
The scalability in terms of the time and the energy

for several matrix factorizations on a multicore

machine

Beata Bylina

0000-0002-1327-9747

Maria Curie-Skłodowska University

in Lublin

Pl. M. Curie-Skłodowskiej 5, 20-031 Lublin, Poland

Email: beata.bylina@mail.umcs.pl

Monika Piekarz

0000-0002-3457-9335

Maria Curie-Skłodowska University

in Lublin

Pl. M. Curie-Skłodowskiej 5, 20-031 Lublin, Poland

Email: monika.piekarz@mail.umcs.pl

Abstract—Scalability is an important aspect related to time
and energy savings on modern multicore architectures. In this
paper, we investigate and analyze scalability in terms of time and
energy. We compare the execution time and consumption energy
of the LU factorization (without pivoting) and Cholesky, both
with Math Kernel Library (MKL) on a multicore machine. In
order to save the energy of these multithreaded factorizations,
the dynamic voltage and frequency scaling (DVFS) technique
was used. This technique allows the clock frequency to be
scaled without changing the implementation. An experimental
scalability evaluation was performed on an Intel Xeon Gold
multicore machine, depending on the number of threads and the
clock frequency. Our test results show that scalability in terms of
the execution time expressed by the Speedup metric has values
close to a linear function with an increase in the number of
threads. In contrast, scalability in terms of the energy consumed
expressed by the Greenup metric has values close to a logarithmic
function with an increase in the number of threads. Both kinds
of scalability depend on the clock frequency settings and the
number of threads.

I. INTRODUCTION

S
CALABILITY is one of the main requirements to be

taken into account when implementing parallel software

on multicore machines, in particular for numerical algorithms

involving many matrix calculations. The scalability feature

allows an increasing number of threads to be used on a multi-

core machine in the hope that both time and energy efficiency

will increase rather than degrade. The classical approach to

scalability in parallel processing focuses on performance in

terms of runtime. In this work, we want to study scalability in

terms of two criteria, both the running time of the numerical

algorithm and the energy consumption. The importance and

need to consider multiple criteria in relation to scalability in

parallel processing is shown in the work [8].

A distinction is made between two basic concepts related to

scalability: scalability in the strong sense and scalability in the

weak sense. In this paper we will only study scalability in the

strong sense, that is, for a given problem size we will increase

the number of threads. We focus on strong scalability because

the parallelism available on modern machines will continue to

increase.

An in-depth understanding of scalability in terms of execu-

tion time and energy consumption and the correlation between

the two can allow the design of specific optimizations to

reduce runtime and energy consumption for applications in

different domains. In particular, it is important to study appli-

cations that make deliberate use of cache. Such applications

usually come from the field of numerical linear algebra and

involve matrix computations. Linear algebra is an important

component of many numerical algorithms for various scientific

and engineering problems. Over the years, BLAS (Basic

Linear Algebra Subroutines) [6] has become the standard

interface for linear algebra operations. One of the most popular

BLAS packages is Math Kernel Library (MKL) [1]. The MKL

library also contains implementations of matrix factorizations

such as the LU factorization and the Cholesky factorization.

The implementations of all factorizations are based on the

BLAS library. The classical approach implemented in the

MKL library for parallel matrix factorizations in cache-based

systems uses fixed-size blocks that fit in the cache to evenly

distribute the workload between threads. Currently, the MKL

library tends to optimize runtime and does not take into

account energy consumption savings. It is a well-known fact

that reducing computation time usually implies energy savings,

and is not the only reason for energy saving. Therefore, in

order to improve the saving of energy of the algorithms from

the MKL library without changing their implementation on

multicore architectures, this work uses the dynamic voltage

and frequency scaling technique DVFS [9].

