
Abstract—Machine learning algorithms are widely  used in

the assessment of error-proneness in software. We conducted

several experiments with error prediction on public PROMISE

repository.  We  used  Decision  Tree  and  Random  Forest

algorithms.  We  also  examined  techniques  aiming  at  the

improvement of performance and accuracy of the model – such

as  oversampling,  hyperparameter  optimization  or  threshold

adjustment.  The  outcome  of  our  experiments  suggests  that

Random Forest algorithm, with 100 – 1000 trees, can be used to

obtain high values of evaluation parameters such as accuracy

and  balanced  accuracy.  However,  it  has  to  be  implemented

with a set of techniques countering imbalance of the datasets

used  to  assure  high  values  of  precision  and  recall  that

correspond  with  correct  detection  of  erroneous  software.

Additionally,  it  was  shown  that  the  oversampling  and

hyperparameter optimization could be reliably applied to the

algorithm, while threshold adjustment technique was not found

to be consistent. 

Index  Terms—error  prediction,  error  proneness,  decision

tree, random forest, PROMISE repository, machine learning.

I. INTRODUCTION

IGH quality of software is essential in software pro-

duction. Software testing is a key part of the software

development process, especially for quality assurance, but it

requires a lot of time and resources. It is estimated that test-

ing  activities  consume  more  than  half  of  the  cost  of  the

whole software development process [1], [2]. Application of

software error prediction is almost 30% cheaper than testing,

according to recent studies [3]. Ability to predict faulty com-

ponents in the early phase may highly increase cost-effec-

tiveness. There is abundant literature on software defect pre-

diction, some works are mentioned in section II. There are

also several systematic literature reviews on this subject eq.

[4], [5], [6]. 

H

Contemporary solutions put strong emphasis on the usage

of  machine learning algorithms in software defect  predic-

tion. However there are many papers on software error pre-

diction we decided to conduct some experiments on the us-

age  of  machine  learning  algorithms  –  Decision  Tree  and

Random Forest on public PROMISE repository. We wanted

to  examine  the  relationship  between  computational  effort

and accuracy of obtained results. Techniques aiming at the

improvement of performance and accuracy of the model –

such  as  oversampling,  hyperparameter  optimization  or

threshold adjustment were also analyzed and addressed.

Paper is structured as follows. Section II  introduces re-

lated work. Methodology is stated in section III. The experi-

ment and its analysis are presented in section IV. Section V

concludes the paper, highlighting some issues. 

II. RELATED WORK

Lately various studies  have been conducted in  order  to

compare  algorithms  used  to  determine  error-proneness.

Many of them were based on wide variety of machine learn-

ing algorithms [7] and used formerly mentioned PROMISE

[8] repository as its dataset.

Random  Forest,  Naive  Bayes,  J48,  Immunos  1  &  2,

CLONALG, AIRS (Artificial Immune Recognition System

algorithm) 1 & 2 and AIRS 2 Parallel were algorithms stud-

ied by Catal et al. [9],[10]. When AIRS algorithm was taken

into consideration the researchers concluded that the best re-

sults were obtained when CK metrics and LOC metric were

combined. 

AIRS  is  a  system  inspired  by  human’s  immunological

system with B-cells and T-cells as our guardians. In the past

the main application was supervised learning, however, in

2001 it was demonstrated that algorithms based on this sys-

tem can be also used for  classification domain  [9].  Other

slightly different algorithms using AIS include CLONALG

[11] and Immunos [12]. 

As previously mentioned, Catal et al. [9] have also directed

their research towards Random Forests (RF). This algorithm is

based on existence of high number of so called “trees”. Each

tree is independent, but at the end the majority voting result of

all the trees in the forest is taken as a final result. Model can

be  trained  with  various  performance  enhancing
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techniques. One of them is bootstrap sampling or bagging 

(bootstrap aggregating), which means randomly taking only 

small part of the dataset for each training process and repeat-

ing it multiple times. In case of singular trees one may also 

consider pruning – technique based on removal of some of the 

nodes that are not essential and could result in overfitting. 

Nonetheless, as it was stated in study by L. Breiman [13] that 

procedure is not needed in case of RF algorithm when bag-

ging is applied. According to the study by Mundada et al. [14] 

RF is the best algorithm for NASA datasets, which are a part 

of the PROMISE repository. 

J48 is an algorithm that implements C4.5 decision tree 

learning [9], [15].  

