

models are evaluated to highlight the impact of framework

choices. The code repository for testing all the trained models

is provided at this link ‡. The ONNX models of the DINO

transformer and YOLO network were then converted to a

TensorRT engine file with precision of 16-bit and 32-bit

floating points and 8-bit integer. The different precision can

make the model more memory efficient and also advanced

build-in function can be used for faster computation [33]. The

other models consist of the layers that can not be optimized

by the TensorRT engine (up until version 8.5§), hence failing

to do the conversion to a TensorRT engine. At the time of this

publication, TensorRT version 8.5 was available.

‡Inference speed testing: https://github.com/niqbal996/deployment testing
§We are hopeful that with upcoming TensorRT 8.6, the performance

metrics can be updated for remaining networks in Table V-A

580 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



Fig. 4. Deployment workflow showing how the models are trained in PyTorch,
converted to open neural network exchange (ONNX) models, and then to
TensorRT engine files.

C. Edge Device

For all the experiments in this paper, two NVIDIA Jetson

devices were used:

1) the Jetson Xavier NX and

2) the Jetson AGX Orin.

Both edge devices have L4T 35.3.1 with Ubuntu 20.04, ROS

Noetic, CUDA 11.4 running on them. Jetson devices come

with predefined power modes utilizing a varying number of

on-board CPUs and online CPU cores. For the experiments

shown in Table V-A (see later in Sec. V-B), the Xavier NX

was set to mode ID 6 with all cores online and 1400 MHz CPU

frequency. In this mode, the Xavier NX board consumes about

20 W of power. Similarly, we activated the MAXN power

profile on the AGX Orin to utilize all GPU and CPU cores and

to remove clock restrictions. In this power profile, the AGX

Orin consumes about 60 W. The input to the model is fed in

the form of image sequences via a ROS Bag. Each consecutive

image sample is read from the ROS Bag, downscaled, and

normalized according to the input size expected by the model.

The performance metrics are logged from the moment an

image is received until the detections are ready to be published

into the ROS ecosystem as detection messages.

V. RESULTS

This section presents the accuracy results of the presented

networks for the data set and the speed results on the consid-

ered edge devices.

A. Training Results

Table I shows the mAP with the mean over both classes

(namely Maize and Weeds) at 50 % confidence value i.e.

mAP50 in the first column. The second column shows cu-

mulative average of mAP varied from 50 % to 95 % with

step size of 5 % i.e. mAP50:95. In the last two columns, we

TABLE I
MEAN AVERAGE PRECISION (MAP) OF ALL OBJECT DETECTORS AT

VARIOUS CONFIDENCE VALUES AND CLASS IDS FOR MAIZE AND WEEDS

Model mAP50 mAP50:95
AP50
Maize

AP50
Weeds

Faster R-CNN FPN 71.6 41.8 88.1 55.1
RetinaNet R50 FPN 68.0 40.2 89.7 46.3

FCOS R50 FPN 69.3 39.8 87.0 51.7
YOLOv5 medium 85.4 53.3 93.0 77.8

YOLOv5 large 85.4 53.9 93.7 77.0

DINO Transformer 75.8 45.0 92.3 59.3

show the average precision (AP) per class at 50 % confidence

to show the accuracy trend on larger sized maize objects and

smaller sized weed objects.

Across all networks, the YOLOv5 networks have the highest

performance of 85.4 and 53.9 for mAP50 and mAP50:95,

respectively. The larger variant YOLOv5 large does not pro-

portionally increase the performance while being much larger

in size than YOLOv5 medium. This implies that the accuracy

has already saturated and increasing network size does not

always necessarily lead to increased performance. In terms

of comparison, the YOLOv5 repository already offers many

variations and augmentations to the input data, see bag freebies

in Sec. III-D. This bag of freebies is also optimized during

training by the code in the repository. The networks based

on Detectron2 do not have such an optimization. Thus, if only

the networks based on the Detectron2 repository are compared

with each other, the DINO transformer stands out in detecting

maize but still gives a lower accuracy of 59.3 for AP50 for

weeds compared with YOLOv5. This is due to its reduced

capability to detect tiny objects such as weeds which can be

in some instances only be a few pixels in size. This behaviour

was first brought to light by Carion et. al. [29] for the detection

transformers.

