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Abstract—Principal component analysis (PCA) based on L1-
norm has drawn growing interest in recent years. It is espe-
cially popular in the machine learning and pattern recognition
communities for its robustness to outliers. Although optimal
algorithms for L1-norm maximization exist, they have very
high computational complexity and can be used for evaluation
purposes only. In practice, only approximate techniques have
been considered so far. Currently, the most popular method
is the bit-flipping technique, where the L1-norm maximization
is viewed as a combinatorial problem over the binary field.
Recently, we proposed exhaustive, but faster algorithm [1] based
on two-dimensional Jacobi rotations that also offer high accuracy.
In this paper, we develop a novel variant of this method that
uses three-dimensional rotations and quaternion algebra. Our
experiments show that the proposed approach offers higher
accuracy than other approximate algorithms, but at the expense
of the additional computational cost. However, for large datasets,
the cost is still lower than that of the bit-flipping technique.

I. INTRODUCTION

P
RINCIPAL component analysis (PCA) is a method for

multivariate data analysis with various uses, including

dimensionality reduction, feature extraction and noise reduc-

tion [2]. The PCA tries to identify orthogonal directions,

along which the data exhibit the greatest variability. The

projections of the data on these directions are viewed as

principal components. This technique is also referred as L2-

PCA, because the data variability is measured using Frobenius

norm (L2-norm on matrices). It can be easily implemented

using, for example, singular value decomposition (SVD) of the

observation data matrix [3]. However, it is also sensitive to the

presence of outliers, i.e., data points that differ significantly

from the other observations. In order to mitigate this drawback,

several PCA techniques have been proposed that are based on

L1-norm [4], [5], [6], [7]. Interestingly, the L1-norm criterion

can also be used to perform independent component analysis

(ICA) after data whitening [8], [9]. The L1-norm optimization

problem can be formulated in several ways [5], but unlike in

the case of the L2-PCA, these formulations are not equivalent.

In this paper, we consider the following maximization:

QL1 = argmax
Q=[q1,...,qk]∈R

d×k

QTQ=Ik

k
∑

i=1

∥XTqi∥1, (1)
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where X = [x1,x2, . . . ,xn] ∈ R
d×n is a data matrix of rank

rx ≤ min{d, n}, consisting a sequence of observation vectors

(xi)
n
i=1, and ∥.∥1 denotes L1-norm that return the sum of

the absolute values of the individual entries. The parameter k
denotes the number of the L1 principal components. Please

note that the problem (1) is not scalable, i.e. it can not be

translated into a sequence of the one-unit problems simply by

projecting the data-matrix onto the null-space of the previous

solution as in the L2-PCA algorithms. Furthermore, absolute

value function is non-differentiable. For these reasons, obtain-

ing the exact solution is a rather challenging task. In [5] it was

shown that, if XBopt
SVD
= UΣVT , and

Bopt = argmax
B∈{±1}n×k

∥XB∥∗, (2)

where ∥.∥∗ denotes nuclear norm, then QL1 = UVT is the

optimal solution to (1). Therefore, the L1-norm maximization

can be viewed as a combinatorial problem over the binary

field. Unfortunately, the exhaustive search algorithm [5] has

complexity O(ndk−k+1) and is difficult to use in practice.

A faster, yet suboptimal, version of this approach is based

on consecutive bit-flipping operations [6]. Its time complexity

is of order O(ndmin{n, d} + n2(k4 + dk2) + ndk3), which

can still be prohibitive for large data sizes. The most com-

putationally efficient algorithm based on the fixed-point (FP)

iterations was developed earlier in [4]. Unfortunately, it is

rather inaccurate.

Recently, we proposed two L1-PCA algorithms [1] based

on the Jacobi estimation framework. This framework is com-

monly used for diagonalizing symmetric matrices [3], [10]

through the two-dimensional (plane) rotations. It also found

applications in data-driven algorithms [11], [12] for iterative

transformations of multi-dimensional data. It was shown in

[1] that the Jacobi-based L1-PCA approaches provide high

accuracy as compared to the existing suboptimal algorithms.