The main contributions of this paper:

• a thorough empirical study of the runtime and energy

consumption of multithreaded matrix factorizations (LU

and Cholesky) concerning changing clock frequency and

a selected number of threads;

• a scalability study using Speedup and Greenup metrics

for varying numbers of threads for different clock fre-

quencies;

Proceedings of the 18
th Conference on Computer

Science and Intelligence Systems pp. 895–900

DOI: 10.15439/2023F3506

ISSN 2300-5963 ACSIS, Vol. 35

IEEE Catalog Number: CFP2385N-ART ©2023, PTI 895 Thematic track: Computer Aspects of

Numerical Algorithms

The remainder of this article is organized as follows. In

Section II, we discuss metrics such as Speedup and Greenup

used to measure scalability in terms of the time and energy of

parallel applications on multicore machines. In Section III we

briefly review the LU and Cholesky algorithms. In Section IV,

we present the test methodologies and experimental evaluation.

Finally, in Section V, we conclude and make suggestions for

future work.

II. METRICS

Energy consumption is the product of runtime and power

consumed. Energy can be saved in various ways, e.g. by

shortening runtime, reducing power consumption, or both,

extending time but reducing power consumption more or vice

versa.

The Speedup metric is known in the literature and used

to analyze performance in parallel programming between

different code implementations. It is assumed that we have two

implementations of the algorithm, one non-optimized (basic)

code running in time TB and the other optimized code running

in time TO. Speedup is defined as follows:

Speedup =
TB

TO

In [2] Greenup is defined analogously to Speedup only in terms

of energy consumption:

Greenup =
EB

EO

where EB is the total energy consumption of the non-

optimized code and EO is the total energy consumption of

the optimized code.

III. ALGORITHMS

We will briefly introduce the LU and Cholesky algorithms

used to solve systems of linear equations. The LU factorization

transform square nonsingular matrix A into a product of two

matrices:

A = LU

where L and U are lower and upper triangular matrices

respectively.

The Cholesky factorization is defined only for A being

Hermitian and positive-definite and has a form:

A = LLT

where L is a lower triangular matrix. In this article, we investi-

gate the LAPACK [3] implementation of the LU factorization

from MKL library, namely dgetrfnpi (LU) [5], dpotrf

(Cholesky) routines. These implementations are based on

BLAS and arise from the use of a multithreaded BLAS.

The total number of floating-point operations (add, multiply,

divide) for the LU factorizations is equal approximately 2

3
n3.

The number of floating point comparisons for the LU factor-

ization is equals 0. The number of floating-point operations in

the Cholesky factorization is 1

3
n3. The number n is the size

of the factoring matrix A.

IV. NUMERICAL EXPERIMENT – METHODOLOGY AND

RESULTS ANALYSIS

A. Methodology

We tested two versions of matrix factorization: LU and

Cholesky. We tested all algorithms without parallelization (1

thread) and in parallelized versions for 10, 20, 30, and 40

threads.

TABLE I: LU factorization at 1.7GHz

Threads/ Frequency Time[s] Energy[J] Performance Efficiency

1/1.7 889.07 57216.78 26.426 0.411

10/1.7 90.72 10560.03 258.989 2.225

20/1.7 46.35 7724.50 506.902 3.042

30/1.7 32.65 6716.32 719.517 3.498

40/1.7 26.53 6169.10 885.598 3.808

TABLE II: Cholesky factorization at 2.0GHz

Threads/ Frequency Time[s] Energy[J] Performance Efficiency

1/2.0 403.73 26795.84 29.098 0.438

10/2.0 40.35 4570.90 291.150 2.570

20/2.0 21.24 3653.45 553.140 3.215

30/2.0 14.67 3375.74 801.009 3.480

40/2.0 13.26 3412.81 886.171 3.442

Our test dataset consists of a square matrix filled with

double-precision values. The matrix has dimensions of nxn,

where n = 32786. In other words, our test dataset comprises

1073741824 cells, amounting to a total data size of 8 GB.

For all algorithm versions, we have adhered to a row-wise

data arrangement. These algorithms have been implemented

in C++, incorporating vectorization and parallel processing

techniques.

In our experimental configuration, we utilized a computing

platform featuring a contemporary multicore Intel(R) Xeon(R)

Gold 5218R processor, boasting 40 cores and a clock speed of

2.1 GHz. Our system was powered by the Linux 4.18.0 kernel

and ran on the AlmaLinux 8.4 operating system, with the Intel

ICC version 2021.5.0 compiler.