If the one-stage networks of the Detectron2 repository are

compared with the two-stage detector Faster R-CNN, the

RetinaNet reached a better performance of 89.7 on detecting

maize but surprisingly a lower AP of 46.3 on weeds. This

higher accuracy of 89.3 than 88.1 from Faster R-CNN is due

to the usage of Focal loss proposed by [21]. While focal loss

helps in outperforming a two-stage detector such as Faster R-

CNN, the AP for weeds is still lower. We believe the lower

accuracy of 46.3 on weeds to be an outlier due to anchor

boxes not modified to the task of weed detection prior to

training. Comparing RetinaNet with YOLOv5, the Detectron2

framework does not provide any flexibility to change the

anchor boxes to the task of maize or weed detection prior

to training. This leads to reduced performance. Ahmed et. al.

[34] observed similar behaviour from RetinaNet in detecting

tiny objects from aerial images and used anchor optimization

to mitigate that.

To achieve the best possible accuracy from an anchor-based

detector architecture, the anchor boxes have to be modified

to the specific use-case. Task specific modification of anchor

NAEEM IQBAL ET AL.: AI-BASED MAIZE AND WEEDS DETECTION ON THE EDGE WITH CORNWEED DATASET 581



TABLE II
AVERAGE INFERENCE RATE (IN FRAMES PER SECOND (FPS)) FOR ALL THE DETECTORS FROM TABLE I ON EDGE DEVICES WITH ONNX CUDA Execution

Provider (CEP) AND TENSORRT. THE INPUT IMAGE RESOLUTION WAS 800 X 1067 PIXEL FOR THE THREE NETWORKS (FCOS, RETINANET, FASTER

R-CNN), 800 X 1088 PIXEL FOR BOTH YOLO NETWORKS, AND 512 X 683 PIXEL FOR THE DINO TRANSFORMER. THE VALUES MARKED WITH A *
WERE DUE TO A TENSORRT BUG WHERE THE DINO MODEL NOT UTILIZED CUDA.

Framework ONNX with CEP TensorRT

Edge device Jetson Xavier NX Jetson AGX Orin Jetson Xavier NX Jetson AGX Orin

int8 fp16 fp32 int8 fp16 fp32

Faster R-CNN FPN 0.62 1.8 X X X X X X
RetinaNet R50 FPN 1.37 4.3 X X X X X X

FCOS R50 FPN 1.30 4.0 X X X X X X
YOLOv5 medium 2.5 6.0 19.3 12 3.7 51 33.5 16.8

YOLOv5 large 1.4 4.0 12.7 6.5 1.65 37 22 10.9
DINO Transformer 0.24 0.55 1.35* 1.47* 0.86* 3.2* 3.1* 3*

boxes can be crucial in choosing optimum network architecture

for any agricultural use-case where each crop has different

size in different growth stages. DINO Transformer, FCOS and

other anchor-less implementations reduce the complexity of

the task by not having to provide any prior knowledge or

anchor optimization before training while giving slightly lower

accuracy in general.

B. Speed Results

As described in section IV-B, the trained models are opti-

mized and then deployed for both NVIDIA Jetson Xavier NX

and Jetson AGX Orin. The average FPS were logged based

on the input image which was fed from a ROS bag recorded

with Intel RealSense D435i camera for testing purposes. For

anchor-based implementations (e.g. RetinaNet, YOLO), the

non-maximum suppression is also part of the inference time.

