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Abstract—This paper delves into the realm of community de-
tection in network science and graph theory with the overarching
objective of unraveling the underlying structures between nodes
within a network. In this pursuit, we put forth a novel and
comprehensive approach to ascertain the optimal solution to max-
imizing the renowned community quality metric known as Max-
Min Modularity. Through a series of experiments encompassing
diverse case studies, we substantiate the efficacy and validity of
our proposed approach, further bolstering its credibility.

Index Terms—Graph partitioning, community detection, math-
ematical programming, exact method

I. INTRODUCTION AND RELATED WORK

I
N COMPLEX networks, nodes usually divide into several
subsets sharing common characteristics and relationships,

forming communities. The discovery and analysis of these
structures hold paramount importance in computer science,
particularly within the network domain and graph theory. Iden-
tifying cohesive and interconnected groups of nodes enables a
deeper understanding of complex systems, facilitating insights
into structural patterns, functional modules, and underlying
relationships. The ability to detect network communities owes
immense value and applications in networked systems, such
as Social Network Analysis [1], [2], Biological Networks [3],
Cosmological Networks [4], WEB analysis [5], Distributed
Computing [6], Signal Processing [7], and Data Clustering
[8]. It enables us to uncover hierarchical structures, predict
missing links, and enhance network resilience.

More concretely, a network can be represented as a graph
G = (V,E), where V is the set of vertices and E is the set of
edges. A community within the network can be seen as a sub-
set of vertices C ⊆ V , characterized by a dense connection of
edges among the nodes within the subset and a sparse connec-
tion of edges with other subsets; see Fig. 1. In this regard, the
community detection problem can be defined as partitioning
V into a set of communities C = {C1, C2, . . . , Ck} that often
entails optimizing a specific quality measure that quantifies
the excellence of a community. A wide array of quality
measures has been proposed in the literature, encompassing
both connectivity-based and topology-based metrics [9].
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Fig. 1: Illustration of a network and its communities as subsets
of vertices with densely connected nodes within each subset
and sparser connections to nodes outside the batch.

For example, in [10], a dynamic connectivity-based metric
is introduced to assess the quality of a community C by
computing the ratio between the sum of the radius of C and the
number of edges exiting C, divided by the number of edges
with both endpoints belonging to C. The radius, a measure
showcasing the size and compactness of the function, plays
a crucial role in this evaluation. The authors of [10] also
devised a two-stage heuristic algorithm to identify high-quality
communities by minimizing the proposed metric. The initial
stage of the algorithm, which is particularly crucial for our
research, intelligently identifies an initial set of remarkably
high-quality communities. This will be followed by a revising
phase aimed at refining and enhancing the quality of the
communities. The contributions in [10] properly highlight
the significance of connectivity-based metrics in assessing
community quality.

On the other hand, topological metrics have also gained
considerable attention in the field of community detection.
Notably, Modularity, introduced by Newman [11], stands out
as one of the most widely recognized and extensively utilized
measures in this regard. For a network G containing n vertices
and m edges, the Modularity (Q) of a given partitioning C is
mathematically defined as follows:
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Q(C) =
1

2m

∑

i,j∈V

[aij −
didj

2m
]σ(i, j) (1)

where A = (aij) is the adjacency matrix of G with aij sets
to one if an edge exists between node i and node j, and zero
otherwise. di represents the degree of node i and is defined as
the sum of all entries in the i-th row of the adjacency matrix.
Moreover, σ(i, j) is one if i and j are in the same community
and zero otherwise.

Simply put, Modularity quantifies the number of edges
within a community minus the expected number of such edges
leading to the fact that communities with higher Modularity
values have better quality. Therefore, maximizing Modularity
results in identifying high-quality communities within a net-
work.

