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Abstract—Embedded systems (ES) are wide-spread in our
world and responsible for many critical systems. More recently,
machine learning (ML) tools have become a well-established
solution for data-intensive tasks, but their application in em-
bedded systems is still gaining traction and their real-time
performance is often unclear. We provide a (non-extensive) review
of the ML tools that may be suited for deployment in ES,
from which we selected two representative tools – the well-
established Python-based Scikit-Learn, and the interoperability-
oriented ONNX Runtime – to compare their response time. Using
archetypal datasets and four pre-trained ML models, we measure
the prediction time for each sample, for each model, in Scikit-
Learn and ONNX Runtime in a standard desktop (to compare
performance of the tools in the same platform), and for ONNX
Runtime in a representative ES, a Raspberry Pi v4 (to compare
performance of the same tool across platforms). We report that
ONNX considerably improves over Scikit-Learn, and experiences
a negligible performance degradation when ported to the RPi.

Index Terms—Machine Learning, Embedded Systems, Predic-
tion Time, Scikit-Learn, ONNX Runtime

I. INTRODUCTION

Artificial intelligence (AI) and machine learning (ML) have

grown dramatically in recent years, to the point where AI

& ML is becoming a core technological component in many

modern systems. In turn, embedded systems (ES) are a well-

established technology that has enjoyed widespread use in

our world for decades now, inconspicuously ensuring the

efficient execution of a plethora of everyday operations. Many

applications of ES are critical and time-sensitive ones [1]; for

example, the timely detection and mitigation of cyberattacks,

that is crucial for the integrity and dependability of many

modern-world digital systems (e.g., banking sector).

The use of ML in embedded systems has garnered substan-

tial interest, with the topic often being referred to as TinyML.

The challenge is that embedded systems are typically resource-

constrained platforms (ranging from micro-controllers to ARM

or small-scale x86 platforms) and, while there is a plethora

of ML libraries, not all provide the small memory footprint

and stand-alone operation (i.e., sufficiently stripped-down from

external dependencies) necessary for operation in embedded

systems. Furthermore, a common strategy is to carry out

training at the cloud (due to the higher processing capabil-

ities available), whereas the embedded device only performs

prediction. This raises the need for interoperability, as possibly

the ML tool used for training can be different than the one

available at the embedded device. Finally, characterization of

response time is important to design real-time systems. Reports

of execution time and/or speed-up against baselines can be

found (e.g., [2], [3]), but typically for single models and not

considering potential response time variability.

A noteworthy category of solutions are intermediate de-

scription languages, such as Open Neural Network Exchange

(ONNX), and associated runtime environments (RTE), notably

ONNX Runtime and Tensorflow Lite. Intermediate description

languages describe a (trained) ML model using a (small) set

of operators that the RTE is able to execute. This reduces

computational requirements as it suffices that the RTE imple-

ments that set of operators to produce predictions from a given

model. Downsides are that training may not be available and

that the set of models at disposal may be limited.

In this work we report the performance of two selected

libraries, Scikit-Learn and ONNX Runtime, in two platforms:

a standard desktop and an archetypal embedded system, a

Raspberry Pi v4. We deploy four one-class ML models –

Isolation Forest (iForest), Local Outlier Factor (LOF), One

Class Support Vector Machine (OC-SVM) and Stochastic

Gradient Descent OC-SVM (SGD-SVM) –, that were pre-

trained with network traffic data sets (legitimate and malicious)

to detect cyberattack-related traffic. We show that ONNX

Runtime can offer a speed-up of at least ≈ 14x with respect to

Scikit-Learn for most models when both are executed in the

desktop, and that ONNX Runtime running in the Raspberry

Pi produces speed-ups of at least ≈ 8x against Scikit-Learn

running in the desktop.

The structure of this paper is as follows. Section II portrays

a motivating use-case and relevant ML models. An overview

on ML for ES is provided in Section III. Section IV reports

response times for selected ML libraries and computing plat-

forms. Section V draws final remarks.