This creates a fair comparison between anchor-based and

anchor-free models. The corresponding FPS metrics are shown

in Table V-A. For the first three models (Faster R-CNN,

RetinaNet, and FCOS), the model contains layers that cannot

be converted into a TensorRT engine with version 8.5. With

the next release of TensorRT v8.6 accompanied with the new

Jetpack release, these models should also be convertible to a

TensorRT engine. Comparatively looking at the numbers, in

general, the ONNX inference framework gives lower infer-

ence rates than TensorRT, even when using CUDA execution

provider. However, the ONNX model serves as a good in-

termediate model representation that can be later converted to

any other inference framework such as TensorFlow, TensorRT,

or PyTorch.

The TensorRT engine files with different floating point and

integer precisions yield higher FPS in general, see Table V-A.

For example, YOLOv5 medium yields 33.5 FPS on fp16

precision via TensorRT compared to a mere 6 FPS via ONNX

on Jetson Orin. Especially, the 8-bit integer precision yields

the highest inference rate for each network, about 6-9 times

faster compared with the ONNX models. When comparing

different networks, YOLOv5 gives the highest FPS.

Though the model conversion from PyTorch or Tensorflow

to ONNX or TensorRT comes with its own challenges. De-

pending upon the layers that constitute a particular model, not

all layer components are easily convertible to an TensorRT

engine. While some architectures are easily transferrable to a

TensorRT engine, other model architectures while giving more

accuracy may be more difficult in transferring to a TensorRT

engine. This makes the model deployment to an edge device

more difficult and impacts the choice of model architecture.

When comparing the accuracy (see Table I) versus the

inference rate (see Table V-A), the YOLOv5 medium version

has the same accuracy as the YOLOv5 large variant but has

more FPS e.g., 33.5 versus 22 FPS on Jetson Orin (fp16). This

implies that increasing the model size does not necessarily lead

to improved performance while the medium variant gives more

inference speed on the edge device. On the other hand, the

DINO transformer provides high mAP50 on the maize class,

but surprisingly lower values on weed class¶. While vision

transformers usually outperform most networks, they may not

always give the best performance depending on the size of the

objects. The GPU memory size and the input image resolution

also plays a critical role in deciding for the neural network

architecture.

VI. CONCLUSION

This paper shows how multiple one-stage object detectors

(RetinaNet, FCOS, YOLO), a two-stage object detector (Faster

R-CNN), and a transformer object detector (DINO) perform

on an agricultural use-case on different edge systems. With

an accompanying data set, we found out that the YOLOv5

object detector performed well on detecting maize and rea-

sonably well on detecting tiny objects such as small weeds.

For the other neural networks, characteristics are highlighted

such as a low accuracy on detecting tiny objects which is

a common challenge in agricultural perception tasks. These

shortcomings are not immediately visible when training on a

different domain data set such as autonomous driving. The

model deployment pipeline is also included for readers who

embark on a different use-case and want to optimize their

model’s inference speed. Generally speaking, it is always

¶The DINO transformer was set to lower resolution of 512 x 683 because
otherwise it does not fit onto Jetson Xavier NX with 8GB VRAM. For a fair
comparison between Xavier NX and AGX Orin, it was set to that resolution.

582 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



better to convert a well trained model to an edge device

specific engine such as the TensorRT engine. This way the

FPS can increase by factors up to 8, if additionally the

integer precision is reduced. Thus, using TensorRT yields

faster networks, not only in the agricultural domain but also

other domains, e.g. [35]. Inference framework-wise, ONNX

has a relatively simplified model conversion process that works

with most of the models and transferable across edge devices

with different GPU architecture. By comparison, TensorRT has

a more complicated GPU-specific model conversion process

e.g. Jetson Orin needs a separate engine than Jetson Xavier

and does not work successfully on all models.