Mundada et al. [14] directed their study towards Artificial 

Neural Network (ANN) and Resilient Back Propagation 

(RBP) using JM1 dataset. As a result of this experiment, re-

searchers concluded that the better accuracy of ANN algo-

rithm was reached, when compared with already existing an-

alytical models.  

Bishnu et al. [16] studied performance of QUAD Tree-

Based K-Means Clustering Algorithm using AR3, AR4 and 

AR5 datasets. It was concluded that error rates of this algo-

rithm are comparable to the ones obtained with other algo-

rithms. In order to obtain the best values, data sets partitioning 

has to ensure that the sum of distances within the clusters is 

properly reduced [17].  

 Okutan and Taner [18] used 9 datasets from PROMISE 

dataset to research Bayesian Networks. The results of the 

study stated that the LOC, RFC and LOCQ metrics are the 

best choice due to their effectiveness when this algorithm is 

considered. An important advantage of this network is the fact 

that it can be used even when the metrics are incomplete for 

some sets. 

Kumudha et al. [19] have introduced a significant develop-

ment in the field. Their research focused on conventional Ra-

dial Basis Function Neural Network (RBFNN) and the novel 

Adaptive Dimensional Biogeography Based Optimization 

Model (ADBBO). Having based the research in CM1, JM1, 

KC1, KC2, and PC1 datasets, results obtained during this 

study showed that newly proposed method is more effective 

when compared with already existing algorithms.  

Gupta and Gupta. [20] have used derived metrics from 

PROMISE repository datasets to determine fault classifica-

tion. In this study, the emphasis was put on the data distribu-

tion and skewness rather than the algorithms itself.  

Erturk and Akcapinar [21] have used projects from PROM-

ISE repository to conduct research on Fuzzy Inference Sys-

tems (FIS) [22] and Adaptive Neuro Fuzzy Inference System 

(ANFIS). Those new methods deploy iterative software error-

proneness prediction to automatically detect fault prone sec-

tions. 

Alighardashi et al. [23] have used ten PROMISE and 

NASA datasets to test feature selection method. Five filter 

methods were used during this study. Weighted filter (WF) 

method was determined to be able to detect best features that 

would allow the fault prediction accuracy to be the increased 

in the fastest way possible.  

After preparation of the above related work recent publica-

tions in this domain appeared e.g. [24], [25], [26], [27]. These 

works are not included in the above text. 

III. METHODOLOGY 

For the purpose of the experiment Decision Tree and Ran-

dom Forest algorithms [9] were selected. Random Forest, be-

ing composed of Decision Trees, is a flexible algorithm that 

can be applied both in classification and regression problems. 

As the purpose of the experiment is to assess error-proneness 

of the samples within the datasets, one can consider the prob-

lem primarily as classification problem. One can also assume 

that there are two classes of results - code either is correct or 

incorrect. However, as it is possible to apply regression ver-

sion of Random Forest algorithm in this particular scenario 

and to some extend treat its values as a probability of exist-

ence of an error, it was used and compared against its classi-

fication counterpart. 

Python [28] was used for implementation and functions 

from NumPy [29], Pandas [30], scikit-learn [31] and imbal-

anced-learn [32] libraries were a basis for the implementation 

of the algorithm and the evaluation of performance such as 

accuracy, recall, precision, etc. 

Hyperparameter optimization was not initially performed 

as some hyperparameters, such as forest size, were the focus 

of the study and in order to better understand what are the 

disadvantages of the basic model. Optimization of multiple 

hyperparameters would result in largely extended training 

times, especially if larger forests were to be considered. In 

further parts optimization techniques were used in order to in-

crease the performance and assess the full potential of Ran-

dom Forest in error-prediction field.  

Similarly, SMOTE [33] oversampling was another tech-

nique that was not used initially, but was introduced later in 

order to improve the performance of the model. By default 

bootstrapping was enabled throughout the whole experiment 

and pruning was not performed as recommended by Breiman 

[13]. The order of processes is presented in Fig1. 

 

 

Fig 1. Phases of experiment  
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IV. EXPERIMENTS 

Public NASA datasets were used, including those available 

within the PROMISE repository. The scope of the tests in-

cludes CM1, KC1, KC2, PC1, PC2 and PC3 sets. 

Experiments were conducted on two devices: personal lap-

top and virtual machine provided by the Warsaw University 

of Technology.  

A. Experiment results  

Experiment was divided into a series of incremental steps. 

Each step introduced new technique or method, or combined 

those previously assessed. The final outcome was the process 

presented in Fig 1.  

Initially the datasets were analyzed and some results of 

analysis are presented in Table I. It can be seen that datasets 

are highly imbalanced.  