Nevertheless, despite the widespread use of Modularity,
it has been known to have certain limitations (see [12],
[9] for more details). Notably, Modularity only takes into
account the existing edges of the network, meaning it solely
evaluates the goodness of a community based on its fit with the
observed edges, while it fails to consider disconnected nodes
(absent edges) within the same community. This is indeed a
drawback since the disconnection of nodes does not inherently
imply an absence of underlying relations between them. To
overcome this limitation, an extension of Modularity called
Max-Min Modularity [13] has been developed, which improves
the accuracy of the measure by penalizing Modularity when
disconnected nodes are present in the same community. In
Max-Min Modularity, an additional zero-one relation matrix
U = (uij) is introduced, which defines the relationship
between pairs of disconnected nodes in the network. The value
of uij is one if disconnected nodes i and j are related and
zero otherwise. This extension acknowledges the significance
of indirect connections between disconnected nodes by pe-
nalizing the Modularity measure only when unrelated nodes
coexist within a community. In a more abstract sense, consider
a complemented graph G′ = (V,E′), where E′ contains an
edge between every pair of disconnected nodes in G that are
unrelated. In other words, an edge exists between nodes i and
j in G′ if there is no such edge in G, and uij is zero. Let
A′ = (a′ij) be the adjacency matrix of G′, and d′i be the
degree of node i in G′. Additionally, let m′ be the number
of edges in G′. The Max-Min Modularity (QMM ) of a given
partition C of V is defined as follows:

QMM (C) =
∑

i,j∈V

[
1

2m
(aij−

didj

2m
)−

1

2m′
(a

′

ij−
d
′

id
′

j

2m′
)]σ(i, j) (2)

We refer to the problem of partitioning a network with respect
to maximizing the Max-Min Modularity as the Max-Min

Modularity Maximization problem.
Chen et al. [13] proposed a hierarchical clustering algo-

rithm, similar to what Newman [11] had offered for the clas-
sical Modularity Maximization Problem, that approximately
greedily optimizes Max-Min Modularity. In addition to the
suboptimal precision of the final community detection results

obtained through the heuristic approach, the primary drawback
of their method lies in its reliance on a user-defined relation
matrix rather than a systematic approach. This dependency on
subjective input introduces the potential for misinterpretations,
biases, and erroneous human decisions, which can lead to
significant issues. Relying on a user-defined matrix not only
increases the likelihood of errors but also lacks the robust-
ness and objectivity provided by a systematic and automated
procedure.

Furthermore, since it is known that solving the Max-Min
Modularity Maximization problem is computationally chal-
lenging, as it is proven to be NP-hard, most of the approaches
for solving it rely on heuristic methods. [13]. There exist,
of course, methods focusing more on exact techniques, such
as the approach presented in [14], in which the authors suc-
cessfully formulated the Max-Min Modularity Maximization
problem as an integer programming model and proposed an
equivalent sub-problem that simplified the overall formulation.
This streamlined approach facilitated the efficient solving of
the model’s linear relaxation and provided a systematic means
of defining the relation matrix. They further employed a local
search strategy to convert the fractional solutions to integer
ones that led to obtaining a set of communities. Nevertheless,
despite their outstanding breakthrough in the modeling and the
solution approach, the error caused by the rounding approach
prevents us from obtaining an optimal solution, which is
indeed crucial in scenarios where precise analysis is required.
This underscores the need for alternative methods that can
provide more accurate results.

Main contribution:

(1) Building upon the integer programming modeling dis-
cussed in [14], we present an alternative integer model for
the Max-Min Modularity Maximization problem that offers
a significant reduction in the number of variables and con-
straints. This streamlined model enhances computational effi-
ciency while maintaining the same optimization capabilities.
The equivalence of the proposed model and the original
formulation proved in Theorem 1, affirms that both models
yield the same set of optimal solutions.
(2) Inspired by the prominent algorithm proposed in [10], we
devise a methodology to generate an initial feasible solution
for the formulated model. By employing a row generation
technique in combination with the branch and bound method
and leveraging the powerful CPLEX1 solver, we efficiently
and optimally solve the model. This comprehensive approach
enables the detection of a set of (near) optimal communities
whose efficacy and effectiveness become apparent in the
experiments done.

The structure of this paper unfolds as follows: In Section
II, we delve into modeling an effective integer programming
formulation for the Max-Min Modularity Maximization prob-
lem, followed by an insightful theoretical exploration of how

1CPLEX is a powerful optimization software package developed by IBM
that employs advanced algorithms to solve linear programming, mixed-integer
programming, and quadratic programming problems efficiently.
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to simplify the model. Subsequently, Section III outlines our
devised approach for acquiring an intelligent initial feasible
solution and employing a row/column generation technique to
solve the model optimally. Finally, Section IV is dedicated to
showcasing the experimental results, providing a comprehen-
sive analysis of the outcomes.