They are also considerably faster than currently the most

accurate method based on bit-flipping. In this paper, we

propose to replace the conventional Jacobi rotations with

higher-dimensional quaternion-based rotations. It is expected

that, in this way, the convergence properties of an algorithm

can be improved. A similar approach has been proposed

in work [13] where we used quaternionic factorization of

the 4 × 4 orthogonal matrices and Newton-Raphson iterative
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scheme to solve the ICA problem. Here, we present a simpler

approach based on three-dimensional rotations to solve the L1-

norm maximization problem. When compared to our previous

method [1], a novel algorithm offers a higher probability of

finding a solution that is closer to the optimal one at the

expense of the additional computational cost. However, our

experiments show that for large datasets, this cost is still lower

than that of the bit-flipping method.

II. PRELIMINARIES ON QUATERNIONS

A quaternion Q ∈ H can be represented using the rectan-

gular form as follows [14]:

Q = q0 + iq1 + jq2 + kq3, q0, q1, q2, q3 ∈ R, (3)

where i, j, k denote imaginary units. The real part of Q
is q0 and the pure quaternion part is iq1 + jq2 + kq3. The

multiplication of quaternions is determined by the following

rules:

i2 = j2 = k2 = ijk = −1. (4)

It is associative and distributes over vector addition, but it is

not commutative.

When describing properties of the quaternions it is conve-

nient to express them as the combination of a scalar part, q0 ∈
R, and a vector part, q = [q1, q2, q3]

T ∈ R
3: Q = Jq0,qK. For

example, the conjugate of Q can be written as Q̄ = Jq0,−qK,

and the norm (modulus), is given by:

|Q| =
√

q20 + ∥q∥
2. (5)

For non-null quaternion, the inverse is defined as follows:

Q−1 = Q̄|Q|−2, QQ−1 = Q−1Q = 1. (6)

Since

eQ =
∞
∑

k=0

Qk

k!
= eq0

s
cos ∥q∥,

q

∥q∥
sin ∥q∥

{
(7)

every quaternion Q can also be expressed in an exponential

(polar) form:

Q = |Q|eθq/∥q∥ = |Q|

s
cos θ,

q

∥q∥
sin θ

{
, (8)

where 0 ≤ θ < 2π is an angle such that:

cos θ =
q0
|Q|

, sin θ =
∥q∥

|Q|
. (9)

This form is especially useful, because it allows us to express

rotation in SO(3), The notation SO(d) denotes special orthog-

onal group in a d-dimensional Euclidean space, consisting all

orthogonal matrices of determinant 1. Let P = J0,pK be a

pure quaternion that corresponds to a vector p ∈ R
3 and

U = u0 + iu1 + ju2 + ku3 =

s
cos

θ

2
,u sin

θ

2

{
, (10)

be a unit-norm quaternion, where u = [u1, u2, u3]
T ∈ R

3 is a

unit vector indicating the direction of an axis of rotation, and

an angle 0 ≤ θ < 2π is the magnitude of the rotation about

the axis. Then the rotation of the vector p with an angle θ
around a vector u can be expressed as follows:

P ′ = J0,p′K = UPU−1 = UPŪ. (11)

Above operation can be expressed equivalently using ma-

trix/vector multiplication by p′ = R(U)p, where:

R(U) = (12)




1− 2u2
2 − 2u2

3 2u1u2 + 2u0u3 2u1u3 − 2u0u2

2u1u2 − 2u0u3 1− 2u2
1 − 2u2

3 2u2u3 + 2u0u1

2u1u3 + 2u0u2 2u2u3 − 2u0u1 1− 2u2
1 − 2u2

2



 ,

is a rotation matrix. Theoretically, any rotation matrix can

also be constructed using Euler angles, as a product of the

three rotation matrices about the axes of the fixed coordinate

system. Unfortunately, the Euler angles differing in many ways

can give the same rotation matrix. In our case, this leads to

multiple cost function calculations for the same point. Since

the representation (10) corresponds almost uniquely to a given

rotation matrix, such ambiguities can easily be avoided when

working with quaternions.