The Linux kernel facilitates CPU performance scaling

through the CPUFreq subsystem, comprising three layers:

core, scaling drivers, and governors. The core of CPUFreq

offers a universal code infrastructure and user interfaces for all

platforms supporting CPU performance scaling. It establishes

the foundational framework for the other components. Scaling

drivers communicate with hardware, supplying scale managers

with data on available P-states (or P-state ranges in some

cases) and accessing platform-specific hardware interfaces

to modify processor P-states as directed by scale masters.

Governors execute algorithms for estimating the necessary

CPU capacity, typically each manager employing a single,

optionally customized scaling algorithm.

The default scaling driver and governor are automatically

chosen, but advanced configurations can still utilize userspace

tools like cpupower, acpid, laptop mode tools, or desktop

GUI tools.

To modify clock frequencies, we employed CPUfreq with

the acpi_cpufreq driver. By default, this driver follows the

896 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

Fig. 1: Time execution for LU and Cholesky for 1 thread – left; Energy consumption of LU and Cholesky for 1 thread – right.

Fig. 2: Time execution for LU and Cholesky – left; Energy consumption of LU and Cholesky – right.

BEATA BYLINA, MONIKA PIEKARZ: THE SCALABILITY IN TERMS OF THE TIME AND THE ENERGY 897

TABLE III: The most energy saving versions of algorithms

version of algorithm energy consumption [J] time [s] waste of time [%] energy saving [%]

LU | 40 threads | 1,7 GHz 6169.10 26.53 7.9 1.6
Cholesky | 30 threads | 2.0 GHz 3375.74 14.67 10.1 1.3

"conservative" governor, adjusting clock frequencies based on

core load, selecting from available frequencies ranging from

the minimum to the maximum supported by the processor.

We utilize the cpupower program to adjust the processor

frequency limit’s minimum and maximum values at a specific

level, using the following commands:

cpupower frequency-set -d 1400000

cpupower frequency-set -u 1400000

for setting the minimum and maximum frequency limit

values to 1.4 GHz. Executing these commands automatically

switches the governor to userspace, enabling the configura-

tion of a specific frequency. This frequency adjustment applies

uniformly to all cores.

We do tests for the frequencies (P-states) available on our

platform from 0.8 GHz to 2.1 GHz with step 0.1 GHz. We test

first the following frequencies: 2.1 GHz, 1.7 GHz, 1.4 GHz,

1.1 GHz, and 0.8 GHz.

To assess the impact of algorithm optimizations on energy

usage, we relied on data collected via the RAPL (Running

Average Power Limit) interface, specifically designed for Intel

processors. RAPL utilizes machine-specific records to con-

tinually monitor and regulate real-time energy consumption.

In multi-socket systems, RAPL provides individual results

for each socket or package, while also offering separate

measurements for the memory modules (DRAM) linked to

each socket. Starting with Haswell processors featuring fully

integrated voltage regulators, RAPL’s measurement accuracy

has notably improved and meets acceptable standards [7].

Throughout our tests, we conducted measurements at 1-second

intervals, considering the combined energy consumption of all

sockets and their associated memory modules for analysis.

B. Time and energy consumption

In Fig. 1, we present the runtime and energy usage of

individual algorithms when using a single thread. In Fig. 2,

we display the same for parallel versions, i.e., for 10, 20,

30, and 40 threads. Notably, in the case of a single thread,

the Cholesky factorization outperforms the LU factorization in

terms of both time and energy consumption. This disproportion

in performance is evident in Fig. 2, where we have different

the y-axis scales to accommodate the dissimilarities.

In Fig. 2, we observe that reducing the clock frequency leads

to an increase in runtime across all scenarios, while increasing

the number of threads consistently reduces runtime. Thus, for

our architecture, utilizing 40 threads at a frequency of 2.1 GHz

proves to be the optimal choice in terms of time efficiency.