II. MATHEMATICAL MODELING

Let the binary variable xij indicate if nodes i and j belong
to the same community or not; the value of xij is zero if nodes
i and j belong to the same community, and one otherwise.
Let Iall = {(i, j) ∈ V 2 | i < j}; and qij = aij −

didj

2m ,
for each (i, j) ∈ Iall. As described in [15], the Modularity
Maximization problem can be formulated in terms of the
following integer linear program.

max
1

m

∑

(i,j)∈Iall

qij(1− xij) (IP-M)

xij + xjk − xik ≥ 0 ∀i < j < k (3)

xij − xjk + xik ≥ 0 ∀i < j < k (4)

− xij + xjk + xik ≥ 0 ∀i < j < k (5)

xij ∈ {0, 1} ∀(i, j) ∈ Iall (6)

Constraints (3)-(5) guarantee that if i and j are in the same
community and j and k are in the same community, then so
are i and k. We refer to the relaxation of (IP-M), obtained
by replacing the constraints xij ∈ {0, 1} by xij ∈ [0, 1], as
(LP-M).

Now to turn our attention to the Max-Min Modularity
Maximization problem, we first recap the systematic and
precise approach provided in [14] for defining the relation
matrix governed by an optimal fractional solution x∗ to the
linear programming problem (LP-M). Considerably crucial is
that x∗ can be efficiently obtained in polynomial time using
various algorithms such as the row and column generation
algorithm introduced by [16]. It is also important to note
that x∗ gives rise to a metric known as the LP distance on
the graph G. In this context, x∗

ij can be interpreted as the
"distance" between nodes i and j, and notably, the constraints
(3)-(5) guarantee the fulfillment of the triangle inequality for
any nodes i, j, k ∈ V in the induced metric. Evidently, the
larger the LP distance between two nodes, the less related
those nodes are. This observation, along with the fact that the
Modularity Maximization problem can be effectively formu-
lated for weighted graphs as demonstrated by [17], serves as
motivation to define the relation matrix and the corresponding
complemented (weighted) graph G′ utilizing the LP distance
rather than using user knowledge.

In this framework, we define the relation matrix A′ = (a′ij)
(and consequently G′, with (a′ij) representing the weight of
the edge between nodes i and j in G′), as follows:

a′ij =







x∗
ij if aij = 0 and j > i

x∗
ji if aij = 0 and i > j

0 otherwise
(7)

Consequently, given a matrix A′ = (a′ij), the Max-Min
Modularity Maximization problem can be formulated as the

following integer programming problem. Let cij =
qij
m

−
q′ij
m′

,

where q′ij = a′ij −
d′

id
′

j

2m′
, d′i =

∑n

l=1 a
′
il, and m′ =

∑

(i,j)∈Iall
a′ij for each (i, j) ∈ Iall.

max
∑

(i,j)∈Iall

cij(1− xij) (IP-MM)

xij + xjk − xik ≥ 0 ∀i < j < k (8)

xij − xjk + xik ≥ 0 ∀i < j < k (9)

− xij + xjk + xik ≥ 0 ∀i < j < k (10)

xij ∈ {0, 1} ∀(i, j) ∈ Iall (11)

The very first thing to note, however, is that solving (IP-
MM) falls in the class of NP-hard problems, making it
challenging to be optimally solved. Consequently, we came to
investigate whether it is possible to simplify (IP-MM) while
maintaining the same set of optimal solutions. To achieve this
objective, we have obtained the subsequent conceptual insights
derived from the notion of row generation: The following
lemma demonstrates that the optimal solution remains unaf-
fected when only focusing on variables xij with cij > 0, and
the subsequent theorem establishes that the optimal solution
to (IPs-MM) without constraints involving xij where cij ≤ 0
is equivalent to the optimal solution to (IP-MM).

Lemma 1: If a binary variable xij satisfies the constraints
(8), (9), and (10), then it is sufficient to consider only the
variables xij for which cij > 0 in the objective function
(IP-MM).
Proof. Suppose we have a binary variable xij that satisfies the
constraints (8), (9), and (10). We will show that if cij ≤ 0, then
xij will not affect the optimal solution of the objective function
(IP-MM). Let us consider the term cij(1−xij) in the objective
function (IP-MM). If cij ≤ 0, then regardless of the value of
xij (0 or 1), the term cij(1− xij) will be non-positive. Thus,
including xij in the objective function with cij ≤ 0 does not
contribute to maximizing the objective. On the other hand, if
cij > 0, including xij in the objective function can potentially
increase the objective value by setting xij to 0 (i.e., nodes i

and j belong to the same community) since cij(1− 0) = cij .
Therefore, it is sufficient to consider only the variables xij for
which cij > 0 in the objective function (IP-MM). □