III. METHODS

A. Jacobi-based estimation framework

In the conventional Jacobi estimation framework [11], [1]

the solution matrix is considered to be a product of the

rotations in SO(2). These rotations are applied successively to

the data matrix so that some objective function is optimized.

For instance, in our previous work [1], the L1-norm metric is

maximized as follows:

X(t) = G(pt, qt, θt)X
(t−1), t = 1, 2, ..., (13)

with X(0) = WX, where W ∈ R
d×d is an arbitrary

orthonormal matrix defining initialization point. The matrix

G(p, q, θ) represents Jacobi/Givens rotation [3] by the θ angle

in the (p, q) plane, i.e.:

G(p, q, θ) =













Ip−1 0 0 0 0

0 cos θ 0 sin θ 0

0 0 Iq−p−1 0 0

0 − sin θ 0 cos θ 0

0 0 0 0 Id−q−1













,

(14)

where p, q are two integers such that such 1 ≤ p < q ≤ d.

Thus, the solution matrix Q̂L1 ∈ R
d×k is given by:

Q̂L1 = WT

[

↷
∏

t

G(pt, qt, θt)
T

]

∗1:k

, (15)

where [ . ]∗1:k denotes the first k columns of an argument

matrix. All possible rotations represented by pairs (pt, qt)
are arranged in so-called sweeps. These sweeps are repeated

cyclically until the maximum number of iterations is reached

or when, for all rotations in the current sweep, we have

|θt| ≈ 0. In fact, any rotation order is allowed [12], [15], but

most frequently a row-cycling ordering is used as presented

in Tab. I. For a fixed arrangement of the plane rotations, each
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TABLE I: Row-cycling ordering for d = 3.

sweep no. 1 2 ...

t 1 2 3 4 5 6 ...

(pt, qt) (1,2) (1,3) (2,3) (1,2) (1,3) (2,3) ...

transformation in (13) depends on a single parameter θt, and

hence d-dimensional optimization problem can be reduced

to the sequence of d(d − 1)/2 simpler one-dimensional sub-

problems per sweep. Let us denote by x̂
(t)
ij (θ) the (i, j)-th entry

of the data matrix (13) evaluated for the angle θt = θ. Then,

the ‘local’ L1-norm maximization problem at tth rotation can

be defined as follows:

θt = argmax
−π/2≤θ<π/2

∑

i∈{pt,qt}
i≤k

n
∑

j=1

∣

∣

∣
x̂
(t)
ij (θ)

∣

∣

∣
. (16)

Since we are interested in finding only the first k principal

components, the outer summation range in (16) covers only

indices less than or equal to k. In this way, the rotations that

would have to be performed entirely in the null-space can

simply be omitted. Also note that, the matrix (14) modifies

only the rows pt, qt of the data matrix X(t−1), so that the

summation coefficients can be computed directly as

x̂
(t)
ptj

(θ) = x
(t−1)
ptj

cos θ + x
(t−1)
qtj

sin θ, (17)

x̂
(t)
qtj

(θ) = x
(t−1)
qtj

cos θ − x
(t−1)
ptj

sin θ. (18)

In work [1], we proposed two methods for solving (16). The

first one performs exhaustive angle search, and the second

one uses a differentiable approximation for absolute value

function and calculates the rotation angles using the simplified

Newton method. In this paper, we consider only the exhaustive

algorithm due to its simplicity and high accuracy. Namely, the

objective function in (16) is evaluated at the set of equidistant

points, i.e.: {−π/2 + iπ/m : i = 0, 1, ...,m − 1}. We

call this set the dictionary. The parameter m is an integer

value controlling an angular resolution, i.e., the smallest non-

zero angle that is used to represent rotation. Theoretically,

greater the value of m, the higher angular resolution and

better accuracy of the optimization. However, by increasing

this value, we do not prevent the method from falling into

local optima.