VII. ACKNOWLEDGEMENTS

The DFKI Lower Saxony (DFKI NI) is funded by the

Lower Saxony Ministry of Science and Culture and the

Volkswagen Foundation. The project Agri-GAIA on which this

report is based was funded by the German Federal Ministry

for Economics and Climate Action under the funding code

01MK21004A: Responsibility for the content of this publica-

tion lies with the author. Many thanks to Hof Langsenkamp,

Belm, Germany for providing the fields for data acquisition

and the used hardware (tractor and implement). We would

like to thank Oliver Zielinski for mainly writing on the parts

of the proposal that lead to this work. We would also like

to thank our labellers: Qalab Abbas, Jule Fröhlich, Novruz

Mammadli, Charles Lennart Müller, Dibyashree Nahak, Turgut

Nasrullayev, and Simon Zielinski.

VIII. ACRONYMS

CNN convolutional neural network

R-CNN region-based convolutional neural network

Wi-Fi wireless-fidelity

SSD single-shot detector

YOLO you only look once

FCOS fully convolutional one-stage

FPS frames per second

FOV field of view

IoU intersection over union

mAP mean average precision

ONNX open neural network exchange

AI artificial intelligence

DETR detection transformer

DINO DETR with improved denoising anchor boxes

CVAT computer vision annotation tool

RTK real time kinematic

GNSS global navigation satellite systems

NIR near infra red

RGB red, green, and blue

ROS robot operating system

AP average precision

REFERENCES

[1] L. Benos, A. C. Tagarakis, G. Dolias, R. Berruto, D. Kateris, and
D. Bochtis, “Machine Learning in Agriculture: A Comprehensive Up-
dated Review,” Sensors, vol. 21, no. 11, p. 3758, Jan. 2021, DOI:10.
3390/s21113758.

[2] L. Jiao, F. Zhang, F. Liu, S. Yang, L. Li, Z. Feng, and R. Qu, “A
Survey of Deep Learning-based Object Detection,” IEEE Access, vol. 7,
pp. 128 837–128 868, 2019.

[3] L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, and
M. Pietikäinen, “Deep Learning for Generic Object Detection: A Sur-
vey,” International Journal of Computer Vision, vol. 128, no. 2, pp.
261–318, Feb. 2020.

[4] Z. Tian, C. Shen, H. Chen, and T. He, “Fcos: Fully convolutional one-
stage object detection,” in 2019 IEEE/CVF International Conference on

Computer Vision (ICCV), 2019, pp. 9626–9635.

[5] M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and
A. Joulin, “Emerging properties in self-supervised vision transformers,”
in Proceedings of the International Conference on Computer Vision

(ICCV), 2021.

[6] X. Zhang, Z. Cao, and W. Dong, “Overview of Edge Computing
in the Agricultural Internet of Things: Key Technologies, Applica-
tions, Challenges,” IEEE Access, vol. 8, pp. 141 748–141 761, 2020,
DOI:10.1109/ACCESS.2020.3013005.

[7] M. Weiss, F. Jacob, and G. Duveiller, “Remote sensing for agricultural
applications: A meta-review,” Remote Sensing of Environment, vol. 236,
p. 111402, 2020, DOI:10.1016/j.rse.2019.111402. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0034425719304213

[8] E. Cai, S. Baireddy, C. Yang, M. Crawford, and E. J. Delp, “Deep trans-
fer learning for plant center localization,” in 2020 IEEE/CVF Conference

on Computer Vision and Pattern Recognition Workshops (CVPRW),
2020, pp. 277–284, DOI:10.1109/CVPRW50498.2020.00039.

[9] F. López-Granados, “Weed detection for site-specific weed management:
mapping and real-time approaches,” Weed Research, vol. 51, no. 1, pp.
1–11, 2011, DOI:10.1111/j.1365-3180.2010.00829.x.

[10] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge
Intelligence: Paving the Last Mile of Artificial Intelligence With Edge
Computing,” Proceedings of the IEEE, vol. 107, no. 8, pp. 1738–1762,
Aug. 2019, DOI:10.1109/JPROC.2019.2918951.