Theorem 1: For the given integer programming problem,
if we exclude the constraints involving variables xij where
cij ≤ 0, the optimal solution of the modified problem remains
the same as the original problem.
Proof. Let us assume that we have an optimal solution to the
original (IP-MM) model, which satisfies all the constraints
including those involving variables xij where cij ≤ 0. We
will show that by excluding these constraints, we can still
obtain the same optimal solution. If xij satisfies the constraints
(8), (9), and (10), its value will not change when we exclude
the constraints involving cij ≤ 0. The reason is that these
constraints do not impose any restrictions on xij ; they only

ARMAN FERDOWSI, MARYAM DEHGHAN CHENARY: TOWARD AN OPTIMAL SOLUTION TO THE NETWORK PARTITIONING PROBLEM 113



provide additional information. Removing them does not alter
the feasible region. Furthermore, since cij ≤ 0, excluding
these constraints means that the corresponding term cij(1 −
xij) is non-positive and does not contribute to the objective
function. Therefore, the objective value remains unchanged.
Consequently, the optimal solution for the modified problem
without constraints involving xij where cij ≤ 0 is the same as
the optimal solution for the original problem. This concludes
the proof of the theorem. □

Having these considered, one can simplify (IP-MM) by
considering only the variables xij where cij > 0 in the
objective function. We can express this modified model as
follows:

max
∑

(i,j)∈Ipos

cij(1− xij), (12)

where Ipos is the set of all pairs (i, j) ∈ Iall for which cij > 0.
We still need to ensure that the constraints (8), (9), and (10)
hold for the selected variables. To achieve this, we introduce
new binary variables yijk for all i < j < k such that:

yijk =

{

1 if xij + xjk − xik ≥ 0
0 otherwise

(13)

By introducing these variables, we can replace the constraints
(8), (9), and (10) with the following constraint:

xij + xjk − xik ≥ 0 ∀i < j < k s.t. (i, j) ∈ Ipos (14)

Finally, we include the binary variable definitions:

xij ∈ {0, 1} ∀(i, j) ∈ Ipos (15)

yijk ∈ {0, 1} ∀i < j < k s.t. (i, j) ∈ Ipos (16)

Gathering all together, we get an equivalent sparse model for
(IP-MM) as follows:

max
∑

(i,j)∈Ipos

cij(1− xij) (IPs-MM)

xij + xjk − xik ≥ 0 ∀i < j < k s.t. (i, j) ∈ Ipos (17)

xij ∈ {0, 1} (i, j) ∈ Ipos (18)

yijk ∈ {0, 1} ∀i < j < k s.t. (i, j) ∈ Ipos (19)

Highly encouraging is that (IPs-MM) has considerably
fewer constraints and variables compared to the original (IP-
MM) model but preserves the same set of optimal solutions.

III. SOLUTION APPROACH

Despite (IPs-MM) providing us with a considerably simpler
integer modeling than (IP-MM), it could still remain unlikely
to obtain the optimal solution, particularly when dealing with
average to large-scale networks. Undoubtedly, one possible
way to speed up the branch and bound technique using the
CPLEX solver is to feed it with a reasonably good initial
solution. Starting with a smart choice among the feasible
solution space has turned out to improve performance im-
mensely. In this vein, we came to take advantage of the
heuristic two-stage community detection algorithm introduced

in [10]. Considerably relevant to our research is the first stage
of the algorithm’s authority to swiftly find a collection of
initial communities with excellent quality w.r.t. optimizing a
connectivity-based criterion they established.

In this procedure, the degree of a node and its set of
neighbors are defined naturally. Additionally, the inner and
outer edges of a community C, denoted as Ein

C and Eout
C ,

respectively, represent the edges with both endpoints and one
endpoint within C. Let α ∈ {1, . . . , diameter(G)} be an
integer and define Pα ⊆ V as a sequence of nodes arranged in
descending order according to their degrees, provided they are
all at least α steps away from each other. Pα is referred to as
the influential nodes of G with respect to α. The distance
between a vertex j ̸∈ C and the community C is then
determined as the length of the shortest path from j to the
influential node of C. The radius of a community C, denoted
by r(C), is the maximum distance from its influential node to
other vertices within the community.