However, when considering energy consumption, a lower

clock frequency, such as 1.7 GHz, can be advantageous in

certain instances. This reduction in energy usage is evident for

non-parallelized algorithm versions (approximately 19%) and

for parallelized versions across all cases with 10 threads (3%
for LU and 9% for Cholesky). Additionally, for 20 threads, a

decrease in energy consumption is noticeable when employing

1.7 GHz with the Cholesky factorization (5%) and even for

40 threads with the LU factorization (1.6%). Lowering the

clock frequency beyond 1.4 GHz does not yield any significant

energy benefits.

Furthermore, we observe that energy consumption decreases

as the number of threads used for calculations increases, with

one exception: the Cholesky algorithm at 2.1 GHz. In this

particular case, the algorithm is 1.2% more energy-efficient

at 30 threads compared to 40 threads. A similar situation is

observed at 2.0 GHz and 1.9 GHz (Fig. 3).

In response to the observed energy reduction when transi-

tioning to a clock frequency of 1.7 GHz, we conducted addi-

tional experiments to explore the behavior of other frequencies

within the range of 1.4 GHz to 2.1 GHz. The outcomes

are depicted in Fig. 3. Subsequent tests indeed validated the

presence of a localized energy consumption minimum at the

1.7 GHz frequency even for the LU algorithm executed with

40 threads.

The Table I and Table II show the test results for the

frequencies at which we observe decreases in energy con-

sumption for LU and Cholesky factorizations, respectively.

The highest efficiency is achieved with LU at 1.7 GHz (Table

I) running on 40 threads and in the case of Cholesky at 2.0

GHz (Table II) on 30 threads. Table III displays a compilation

of algorithm versions and clock frequencies that resulted in

the lowest energy consumption across both factorizations. In

the table, the first column outlines the algorithm and the

chosen configurations, the second column presents energy

consumption in Joules, and the third column indicates the

algorithm’s runtime. The fourth and fifth columns reveal the

percentage increase in runtime and the percentage reduction

in energy consumption, respectively, relative to the configu-

ration that achieved the shortest runtime — which, for both

factorizations, was 40 threads and a 2.1 GHz clock frequency.

Traditionally, optimizing for both time and energy efficiency

involves increasing the number of threads and elevating the

clock frequency. However, the two factorizations examined

here demonstrate exceptions to this rule. If prioritizing energy

savings over runtime, alternative thread and clock settings

can be considered. Our tests have identified that the most

energy-efficient configuration is achieved with 40 threads and

a reduced clock frequency of 1,7 GHz for LU, while for

Cholesky, it is with 30 threads and a clock frequency reduced

to 2.0 GHz.

C. Speedup and Greenup

The figures in Fig. 4 illustrate the Speedup (left column) and

Greenup (right column) values for different clock frequencies,

898 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

Fig. 3: Energy consumption of LU and Cholesky for frequen-

cies from 1.6 GHz to 2.1 GHz.

derived from our experimental measurements. Each chart

corresponds to one algorithm, either LU or Cholesky. The x-

axis represents the number of active threads, while the y-axis

displays the Speedup or Greenup values. To enhance reference,

we’ve indicated the maximum expected Speedup (linear with

the number of threads p) and Greenup (logarithmic with the

number of threads p) with a dashed black line in the charts.

Across all two algorithms, it’s evident that as the number of

threads increases, irrespective of the clock frequency, the run-

time improvement outpaces the reduction in energy consump-

tion (time decreases more rapidly than energy consumption).

For LU, Speedup approaches linearity for all frequencies, with

deviations from the maximum expected value increasing as the

thread count rises. Regarding Speedup, the 0.8 GHz frequency

yields the most favorable results, while 2.1 GHz performs the

poorest.

In general, the Greenup plot deviates further from the

maximum expected value compared to Speedup, confirming

our observations. For the algorithms we tested, similar to

Speedup, the highest Greenup values are achieved at 0.8 GHz,

while the lowest values, differing from the Speedup scenario,

occur at 2.0 GHz. Notably, the 2.1 GHz frequency, which

yielded the lowest Speedup values, still results in relatively

high Greenup values (as seen in the purple line in the chart).