B. Proposed method

Key idea of the proposed method is to modify the Jacobi

estimation framework by replacing rotations in SO(2) with

rotations in SO(3). Please note that the conventional approach

can guarantee a global convergence only for d = 2. For higher-

dimensional problems, the Jacobi rotations are performed

sequentially. Therefore, we may easily get trapped in local

maximum due to non-convexity of the cost function. Similarly,

rotations in SO(3) do not guarantee finding a global optimum

for d > 3, however, such replacement can increase frequency

with which the method finds an optimal solution. Furthermore,

with the higher-dimensional rotations, more data samples are

used when computing the local objective functions, and thus

these functions should be smoother, which may result in a

faster convergence. Namely, we propose to replace (14) with

a quaternion based matrix:

R(p, q, r, U) = (19)




















Ip−1 0 0 0 0 0 0

0 u11 0 u12 0 u13 0

0 0 Iq−p−1 0 0 0 0

0 u21 0 u22 0 u23 0

0 0 0 0 Ir−q−1 0 0

0 u31 0 u32 0 u33 0

0 0 0 0 0 0 Id−r−1





















,

where 1 ≤ p < q < r ≤ d and the coefficient uij is (i, j)-th
entry of the matrix (12) computed for the quaternion:

U(λ, φ, θ) =

s
cos

θ

2
, sin

θ

2
u(λ, φ)

{
. (20)

Since the matrix (12) is orthogonal, the matrix (19) is also

orthogonal. For convenience, the rotation axis is factorized

using spherical coordinates, i.e.:

u(λ, φ) = [cosλ sinφ, sinλ sinφ, cosφ]T , (21)

where 0 ≤ λ < 2π and 0 ≤ φ ≤ π denotes azimuthal

and polar angle, respectively. More formally, our optimization

problem can be stated as follows:

(λt, φt, θt) = argmax
0≤λ<2π
0≤φ≤π
0≤θ<2π

∑

i∈{pt,qt,rt}
i≤k

n
∑

j=1

∣

∣

∣
x̂
(t)
ij (λ, φ, θ)

∣

∣

∣
, (22)

where x̂
(t)
ij (λ, φ, θ) denotes the (i, j)-th entry of trans-

formed data matrix R(pt, qt, rt, U)X(t−1). The coefficients

x̂
(t)
ij (λ, φ, θ) for i ∈ {pt, qt, rt} can be stacked in the vector

representing imaginary part of the following quaternion:

J0,x(t)
j (λ, φ, θ)K = U(λ, φ, θ)X

(t−1)
j U(λ, φ, θ)−1, (23)

X
(t−1)
j =

r
0, [x

(t−1)
ptj

, x
(t−1)
qtj

, x
(t−1)
rtj

]T
z
. (24)

As before, the simplest solution to (22) is to use an exhaustive

search method. Please note that there is not necessary to

discretize the entire sphere because for a given vector (21)

and an angle θ there is an opposite vector −u(λ, φ) that

generates the same rotation matrix for the angle 2π − θ.

Let us denote by A = {iπ/m : i = 0, 1, ...,m − 1} and

B = {jπ/m : j = 0, 1, ..., 2m − 1} the sets of equidistant

points on interval [0;π) and [0; 2π), respectively. Then our

spherical coordinate search dictionary can be defined as the

following set:

D = {(λ, φ, θ) : (λ, φ, θ) ∈ A× A× B∧ (25)

(φ > 0 ∨ λ = 0) ∧ (φ = 0 ∨ θ > 0)},

where × denotes Cartesian product. The condition in the

second line removes from the set redundant coordinates and

those for which the rotation matrix is equal to the identity

matrix (for θ = 0), except the point at the north pole.
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TABLE II: Arrangements of rotation subspaces for various

signal dimensionalities.

d = 4

t (pt, qt) (pt, qt, rt)

1 (1, 2) (1, 2, 3)

2 (1, 3) (1, 2, 4)

3 (1, 4) (2, 3, 4)

4 (2, 3) ...