II. MOTIVATING USE-CASE AND SELECTED ML TOOLS

A. Cybersecurity Use-Case

Cybersecurity is a domain of notable technological and

societal impact in the modern world. The exposure surface

for cyberattacks, and for recruiting devices that can be com-

mandeered to participate in those attacks, increases everyday
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Fig. 1: Architecture of a cloud-edge system.

as the number of low-security IoT devices grows. This has

been a driver for the increase of Distributed Denial of Service

(DDoS) attacks, that aim at disrupting the servers of high-

profile online services (e.g., Amazon, Google or Netflix) by

having a very large number of infected devices (typically

vulnerable IoT devices) issuing dummy requests to those

servers. Internet Service Providers (ISP), that enable Internet

service at customer premises through a Customer-Premises

Equipment (CPE), are interested in mitigating the involvement

of their customers’ devices in cyberattacks through the use of

Intrusion Detection Systems (IDS). The fastest response time

is attained by deploying the IDS the closest possible to the

targeted (or involved) nodes; for the ISP, this is the CPE.

Machine learning, whose successful application to cyberse-

curity is well documented [4]–[6], can help addressing this

issue by learning network traffic patterns that are legitimate,

and apply that knowledge to identify anomalous patterns that

may concern malicious traffic. However, the CPE is often an

embedded system with relatively few computational resources;

while it can perform model prediction, it lacks the power to

perform training, that ends up taking place in the cloud. The

question arises of how to transfer models trained in the cloud,

often with a state-of-the-art ML library, to the embedded

system, that often will support only a limited set of ML

libraries. Figure 1 presents the architecture of a cloud/edge

system, and how can an ML-based IDS be deployed by

leveraging the resource-rich cloud for training and transferring

trained models to the resource-constrained CPE. Additional

details on this use-case can be found in [7].

B. Datasets & ML Tools

To enable the presented use-case, we prepared datasets of

network traffic (both legitimate and malicious) from publicly

available sources, and trained four models to produce a ML

mechanism that detect anomalous (potentially malicious) traf-

fic. The details are described in [6]. We focus on One-Class

(OC) models, i.e., models trained with samples of a single

class to create a boundary around these, against which outliers

can be detected. This semi-supervised approach allows the

models to learn the regular (legitimate) traffic at a customer’s

network, and report anomalies that can potentially reveal

themselves to be malicious traffic. All models were trained

using Scikit-Learn [8], a free Python library that enjoys wide-

spread use in the ML community.

The four selected models are reviewed next for convenience:

Isolation forest [9]: an unsupervised mechanism based on

decision trees. It leverages the assumption that an anomalous

sample requires less partitioning steps to be isolated. Thus, an

isolation forest work by recursively generating partitions, by

randomly splitting an attribute’s value between the minimum

and maximum values allowed for that attribute, until a target

sample is contained in its own partition. Anomalies will

require less partitions to be isolated.

Local Outlier Factor (LOF) [10]: LOF identifies local out-

liers by measuring the deviation of the density of a data point

to its neighbors. The k-Nearest Neighbors is used to compute

the reachability distance and local reachability density of each

data point. The associated LOF score is calculated as the

ratio of its local reachability density to the densities of its k-

nearest neighbors. Points with high LOF scores are considered

outliers. The value k (number of nearest neighbors) must be

chosen carefully to avoid overfitting or underfitting.

One-Class Support Vector Machines [11]: traditional

Support Vector Machines (SVM) select a decision boundary

for which the margin between data points of different classes

is maximized. Other interpretation is that SVMs maximize

the distance between the convex hulls of points belonging

to each class. One-Class SVM (OC-SVM) applies the same

boundary-based mechanism for semi-supervised learning. It

uses a hypervolume to encompass all of the instances; points

outside the hypervolume are classified as anomalies.