Subsequently, the authors of [10] proposed a measure to
compute the quality of a community C:

q(C) =
|Eout

C |+ r(C)

|Ein
C |

. (20)

Furthermore, given a set of communities C = {C1, . . . , Ck},
the quality of the partition C is defined as follow:

qCG =
∑

C∈C

q(C). (21)

Having everything considered, we can now summarize the
procedure of determining an appropriate set of initial commu-
nities in the following manner:

• Repeat the procedure below for all α between 2 and
diameter(G) and pick Cα with the minimum qCα

G as
the best initial set of communities.

– Establish Pα as defined above.
– Let each p ∈ Pα initially designate a sole commu-

nity, leading to a set of |Pα| communities Cα =
{C1, . . . , C|Pα|}.

– Assign every v ̸∈ Cα to its closest community until
all nodes belong to a community.

An essential insight of this approach revolves around the
idea of ensuring a meaningful spatial distribution of the
influential nodes of the network, striking a balance between
proximity to facilitate cohesive communities and sufficient
distance to avoid interference. To achieve this, the notion of
α−far nodes is introduced to serve as a criterion to evaluate the
distance between potential influential vertices. By leveraging
this parameter, one can successfully identify the best set
of influential nodes capable of bunching and leading their
surrounding vertices.

Now, by putting everything together, we devise the follow-
ing tractable procedure for optimally solving (IPs-MM):

• Start with the initial communities obtained with the
method explained above and employ the following row
generation technique:
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TABLE I: Networks under-study

ID Network n m

1 Zachary’s karate club [18] 34 78

2 Mexican Politicians [19] 35 117

3 Dolphin network [20] 62 159

4 Les Miserables [20] 77 254

5 p53 protein [21] 104 226

6 Books about U.S. politics [22] 105 441

7 American college football [23] 115 613

8 Citation graph drawing [24] 311 640

9 USAir97 [25] 332 2126

10 C. Elegans [26] 453 2025

11 Erdos collaboration [27] 472 1314

12 Electronic circuit [28] 512 819

1) Consider (IPs-MM) without any constraints.
2) Use the CPLEX solver and apply the branch and

bound technique to obtain an optimal solution x∗

to (IPs-MM).
3) Verify whether all constraints of (IPs-MM) are sat-

isfied by x∗. If not, add the violated ones to the
model and go to (2).

IV. COMPUTATIONAL RESULTS

Within this section, we conduct a comprehensive perfor-
mance evaluation of our proposed methodology. To main-
tain fairness, we take into account exactly the set of 12
networks used in [14]. These networks, outlined in Table
I, are among the recognized and commonly utilized real-
world networks utilized in this context, and each of them
possesses a corresponding ground truth, representing the op-
timal community structures. Hence, it becomes convenient to
evaluate the effectiveness of a community detection algorithm
by quantifying the similarities between the algorithmically
derived communities and the ground truth. To facilitate this
evaluation, we employ the widely acknowledged performance
metric NMI (Normalized Mutual Information).

A. Normalized Mutual Information (NMI)

NMI, as described in [29], is a widely recognized and
established metric for evaluating the similarity between clus-
ters. However, it can effectively measure the agreement be-
tween the optimal communities and those discovered by
an algorithm. Consider a network G with n nodes, where
C(A) = C1, . . . , Ck represents the communities obtained by
algorithm A, and C′ = C ′

1, . . . , C
′
k′ denotes the ground truth

communities. The NMI value corresponding to the algorithm
A can be computed as follows

NMI(A) =

−2

|C|
∑

x=1

|C′|
∑

y=1

|Cx ∩ C ′
y|

n
log(

n|Cx ∩ C ′
y|)

|Cx||C ′
y|

)

|C|
∑

x=1

Cx

n
log(

Cx

n
) +

|C′|
∑

y=1

C ′
y

n
log(

C ′
y

n
)

(22)

When the detected communities perfectly align with the
ground truth, NMI attains its maximum value of one. Con-
versely, if the two sets exhibit no similarity, the NMI score is

zero. In general, a higher NMI value indicates a more accurate
and effective discovery of community structures.