5 (2, 4) ...

6 (3, 4) ...

d = 5

t (pt, qt) (pt, qt, rt)

1 (1, 2) (1, 2, 3)

2 (1, 3) (1, 4, 5)

3 (1, 4) (2, 4, 5)

4 (1, 5) (3, 4, 5)

5 (2, 3) ...

6 (2, 4) ...

7 (2, 5) ...

8 (3, 4) ...

9 (3, 5) ...

10 (4, 5) ...

It can be verified that the cardinality of the set (25) is

l = 2m3 − 3m2 + 3m. Obviously, for large m searching for

the solution exhaustively may be unpractical, as the sequence

length l grows rapidly with m. However, as we will show in the

experimental section, the rotations in SO(3) can be represented

with a much lower resolution than rotations in SO(2). In other

words, the parameter m can be much smaller than that of the

conventional Jacobi-based framework. Therefore, we can still

use the exhaustive method at reasonable runtime.

Similarly to the conventional method, the consecutive ro-

tations are organized in sweeps and repeated cyclically until

convergence. However, since we deal with rotations in SO(3), a

three-dimensional subspace must be defined for each rotation.

Theoretically, for d > 3, the rotations can be performed in

all possible subspaces defined as the 3-combinations of the

row indices. However, we observed that to have convergence,

not all combinations are needed. Namely, any combination

(x, y, z) can be removed if all three pairs (x, y), (x, z) and

(y, z) can also be found in other combinations. As presented

in Tab. II, for d = 4 the combination (1, 3, 4) was removed be-

cause there are the combinations (1, 2, 3), (1, 2, 4) and (2, 3, 4)
containing the pairs (1, 3), (1, 4) and (3, 4), respectively. Such

subsets of the combinations can also be obtained by joining

plane rotations sharing the same dimensions. For example, two

pairs (1,2) and (1,3) can be joined in the triple (1, 2, 3), and

the pair (2, 3) can be removed as it is already present in the

triple. In our simulations, we use this algorithm to generate ar-

rangements presented in Tab. II for d = 4, 5. It can be verified

that for d ≥ 3 we have nr = ⌈d(d − 2)/4 −mod(d, 2) + 1⌉
3D rotations per sweep, where ⌈.⌉ denotes ceiling operation.

Similarly to Jacobi-based framework, there may exist other

arrangements of the rotation subspaces, and some of them may

be better than others. However, this issue is out of scope of

this paper, and will be studied in a future work.

The pseudo-code of the proposed method is presented in

Alg. 1. The sequence of triples defined in line 5 is defined

according to the Tab. II. Please note that, at tth rotation, the

matrix (19) modifies only the rows p, q, r. Therefore it is not

necessary to compute it explicitly. In fact, only the matrices

(12) are needed. Furthermore, they can be pre-computed for a

given dictionary D once and used in subsequent iterations.

Algorithm 1 Pseudo-code of the proposed algorithm

Require:

X ∈ R
d×n,W ∈ R

d×d,WWT = Id, k ≤ rank(X),D
Ensure: Q ∈ R

d×k,QTQ = Ik

1: X(0) ←WX

2: t← 1
3: for sweepNum = 1 : maxSweepNum do

4: encore← 0
5: for (p, q, r) = {(1, 2, 3), ...} do

6: (λt, φt, θt) = argmax
(λ,φ,θ)∈D

∑

i∈{p,q,r}
i≤k

n
∑

j=1

∣

∣

∣
x̂
(t)
ij (λ, φ, θ)

∣

∣

∣

7: Ropt ← R(p, q, r, U(λt, φt, θt))
8: W← RoptW

9: X(t) ← RoptX
(t−1)