Stochastic Gradient Descent [One Class] SVM (SGD-

SVM) [12]: an online linear version of One-Class SVM,

using a stochastic gradient descent (SDG). SDG algorithms

are suited for applications where the number of data points

and the problem dimensionality are both very large.

III. OVERVIEW OF ML TOOLS FOR EMBEDDED SYSTEMS

We review (not exhaustively) ML libraries targetting embed-

ded systems and tools for interoperability and transpilation.

A. ML Libraries for Embedded Systems

TensorFlow (TF) 1 is an open-source library for AI/ML,

composed of datasets and pre-trained models developed and

released by the Tensorflow Community. Colaboratory (Colab)

for instance, is a free Jupyter notebook environment and runs

in the cloud so the user doesn’t need to setup anything in his

local machine. This library is supported in Haskell, C#, Julia,

R, Ruby, Scala and Javascript.

Armadillo 2 is a library in C++ for linear algebra and scien-

tific computing. It can use Open Multi-Processing (OpenMP),

a free easy-to-use library for parallel computing.

mlpack 3 is a C++ ML library focused in providing fast and

extensible implementations of ML models. This library is the

combination of Armadillo, ensmallen, a library for numerical

optimization and cereal, a serialization library.

1https://www.tensorflow.org/ (Note: all links last accessed on 2023-07-31)
2https://arma.sourceforge.net/
3https://mlpack.org/
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Shogun 4 is an open-source library in C++ for machine

learning development. It provides interfaces for C++, Python,

Octave, R, Java, Lua, C#, Ruby and implements all the

standard ML algorithms and some advanced as well. It is

available for most operating systems.

SHARK 5 is an open-source machine learning library

implemented in C++. It provides neural networks, kernel-based

learning algorithms, linear and nonlinear optimization methods

and is available for the most common operating systems.

A notable mention also goes to CAFFE 6, that focus on

deep learning, thus supporting mostly neural networks (e.g.,

CNN, RCNN, LSTM).

There are also efforts focusing on deploying specific ML

models in resource-scarce devices. The authors of [13] present

ProtoNN, an algorithm that replicates k-Nearest Neighbor

(k-NN) but has several orders lower storage and prediction

complexity, and ProtoNN models can be deployed in very

scarce plaforms (e.g. an Arduino UNO with 2kB RAM). The

authors of [3] presents SeeDot, a domain-specific language to

express ML inference algorithms and a compiler that compiles

SeeDot programs to fixed-point code that can efficiently run on

constrained IoT devices. In [2] CMSIS-NN is presented, which

is essentially efficient kernels to maximize the performance

and minimize memory footprint of neural network applications

on Arm Cortex-M processors.

B. Interoperability of ML models

The following options, rather than tools, are standards

to provide a common description of ML models, therefore

enabling porting between libraries.

Open Neural Network Exchange (ONNX) 7 is an open

specification with the following components: a definition of an

extensible computation graph model; definitions of standard

data types; and definitions of built-in operators. The first two

make up the ONNX Intermediate Representation (or IR). In

ONNX IR, each computation dataflow graph is structured

as a list of nodes that form an acyclic graph. Each node

is a call to an operator, and they have one or more inputs

and outputs. Built-in operators are divided into a set of

primitive operators and functions (the latter being, essentially,

sub-graphs using primitive operators and/or other functions).

Operators are implemented externally to the graph, but the

set of built-in operators is portable across frameworks. Every

framework supporting ONNX will provide implementations

of these operators on the applicable data types. ONNX is

compatible with at least 29 frameworks and converters and

30 inference runtimes.

Predictive Model Markup Language (PMML) 8 is a

document format based on the Extensible Markup Language

(XML) that can be used to described machine learning algo-

rithms. It enables ML model porting between existing support-

4https://github.com/Kolkir/mlcpp/tree/master/classification shogun
5https://www.shark-ml.org/
6https://caffe.berkeleyvision.org/
7https://onnx.ai/about.html
8https://dmg.org/pmml/v4-1/GeneralStructure.html

ing libraries; these exist for C++, such as cPMML 9, and for

Python, notably with the Scikit-Learn library sklearn2pmml
10, among others.