B. Experiments

In what follows, we present a thorough evaluation demon-
strating our proposed method’s superiority in achieving high-
quality communities over several competing algorithms. All
the experiments are conducted on a computer system with a
processor Intel(R) Core i9-12900KF @ 3.2GHz, 16.6 Core(s)

and 128 GB of RAM. Algorithms are implemented with
C++, and CPLEX optimizer 12.9 is used for solving linear
programming.

Fig. 2 delivers the comparisons by evaluating communities
that are discovered based on the following cases:

• Our method (the blue curve): Obtaining the communities
by optimally solving (IPs-MM) with the proposed method
consisting of a row and column generation procedure.

• Method proposed in [14] (the red diagram): Solving the
linear relaxation model of (IP-MM) via a row and column
generation technique and applying a local search manner
rounding procedure for obtaining the communities.

• Max-Min Modularity, proposed in [13] (green diagram):
Using a user-defined relation matrix and applying a
hierarchical heuristic algorithm for maximizing the Max-
Min Modularity.

It is evident to conclude the promising outperformance of
our proposed community detection method. In particular, the
considerable gap between the blue and red curves clearly
shows the advancement of using an exact method rather than
relying on just heuristic approaches. While the technique in
[14] took into account optimally solving the liner relaxation
version of the (IP-MM), their proposed local search-based
rounding procedure for obtaining the solution to (IP-MM)
causes a significant error. The lever provided by the simpler
model (IPs-MM), which was proven to be equivalent to
(IP-MM), enabled us to seek an optimal solution to the model
and, therefore, discover high-quality communities consider-
ably better than those in [14]. This dominance could be more
pronounced when noticing that the communities obtained in
[14] were superior to a wide range of other algorithms.

Herein, for the sake of more visualization, Fig. 3 displays
the schematic representations of the Erdos collaboration and
C. elegans networks, along with the communities identified by
the proposed algorithm.

Furthermore, to strengthen the assessment of our algorithm,
we also decided to examine its execution time, for which we
came to follow twofold perspectives: first, to determine how
solving (IPs-MM) instead of (IP-MM) could enhance time
complexity, and second, to compare the execution time of our
model with that of the integer programming model proposed
in [14] for the Max-Min Modularity Maximization problem.
Fig. 4 illustrates the results of these comparisons.

Our proposed row and column generation technique, cou-
pled with the intelligently determined initial solution, resulted
in a significant speed improvement when optimally solving
(IPs-MM), surpassing the performance of solving (IP-MM).
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Fig. 2: Comparison between NMI values achieved by (i) blue curve: our method, (ii) red curve: method in [14], and (iii) green
curve: the conventional Max-Min modularity.

(a) Erdos collaboration network

(b) C. Elegans network

Fig. 3: Two networks from Table I and their detected commu-
nities using the proposed algorithm.

This highlights the substantial impact of our simplified model
and solution approach. Furthermore, our method demonstrated
faster execution compared to solving the equivalent integer
formulation of the sub-problem for the Max-Min Modularity
Maximization problem proposed in [14], which further vali-
dates the efficiency of our simplification. As could be naturally
expected due to the NP-hardness nature of the problem, our
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Method in [14]

Our proposed method

Optimally solving the integer model provided in [14]

Optimally solving (IP-MM)

Fig. 4: The time elapsed (in terms of seconds) for solving
different methods.

model performs slower than when solving the LP relaxation
version of the model in [14] plus using the rounding algorithm.
Nevertheless, the inaccurate results obtained in [14] reveal its
untrustworthy against this work’s proposed model.

We complete this section by highlighting that even though
the method presented in [14] can yield promising community
structures in large-scale networks, for situations where accu-
racy is paramount, exact methods become significantly crucial.
In such cases, the proposed method in this work can provide
substantial assistance.

V. CONCLUSION

In this study, we addressed the Max-Min Modularity Maxi-
mization problem, a widely recognized metric for community
evaluation. To enhance the problem’s solution efficiency, we
proposed an integer programming model that exhibits a re-
duced number of variables and constraints while preserving
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the same set of optimal solutions as the original model.
By incorporating a row and column generation technique
guided by an intelligently determined initial feasible solution,
we were able to achieve optimal solutions in a remarkably
efficient manner. The resulting solution provided us with a
set of communities that exhibit notable similarities with the
optimal community structures, indicating the effectiveness of
our approach. This not only improved the overall quality of the
obtained communities but also demonstrated the advantages of
our model in terms of computational time.
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