10: t← t+ 1
11: if Ropt ̸= I then encore← 1

12: if encore = 0 then break

13: Q← [WT ]∗1:k

IV. EXPERIMENTS

The proposed method has been implemented and evaluated

in the Matlab environment. For convenience, it was denoted

as L1-JQ, which stands for Jacobi method with quaternion

rotations. For comparative purposes we also evaluated three

other approximate methods for maximization of the L1-norm:

bit-flipping algorithm [6] (L1-BF), fixed-point iterations [4]

(L1-FP), and Jacobi exhaustive method with SO(2) rotations

[1] (L1-JEX). In the case of the L1-JEX method, the parameter

m was set to 512. We verified empirically that, for this

method, rotations at a smaller angle than π/512 are not

statistically significant. In order to explore how the estimation

error is affected by the angular resolution, the algorithm L1-

JQ was evaluated for two different values of the parameter

m ∈ {10, 20}. For all approaches, the identity matrix was

used as the initialisation point.

A. Accuracy

The performance degradation ratio attained by the algo-

rithms was measured using a similar procedure to that in [6].

Namely, the following metric was considered:

∆(Q,X) =
∥XTQL1∥1 − ∥X

TQ∥1
∥XTQL1∥1

, (26)

where Q is the orthonormal matrix estimated using an eval-

uated method. Ideally, the matrix QL1 should be the matrix

obtained by an optimal L1-PCA algorithm [5], for the same

data matrix. Unfortunately, the computational complexity of

the optimal method is extremely high. Thus, such an approach

is possible only for very small data sizes (n ≪ 100). The

presented method is intended for larger data sets. For these

reasons, in this experiment, we replaced the matrix QL1 with

the matrix representing the best solution among all methods.

In order to measure which method gives the best result most
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Fig. 1: Empirical CDF of performance degradation ratio esti-

mated for various L1-PCA algorithms
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Fig. 2: Comparison of average runtimes (in seconds) measured

for all methods and various data sizes across 100 Monte Carlo

runs. (a) Runtime vs signal dimensionality. (b) Runtime vs

number of observation samples.

frequently, the empirical cumulative distribution functions

(ECDFs) were computed. The ECDFs are the fractions of the

measurements (26) that are less than or equal to the specified

values. Thus, the higher the value of the ECDF, the better

accuracy. We considered two scenarios: the first one with

d = 4, k = 1, n = 400, and the second one with d = k = 4,

n = 200. In both scenarios, 1000 random data matrices were

randomly generated with entries drawn independently from a

Gaussian distribution N (0, 1) as in [6], [1]. The results are

presented in Fig. 1. In the first scenario (on the left), the

proposed approach with m = 20 gives a zero or close to

zero value of the degradation ratio in about 95 percent of

runs. This is the best score among all methods. In the case

of the L1-JEX, L1-BF and L1-FP methods, these fractions

are 65, 30, and 15 percent, respectively. The performance

loss due to smaller dictionary size is rather not noticeable in

this scenario. Both versions of the proposed method perform

equally well regardless of the value of the parameter m. In

the second scenario (Fig. 1b), we see that each method attains

the best result less frequently. However, once again, the L1-JQ

algorithm for m = 20 achieves lower values of the metric (26)

more frequently than any other method. It gives the best or

close to best result in about 75 percent of runs, while for the

L1-JEX and L1-BF methods, these frequencies are 40 and 10
percent, respectively. The most significant performance loss

can be seen for the L1-FP method. It comes from the fact that

the L1-FP method for k > 1 is based on successive null-space

projections that violate the non-scalability principle of the L1-

PCA. We also see that the reduction in accuracy of the L1-JQ

method due to the decrease in a value of the parameter m is

more prominent. This reduction is especially noticeable in a

frequency with which the method obtains the best solution.