C. Transpilers

Transpilers translate a source code into a language different

than the original one. The resulting code is described natively

in the target language.

Sklearn-porter 11 is a Python library specifically developed

to transpile ML models built with Scikit-Learn to other pro-

gramming languages such as C, GO and JavaScript.

Model 2 Code Generator (m2cgen) 12 is a free, open-

source library mainly developed in Python, that transpiles

trained statistical models (trained, e.g., with Scikit-Learn or

lightning libraries) into a native code for at least 16 different

programming languages (R, Visual Basic, Haskell, C#, etc.).

D. Runtime Environments

A third dimension discussed here are tools that offer runtime

environments (or simply runtime). Some of the aforemen-

tioned ML libraries leverage mechanisms for intermediate

model representation that can be compiled or interpreted by a

runtime environment. This solution avoids the need to deploy

the entire library at the target device, thus resulting in a

lightweight version of the initial library.

ONNX Runtime 13 is a cross-platform machine-learning

model accelerator, used to deploy ONNX format models into

production. It is meant to enable acceleration of machine

learning inferencing across a variety of target hardware.

Tensorflow Lite 14 is a TF-variant tailored for resource-

constrained systems that also uses a runtime. Using Tensorflow

Lite, the target devices do not require the full TF library instal-

lation, but solely the tflite runtime to perform inference. This

tool eases the computational requirements of the target system,

but its accuracy can be compromised if it uses operations

not supported by the Tensorflow Lite. A recent paper reports

TensorFlow Lite Micro [14], that adopts an interpreter-based

approach to address ML efficiency and fragmentation in ES.

IV. PREDICTION TIME COMPARISON OF SELECTED TOOLS

A. Selected Tools & Experimental Setup

We have picked ONNX Runtime as the target ML tool

to evaluate, and Scikit-Learn as the baseline reference. The

option for Scikit-Learn was straightforward, as it is one of

the most widely-used ML tools. It is also the tool used to

train the models used in these measurements. As for the tools

for deployment in embedded systems, we opted for ONNX

Runtime based on a mix of our own requirements (that,

when crossed against the available documentation, lead us

to eliminate the remaining candidate tools), and impressions

9https://amadeusitgroup.github.io/cPMML/
10https://github.com/jpmml/sklearn2pmml
11https://github.com/nok/sklearn-porter
12https://github.com/BayesWitnesses/m2cgen
13https://onnxruntime.ai/
14https://www.tensorflow.org/lite
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TABLE I: Dataset descriptions.
Dataset Traffic type # samples # Features

IOT23 [15] IoT devices 487 26
Botnet [16] Data theft 196 26

TABLE II: Selected platforms.
Desktop Raspberry Pi

Number of cores 4 4
Frequency utilized 2.00 GHz 600.00 MHz
RAM memory 9.64 GB 1.91 GB
Operating System Ubuntu 20.04.6 LTS Debian GNU/Linux 11
Python version 3.8.10 3.9.2
ONNX version 1.13.1 N/A
ONNXRuntime 1.14.1 1.14.1

acquired from experimenting with the other high-potential

candidates. We lay down next the authors’ impressions of the

reviewed tools; this should not be interpreted, in any way, as

a methodical and criterious analysis of these tools.

ML libraries: Tensorflow proved to be a collection of

disperse, pre-trained models, making it hard to train new

models from scratch. Armadillo, mlpack, Shogun, SHARK

and Caffe, despite being described in C/C++, do not seem

tailored for deployment in resource-constrained devices.