[11] J. Weyler, A. Milioto, T. Falck, J. Behley, and C. Stachniss, “Joint
Plant Instance Detection and Leaf Count Estimation for In-Field Plant
Phenotyping,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp.
3599–3606, Apr. 2021, DOI:10.1109/LRA.2021.3060712.

[12] N. Chebrolu, P. Lottes, A. Schaefer, W. Winterhalter, W. Burgard,
and C. Stachniss, “Agricultural robot dataset for plant classification,
localization and mapping on sugar beet fields,” The International Journal

of Robotics Research, vol. 36, no. 10, pp. 1045–1052, Sep. 2017.

[13] X. Wu, S. Aravecchia, P. Lottes, C. Stachniss, and C. Pradalier, “Robotic
weed control using automated weed and crop classification,” Journal of

Field Robotics, vol. 37, no. 2, pp. 322–340, 2020, DOI:10.1002/rob.
21938.

[14] D. König, M. Igelbrink, C. Scholz, A. Linz, and A. Ruckelshausen,
“Entwicklung einer flexiblen Sensorapplikation zur Erzeugung von vali-
den Daten für KI-Algorithmen in landwirtschaftlichen Feldversuchen,”
in 42. GIL-Jahrestagung, Künstliche Intelligenz in der Agrar- und

Ernährungswirtschaft. Bonn: Gesellschaft für Informatik in der Land-,
Forst- und Ernährungswirtschaft e.V., 2022, pp. 165–170.

[15] W. Bangert, A. Kielhorn, F. Rahe, A. Albert, P. Biber, S. Grzonka,
S. Haug, A. Michaels, D. Mentrup, M. Hänsel et al., “Field-robot-based
agriculture:“remotefarming. 1” and “bonirob-apps”,” in 71th conference

LAND. TECHNIK-AgEng 2013, 2013, pp. 439–446.

[16] B. Sekachev, N. Manovich, M. Zhiltsov, A. Zhavoronkov, D. Kalinin,
B. Hoff, TOsmanov, D. Kruchinin, A. Zankevich, DmitriySidnev,
M. Markelov, Johannes222, M. Chenuet, a andre, telenachos,
A. Melnikov, J. Kim, L. Ilouz, N. Glazov, Priya4607, R. Tehrani,
S. Jeong, V. Skubriev, S. Yonekura, vugia truong, zliang7, lizhming,
and T. Truong, “opencv/cvat: v1.1.0,” Aug. 2020. [Online]. Available:
https://doi.org/10.5281/zenodo.4009388

[17] N. Iqbal, J. Bracke, A. Elmiger, H. Hameed, and K. von Szad-
kowski, “Evaluating synthetic vs. real data generation for ai-based selec-
tive weeding,” in 43. GIL-Jahrestagung, Resiliente Agri-Food-Systeme,
C. Hoffmann, A. Stein, A. Ruckelshausen, H. Müller, T. Steckel, and
H. Floto, Eds. Bonn: Gesellschaft für Informatik e.V., 2023, pp. 125–
135.

NAEEM IQBAL ET AL.: AI-BASED MAIZE AND WEEDS DETECTION ON THE EDGE WITH CORNWEED DATASET 583



[18] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: To-
wards Real-Time Object Detection with Region Proposal Networks,”
arXiv:1506.01497 [cs], Jan. 2016, DOI:10.48550/arXiv.1506.01497.

[19] M. Carranza-Garcı́a, J. Torres-Mateo, P. Lara-Benı́tez, and J. Garcı́a-
Gutiérrez, “On the Performance of One-Stage and Two-Stage Object
Detectors in Autonomous Vehicles Using Camera Data,” Remote Sens-

ing, vol. 13, no. 1, p. 89, Dec. 2020, DOI:10.3390/rs13010089.
[20] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,”

arXiv:1804.02767 [cs], Apr. 2018, DOI:10.48550/arXiv.1804.02767.
[21] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for

dense object detection,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 42, no. 2, pp. 318–327, 2020, DOI:10.1109/
TPAMI.2018.2858826.