TABLE I. 

DATASET PROPERTIES 

Dataset  Dataset size  Error-free 

software in 

dataset [%]  

Number of 

metrics  

CM1  498  90.2  22  

KC2  522  79.5  22  

PC1  1109  93.1  22  

PC3  1563  89.8  38  

KC1  2109  84.6  22  

PC2  5589  99.6  37  

Before introduction of any enhancement mechanism, it was 

assumed that the optimal number of trees for the experiment 

should be in the range from 100 to 1000. This observation was 

confirmed throughout the experiment. Above 1000 trees any 

substantial improvement to the evaluation metrics was not ob-

served as shown in Table II. It is worth noting that the training 

time grows almost linearly with the forest size, therefore 

lower forest sizes are generally preferred when training time 

is limited. Even though, all experiments were performed for 

forest sizes of 1 (decision tree), 10, 100, 1000, 10000, 25000 

and 50000, results provided in this paper were obtained for 

forests with 1000 trees unless stated otherwise. 

TABLE II. 

BASIC CLASSIFICATION ACCURACY  

Number of 

trees 

1 10 100 1000 10000 

Dataset Accuracy 

CM1 0.81 0.87 0.86 0.86 0.86 

KC1 0.81 0.84 0.85 0.85 0.85 

KC2 0.74 0.82 0.82 0.80 0.82 

PC1 0.90 0.91 0.92 0.92 0.92 

PC2 0.99 0.99 0.99 0.99 0.99 

PC3 0.85 0.90 0.90 0.90 0.90 

Even though, accuracy score is rather high, it is usually 

very close to the percentage of error-free samples in the da-

taset. Analyzing metrics such as recall, precision, and bal-

anced accuracy it was clearly visible that model tends to clas-

sify vast majority of samples as error-free, thus making from 

few to even no useful detections (true positive values) as in 

case of dataset CM1, as shown in Table III. 

TABLE III. 

BASIC CLASSIFICATION FOR CM1 DATASET 

Accuracy 0.86 

Recall 0.00 

Precision 0.00 

Balanced accuracy 0.49 

F1 score 0.00 

First technique aiming to improve error-prone software de-

tection that was assessed was threshold adjustment. As this 

problem deals with two classes – erroneous software and er-

ror-free software it is primarily a classification problem. 

However, one may take a regression approach with the 0.5 

threshold as a default one. Adjustment of that selection 

threshold, either its lowering or increasing, could potentially 

lead to better classification. Exemplary outcome of the exper-

iment for CM1 dataset is presented in Fig 2.  

  

Fig 2. Threshold adjustment for CM1 dataset  

Slight change of the threshold around the 0.5 mark in some 

cases, provided some minor improvements. Nonetheless, no 

direct pattern could be established observing various datasets 

and forest sizes. Moreover, it did not help in any way to tackle 

the problem of datasets imbalance, still being strongly biased 

towards error-free classes. Given method was also combined 

with subsequently described methods, however, at each step 

it was too unpredictable and, as a result, it was discarded. 

Further studies were done on SMOTE oversampling tech-

nique. As presented in Table IV, it aimed to reduce the learn-

ing bias resulting from dataset imbalance by equalizing pro-

portions via creating artificial samples. 

TABLE IV. 

DATASET SIZES BEFORE AND AFTER OVERSAMPLING  

 Before SMOTE After SMOTE 

Faulty Not faulty Faulty Not faulty 

CM1 45 428 428 428 

KC1 307 1696 1696 1696 

KC2 96 399 399 399 

PC1 73 980 980 980 

PC2 21 5288 5288 5288 

PC3 151 1333 1333 1333 

As presented in Table V and Table VI, significant improve-

ments could be noticed. Not only, was the accuracy improved, 

but more importantly precision and recall values also, which 

indicate that the true error-free software was now properly de-

tected and classified.  
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TABLE V. 

DATASET SIZES BEFORE AND AFTER OVERSAMPLING  

 Accuracy 

Before  After 
CM1 0.86 0.94 

KC1 0.85 0.91 

KC2 0.80 0.85 

PC1 0.92 0.96 

PC2 0.99 1.00 

PC3 0.90 0.93 

TABLE VI. 