Interoperability: ONNX provides a clear and well doc-

ument specification of how to convert models between tools,

with extensive software support. PMML enables model porting

between supporting libraries but, as aforementioned, we found

no library to be a suitable candidate.

Transpilers: sklearn-porter is still under development and

the range of models that can be transpiled to C is small (SVM

and Decision Trees/Random Forest). Regarding m2cgen, even

though transpiled models were able to perform closely to

the original model, the tool offers very little documentation,

making it hard to interpret the tool’s output or even understand

how the transpilation process actually occurs.

Runtimes: ONNX Runtime showed up as the best option.

TensorFlow Lite was not explored, as usage of standard

TensorFlow was also not straightforward.

Table I describes the data sets used in this performance

analysis; more details in [6]. Table II presents the charac-

teristics of the selected computing platforms. The models

were converted to the ONNX specification using the sklearn-

onnx library. A variant named ONNX Runtime Optimized, that

optimizes the ONNX graphs describing the models, was also

evaluated. Model accuracy obtained with ONNX Runtime and

its Optimized variant was similar to that of Scikit-Learn.

B. Results

Figure 2 presents the average prediction time (over all input

samples) of the four ML models across the three tools in

the desktop equipment. Presented values are the average time

of prediction for each new sample. We observe that ONNX

produces an acceleration for most models, notably of ≈ 16x

for Isolation Forest, ≈ 14x for OC-SVM, and ≈ 49x for SGD-

SVM. In all this cases, the performance of the ONNX Runtime

and its Optimized version do not differ substantially from each

other. The same is not true, however, for the Local Outlier

Factor (LOF), as shown in Figure 2 (top-right). We observed
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Fig. 2: Average prediction time per ML model on Desktop.
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Fig. 3: Prediction time distribution per library on Desktop.

that ONNX underperforms in this model, taking longer than

the Scikit-Learn. This leaves the door open for a more efficient

implementation of LOF using the ONNX operators.

Figure 3 depicts the distribution of the prediction time of

the various models per tool when executed in the Desktop.

It is noteworthy for that, for ONNX Runtime (vanilla and

Optimized), LOF presents the highest prediction time whereas,

for Scikit-Learn, it is iForest that takes up the most time.

Regarding the distribution of the samples, this is limited in the

case of ONNX Runtime and Optimized to a few occasional

outliers of additional time. For Scikit-Learn, LOF experiences

considerable variability in prediction time. This may be a

trade-off of the Scikit-Learn LOF implementation to achieve

a lower average time for this concrete model.

Figure 4 exhibits the same analysis as Figure 2 for the
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Fig. 5: Prediction time distribution per tool on Raspberry Pi.

second platform. The average of prediction time for the four

ML models in the Raspberry Pi is superior to that of the

Desktop response time; in detail, for Isolation Forest by ≈
81%, for LOF by ≈ 37%; and for OC-SVM by ≈ 43%.

However, when comparing with the Scikit-Learn running in

the desktop, we obtain speedups of ≈ 8x for Isolation Forest,

≈ 9x for OC-SVM, and ≈ 39x for SGD-SVM. Results in

Figure 5 presents little differences to Figure 3 (right and

bottom) where it applies, apart from the generally higher

median values in the Raspberry Pi.

V. CONCLUSION

We reviewed Machine Learning (ML) tools according to

their potential for embedded system. We selected a particular

tool, ONNX Runtime, for comparing prediction time against

the well-established Python-based Scikit-Learn. ONNX Run-

time is capable of running models described in the ONNX

format; the models were trained in Scikit-Learn and exported

to ONNX. The prediction time was measured in two platforms

– a standard desktop and a target embedded system, a Rasp-

berry Pi v4 – for four pre-trained ML models and datasets. We

observe that ONNX Runtime considerably improves over the

prediction time of Scikit-Learn, and experiences a negligible

performance degradation when ported to the RPi. Future work

will evaluate performance on more ML tools and platforms and

investigate trade-offs with model target accuracy.
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