[22] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, “YOLOX: Exceeding YOLO
Series in 2021,” Aug. 2021, DOI: 10.48550/arXiv.2107.08430.

[23] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in 2014 IEEE Conference on Computer Vision and Pattern Recognition,
2014, pp. 580–587, DOI: 10.1109/CVPR.2014.81.

[24] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “SSD: Single Shot MultiBox Detector,” in Computer Vision –

ECCV 2016, ser. Lecture Notes in Computer Science, B. Leibe, J. Matas,
N. Sebe, and M. Welling, Eds. Cham: Springer International Publishing,
2016, pp. 21–37, DOI:10.1007/978-3-319-46448-0 2.

[25] K. Oksuz, B. C. Cam, S. Kalkan, and E. Akbas, “Imbalance Problems
in Object Detection: A Review,” Transactions on Pattern Analysis and

Machine Intelligence (TPAMI), pp. 1–1, 2020, DOI:10.1109/TPAMI.
2020.2981890.

[26] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2016, pp. 779–788,
DOI:10.1109/CVPR.2016.91.

[27] G. Jocher, A. Chaurasia, A. Stoken, J. Borovec, NanoCode012, Y. Kwon,
TaoXie, J. Fang, imyhxy, K. Michael, Lorna, A. V, D. Montes, J. Nadar,
Laughing, tkianai, yxNONG, P. Skalski, Z. Wang, A. Hogan, C. Fati,
L. Mammana, AlexWang1900, D. Patel, D. Yiwei, F. You, J. Hajek,

L. Diaconu, and M. T. Minh, “ultralytics/yolov5: v6.1 - TensorRT,
TensorFlow Edge TPU and OpenVINO Export and Inference,” Feb.
2022. [Online]. Available: https://doi.org/10.5281/zenodo.6222936

[28] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Optimal
Speed and Accuracy of Object Detection,” arXiv:2004.10934 [cs, eess],
Apr. 2020.

[29] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-end object detection with transformers,” in
Computer Vision–ECCV 2020: 16th European Conference, Glasgow,

UK, August 23–28, 2020, Proceedings, Part I 16. Springer, 2020,
pp. 213–229, DOI:10.48550/arXiv.2005.12872.

[30] H. Zhang, F. Li, S. Liu, L. Zhang, H. Su, J. Zhu, L. M. Ni, and
H.-Y. Shum, “Dino: Detr with improved denoising anchor boxes for
end-to-end object detection,” arXiv preprint arXiv:2203.03605, 2022,
DOI:10.48550/arXiv.2203.03605.

[31] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick, “Detectron2,”
https://github.com/facebookresearch/detectron2, 2019.

[32] detrex contributors, “detrex: An research platform for transformer-based
object detection algorithms,” https://github.com/IDEA-Research/detrex,
2022.

[33] S. Markidis, S. Chien, E. Laure, I. Peng, and J. S. Vetter,
“Nvidia tensor core programmability, performance & precision,”
in 2018 IEEE International Parallel and Distributed Processing

Symposium Workshops (IPDPSW). Los Alamitos, CA, USA: IEEE
Computer Society, may 2018, pp. 522–531. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/IPDPSW.2018.00091

[34] M. Ahmad, M. Abdullah, and D. Han, “Small object detection in aerial
imagery using retinanet with anchor optimization,” in 2020 International

Conference on Electronics, Information, and Communication (ICEIC),
2020, pp. 1–3, DOI:10.1109/ICEIC49074.2020.9051269.

[35] M. Wolf, K. van den Berg, S. P. Garaba, N. Gnann, K. Sattler,
F. Stahl, and O. Zielinski, “Machine learning for aquatic plastic litter
detection, classification and quantification (APLASTIC-Q),” Environ-

mental Research Letters, vol. 15, no. 11, p. 114042, Nov. 2020,
DOI:10.1088/1748-9326/abbd01.

584 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023