OVERSAMPLED CLASSIFICATION FOR CM1 DATASET 

Accuracy 0.94 

Recall 0.98 

Precision 0.88 

Balanced accuracy 0.91 

F1 score 0.93 

In the final part of the experiment hyperparameter optimi-

zation for the previously analyzed oversampling technique 

was added. Similarly to the forest size selection, this step be-

comes more and more computationally intensive with the in-

crease in number of the combinations that have to be consid-

ered. Performing grid search and cross-validation proved to 

be successful in improving results, as can be seen in Table 

VII. Comparison of balanced accuracies obtained throughout 

the experiment was presented in Fig 3. 

TABLE VII. 

RESULTS AFTER HYPERPARAMETER OPTIMIZATION  

 Dataset 
CM1  KC1  KC2  PC1  PC2  PC3  

Accuracy 0.95 0.91 0.87 0.98 1.00 0.94 

Recall 0.98 0.91 0.89 0.98 1.00 0.95 

Precision 0.91 0.91 0.86 0.97 0.99 0.93 

F1 score 0.95 0.91 0.87 0.98 1.00 0.94 

Balanced 
accuracy 

0.95 0.91 0.86 0.98 1.00 0.94 

 

Fig 3. Balanced accuracy comparison 

B. Comparison with other studies  

Comparing obtained results with other studies within the 

domain, one can reference AUC obtained in a study by Catal 

et al. [10]. As presented in Fig. 4, results for all of the datasets 

that were covered by both experiments have significantly 

improved. 

 Nonetheless, when comparing the results with studies 

based on neural networks, such as the ones obtained via 

implementation of ADBBO by P. Kumudha et al. [19], pre-

sented in Fig. 5, it can be observed that the Random Forest 

provided better results for PC1 and CM1 datasets, while it was 

outperformed by Neural Network in case of KC1 and KC2 

datasets. 

 
Fig 4. AUC comparison with prior study 

 
Fig 5. AUC comparison with prior study 

A recent study by T.F. Husin et al. [26] was analyzing Least 

Square Support Vector Machine (LSSVM) combined with the 

use of SMOTE technique. Even though, it was concluded that 

SMOTE significantly improved obtained results, as presented 

in Fig. 6, those results were not close to the results obtain in 

this or any of two previously mentioned studies. 

 
Fig 6. AUC comparison with new study 

V. CONCLUSIONS 

The aim of our study was to assess the viability of applica-

tion of Decision Tree and Random Forest algorithms within 

the scope of error-proneness detection field. The series of ex-

periments was conducted for six different datasets and total 

algorithm training time was approximately 150 hours with the 

majority of this time spent on the final version. Therefore, due 

to vastness of collected data detailed results presented in sec-

tion IV focused only one of them – CM1. Study was per-

formed on the data acquired from PROMISE repositories 

started with the analysis of the most basic models, which 

turned out to be insufficient due to the bias towards error-free 

classification resulting from dataset imbalance. Subsequently, 

a set of techniques was deployed in order to improve its per-

formance. They included hyperparameter optimization, basic 
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feature  selection,  threshold  adjustment  and  SMOTE over-
sampling technique. 

As a result it was possible to observe that implementation
of mechanisms aiming at improvement of performance of al-
gorithms resulted in models being able to quite accurately
classify samples present within PROMISE repository. High
values  of  precision and recall,  in  most  cases  above 90%,
may assure one that software errors can be well detected us-
ing Random Forest algorithm. It was also shown that usually
random forests of sizes between 100 and 1000 are the most
appropriate as above that values accuracy does not seem to
improve,  while  computation  time  does.  Nonetheless,  it  is
also worth mentioning that  single decision trees also pro-
vided  useful  results,  however,  they  cannot  quite  compete
with the anti-overfitting properties of the forest. Further, if
predictions trained on PROMISE datasets are to be reason-
able,  one  shall  counter  negative  effects  of  imbalanced
dataset – oversampling was proved to be a viable solution
that significantly increased values of evaluation parameters
such as balanced accuracy. Additionally, if training time is
not  limited,  hyperparameter  optimization  may  further  im-
prove obtained results. Finally, there has not been found any
reason to use regression instead of classification it this par-
ticular classification problem. Throughout the study, it was
found  that  threshold  adjustment  technique  could  result  in
slight improvements, however, it could not be reliably used. 

In order to further improve results obtained by Random
Forest, one may consider application of more advanced fea-
ture selection methods. Similarly, it would be reasonable to
use MOOD and QMOOD object metrics. Further, one could
consider creation of their  own datasets,  based on publicly
available repositories.  Performing a training on data gath-
ered from projects in the same language, technology or do-
main as the target test set could also make prediction algo-
rithm more sensitive to crucial  aspects  of  assessing error-
proneness for a given case.
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