In our architecture, we observed the relationship:

Greenup ≤ α log
2
(Speedup)

where α > β, and in our specific case, β falls within the

interval (2.84; 2.85). This leads to a research question: What

is the value of α for other architectures?

V. CONCLUSION

This study explores scalability in relation to execution time

and energy consumption for two matrix factorizations (LU and

Cholesky) derived from the MKL library. To minimize energy

consumption in these factorizations, we employed the DVFS

technique. This approach allowed us to adjust clock frequency

settings at the operating system level without modifying the

implementation code.

We examined the impact of two parameters, clock fre-

quency, and the number of threads, on execution time and

energy consumption on a multicore machine. Execution time

consistently decreases when using the highest clock frequency

and the maximum number of threads for both factorizations.

However, the same cannot be said for energy savings, as it

varies based on the number of threads and clock frequency

less regularly (see Table III).

Speedup and Greenup values increase with an expanding

number of threads and typically decrease with a lower clock

frequency. Experimental results reveal that Speedup values

consistently surpass Greenup values, sometimes reaching up

to 74% higher for specific combinations of clock frequency

and thread count.

A deeper analysis of the research results, extended by

tests of the LU factorization algorithm with pivoting and a

study of the correlation between operation time and energy

consumption using the Powerup and EDP metrics, is presented

in [4]. Future research will address poor scalability by exam-

ining its impact on execution time and energy consumption in

various multi-core machines and applications. Poor scalability

entails keeping the problem size per processor constant while

adding more computational units. Additionally, a key aspect

to investigate is the correlation between strong and weak

scalability regarding energy consumption.

REFERENCES

[1] Intel Math Kernel Library, 2014. http://software.intel.com/en-
us/articles/intel-mkl/.

[2] S. Abdulsalam, Z. Zong, Q. Gu, and Q. Meikang. Using the greenup,
powerup, and speedup metrics to evaluate software energy efficiency. In
2015 Sixth International Green and Sustainable Computing Conference

(IGSC), pages 1–8, 2015. 10.1109/IGCC.2015.7393699.

[3] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, and D. Sorensen. LAPACK users’

Guide. Society for Industrial and Applied Mathematics. SIAM, 1999.
10.1137/1.9780898719604.

[4] B. Bylina and M. Piekarz. Time–energy correlation for multithreaded
matrix factorizations. Energies, 16, 08 2023. 10.3390/en16176290.

[5] J. W. Demmel. Applied Numerical Linear Algebra. SIAM, 1997.
10.1137/1.9781611971446.

BEATA BYLINA, MONIKA PIEKARZ: THE SCALABILITY IN TERMS OF THE TIME AND THE ENERGY 899

Fig. 4: Speedup for LU and Cholesky – left; Greenup of LU and Cholesky – right (p denotes number of threads).

[6] J. Dongarra, J. DuCroz, I. S. Duff, and S. Hammarling. A set of level-3
Basic Linear Algebra Subprograms. ACM Trans. Math. Software, 16:1–
28, 1990. 10.1145/77626.79170.

[7] K. Khan, M. Hirki, T. Niemi, J. Nurminen, and Z. Ou. RAPL in
action: Experiences in using RAPL for power measurements. ACM

Transactions on Modeling and Performance Evaluation of Computing

Systems (TOMPECS), 3, 01 2018. 10.1145/3177754.

[8] Y. Ngoko and D. Trystram. Scalability in parallel processing. In S. K.
Prasad, A. Gupta, A. L. Rosenberg, A. Sussman, and C. C. Weems,

editors, Topics in Parallel and Distributed Computing, Enhancing the Un-

dergraduate Curriculum: Performance, Concurrency, and Programming

on Modern Platforms, pages 79–109. Springer, 2018. 10.1007/978-3-319-
93109-8_4.

[9] M. Weiser, B. Welch, A.J. Demers, and S. Shenker. Scheduling for
reduced cpu energy. 1st OSDI, pages 13–23, 11 1994.

900 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