Please note that even if the proposed approach does not give

the best solution most frequently, the metric (26) usually takes

relatively small values. Namely, the degradation ratio attained

by L1-JQ method with m = 10, computed with respect to

the best solution, is with empirical probability 1 less than

0.008. Other methods attain significantly greater values of the

degradation ratio. For example, the largest values of the metric

(26) returned by the L1-JEX and L1-FB methods were 0.016

and 0.027 respectively.

B. Execution time

In order to compare the computational performance of the

proposed algorithm with other methods, we measured their av-

erage execution times for various data sizes. The experiments

were carried out on the system with AMD Ryzen 5 3550H

processor. Once again, two scenarios have been considered. In

the first one (Fig. 2a), we examined how the dimensionality

of the signal affects the computation time. Here, we assumed

that the number of data samples n = 200 and k = d. It can

be seen that even for the higher angular resolution (m = 20),

the proposed method is a faster than L1-BF algorithm. On

the other hand, it is slower than the method based on SO(2)

rotations, even when the angular resolution is low (m = 10).

None of the methods can compete with the L1-FP method,

which turns out to be the fastest approach. Also note that the

execution time of the all rotational methods increases quite

fast with the dimension number. It is not surprising, as the

number of rotations per sweep increases quadratically with d.

In the second scenario (see Fig. 2b), we assumed that

k = d = 6 and checked how the computation time is affected

by the number of samples n. The results are similar to that of

the previous case. It can be seen that all rotational methods

are generally faster than the L1-BF algorithm. In addition

their execution times increase linearly with the number of

samples. This is serious improvement compared to the L1-

BF algorithm, where the execution time increases quadratically

with n. Our experiments clearly show that the precision of the
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Fig. 3: Convergence curves obtained during 10 Monte Carlo

runs for the L1-JQ method with m = 20 (solid lines) and

the L1-JEX algorithm (dotted lines). Each Monte Carlo run

is presented using different colour. The first data rotation in

each sweep is depicted by circle.

L1-JQ method is paid for by increased computational burden.

Nonetheless, its computational complexity can be still smaller

than or at least comparable to that of the L1-BF algorithm.

Also note that the rotational algorithms, including the proposed

one, may not be the best choice for large d. For instance, when

d > n, the L1-BF algorithm may offer better performance.

However, a such scenario is rarely encountered in practice

and thus less interesting.

In Fig. 3, we also show the convergence curves obtained

for L1-JQ (m = 20) and L1-JEX methods. The L1-norm was

measured after each data rotation for 10 independent Monte

Carlo runs. The maximum number of sweeps was limited

to 100, but none of the methods reached this limit. As we

see, both methods converge in a relatively small number of

sweeps (from 2 to 8), but the proposed method offers higher

convergence rates. It also achieves higher values of the L1-

norm more frequently, which is consistent with our previous

findings. On the other hand, the computational cost of the

single rotation of the proposed method is higher than that

of the L1-JEX method. Thus, in overall, the L1-JEX method

remains computationally more efficient.

V. CONCLUSION

In this paper, we proposed a novel version of the exhaustive

Jacobi-based algorithm for maximization of the L1-norm. It

was shown that the Jacobi rotations can be replaced by the

quaternion-based rotations in SO(3). In this way, it is possible

to increase the accuracy of the estimation at the expense

of additional computational cost. Indeed, the simulation re-

sults show that the proposed method gives the best solution

more frequently than other approximate methods. Although

the algorithm was implemented using exhaustive search, the

improvement in the accuracy was obtained for relatively small

dictionary size. The results suggest that precision of angular

representation of the rotations in higher-dimensions can be

substantially lower than that of the two-dimensional rotations.

Thus, a solution can be found exhaustively at a reasonable

computational cost. Furthermore, for large datasets, the exe-

cution time of the proposed method is still smaller than that

of the bit-flipping technique.

Future works include implementation optimizations, practi-

cal applications and more rigorous estimation error analysis.

It could be especially interesting to establish the theoretical

bounds of estimation error with respect to the precision of

angular representation of the rotations.
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