
Abstract—Machine learning algorithms are widely used in

the assessment of error-proneness in software. We conducted

several experiments with error prediction on public PROMISE

repository. We used Decision Tree and Random Forest

algorithms. We also examined techniques aiming at the

improvement of performance and accuracy of the model – such

as oversampling, hyperparameter optimization or threshold

adjustment. The outcome of our experiments suggests that

Random Forest algorithm, with 100 – 1000 trees, can be used to

obtain high values of evaluation parameters such as accuracy

and balanced accuracy. However, it has to be implemented

with a set of techniques countering imbalance of the datasets

used to assure high values of precision and recall that

correspond with correct detection of erroneous software.

Additionally, it was shown that the oversampling and

hyperparameter optimization could be reliably applied to the

algorithm, while threshold adjustment technique was not found

to be consistent.

Index Terms—error prediction, error proneness, decision

tree, random forest, PROMISE repository, machine learning.

I. INTRODUCTION

IGH quality of software is essential in software pro-

duction. Software testing is a key part of the software

development process, especially for quality assurance, but it

requires a lot of time and resources. It is estimated that test-

ing activities consume more than half of the cost of the

whole software development process [1], [2]. Application of

software error prediction is almost 30% cheaper than testing,

according to recent studies [3]. Ability to predict faulty com-

ponents in the early phase may highly increase cost-effec-

tiveness. There is abundant literature on software defect pre-

diction, some works are mentioned in section II. There are

also several systematic literature reviews on this subject eq.

[4], [5], [6].

H

Contemporary solutions put strong emphasis on the usage

of machine learning algorithms in software defect predic-

tion. However there are many papers on software error pre-

diction we decided to conduct some experiments on the us-

age of machine learning algorithms – Decision Tree and

Random Forest on public PROMISE repository. We wanted

to examine the relationship between computational effort

and accuracy of obtained results. Techniques aiming at the

improvement of performance and accuracy of the model –

such as oversampling, hyperparameter optimization or

threshold adjustment were also analyzed and addressed.

Paper is structured as follows. Section II introduces re-

lated work. Methodology is stated in section III. The experi-

ment and its analysis are presented in section IV. Section V

concludes the paper, highlighting some issues.

II. RELATED WORK

Lately various studies have been conducted in order to

compare algorithms used to determine error-proneness.

Many of them were based on wide variety of machine learn-

ing algorithms [7] and used formerly mentioned PROMISE

[8] repository as its dataset.

Random Forest, Naive Bayes, J48, Immunos 1 & 2,

CLONALG, AIRS (Artificial Immune Recognition System

algorithm) 1 & 2 and AIRS 2 Parallel were algorithms stud-

ied by Catal et al. [9],[10]. When AIRS algorithm was taken

into consideration the researchers concluded that the best re-

sults were obtained when CK metrics and LOC metric were

combined.

AIRS is a system inspired by human’s immunological

system with B-cells and T-cells as our guardians. In the past

the main application was supervised learning, however, in

2001 it was demonstrated that algorithms based on this sys-

tem can be also used for classification domain [9]. Other

slightly different algorithms using AIS include CLONALG

[11] and Immunos [12].

As previously mentioned, Catal et al. [9] have also directed

their research towards Random Forests (RF). This algorithm is

based on existence of high number of so called “trees”. Each

tree is independent, but at the end the majority voting result of

all the trees in the forest is taken as a final result. Model can

be trained with various performance enhancing

Experiments on Software Error Prediction Using Decision Tree and

Random Forest Algorithms

Ilona Bluemke
0000-0002-2894-5976

Warsaw University of Technology,

Institute of Computer Science,

Nowowiejska 15/19 00-665

Warsaw, Poland

Email: Ilona.Bluemke@pw.edu.pl

Paweł Borsukiewicz
00000-0002-2934-6115

Warsaw University of Technology,

Institute of Computer Science,

Nowowiejska 15/19 00-665

 Warsaw, Poland

Email:

pborsukiewicz99@gmail.com

Proceedings of the 18
th Conference on Computer

Science and Intelligence Systems pp. 865–869

DOI: 10.15439/2023F363

ISSN 2300-5963 ACSIS, Vol. 35

IEEE Catalog Number: CFP2385N-ART ©2023, PTI 865 Thematic track: Software Engineering for

Cyber-Physical Systems

techniques. One of them is bootstrap sampling or bagging

(bootstrap aggregating), which means randomly taking only

small part of the dataset for each training process and repeat-

ing it multiple times. In case of singular trees one may also

consider pruning – technique based on removal of some of the

nodes that are not essential and could result in overfitting.

Nonetheless, as it was stated in study by L. Breiman [13] that

procedure is not needed in case of RF algorithm when bag-

ging is applied. According to the study by Mundada et al. [14]

RF is the best algorithm for NASA datasets, which are a part

of the PROMISE repository.

J48 is an algorithm that implements C4.5 decision tree

learning [9], [15].

Mundada et al. [14] directed their study towards Artificial

Neural Network (ANN) and Resilient Back Propagation

(RBP) using JM1 dataset. As a result of this experiment, re-

searchers concluded that the better accuracy of ANN algo-

rithm was reached, when compared with already existing an-

alytical models.

Bishnu et al. [16] studied performance of QUAD Tree-

Based K-Means Clustering Algorithm using AR3, AR4 and

AR5 datasets. It was concluded that error rates of this algo-

rithm are comparable to the ones obtained with other algo-

rithms. In order to obtain the best values, data sets partitioning

has to ensure that the sum of distances within the clusters is

properly reduced [17].

 Okutan and Taner [18] used 9 datasets from PROMISE

dataset to research Bayesian Networks. The results of the

study stated that the LOC, RFC and LOCQ metrics are the

best choice due to their effectiveness when this algorithm is

considered. An important advantage of this network is the fact

that it can be used even when the metrics are incomplete for

some sets.

Kumudha et al. [19] have introduced a significant develop-

ment in the field. Their research focused on conventional Ra-

dial Basis Function Neural Network (RBFNN) and the novel

Adaptive Dimensional Biogeography Based Optimization

Model (ADBBO). Having based the research in CM1, JM1,

KC1, KC2, and PC1 datasets, results obtained during this

study showed that newly proposed method is more effective

when compared with already existing algorithms.

Gupta and Gupta. [20] have used derived metrics from

PROMISE repository datasets to determine fault classifica-

tion. In this study, the emphasis was put on the data distribu-

tion and skewness rather than the algorithms itself.

Erturk and Akcapinar [21] have used projects from PROM-

ISE repository to conduct research on Fuzzy Inference Sys-

tems (FIS) [22] and Adaptive Neuro Fuzzy Inference System

(ANFIS). Those new methods deploy iterative software error-

proneness prediction to automatically detect fault prone sec-

tions.

Alighardashi et al. [23] have used ten PROMISE and

NASA datasets to test feature selection method. Five filter

methods were used during this study. Weighted filter (WF)

method was determined to be able to detect best features that

would allow the fault prediction accuracy to be the increased

in the fastest way possible.

After preparation of the above related work recent publica-

tions in this domain appeared e.g. [24], [25], [26], [27]. These

works are not included in the above text.

III. METHODOLOGY

For the purpose of the experiment Decision Tree and Ran-

dom Forest algorithms [9] were selected. Random Forest, be-

ing composed of Decision Trees, is a flexible algorithm that

can be applied both in classification and regression problems.

As the purpose of the experiment is to assess error-proneness

of the samples within the datasets, one can consider the prob-

lem primarily as classification problem. One can also assume

that there are two classes of results - code either is correct or

incorrect. However, as it is possible to apply regression ver-

sion of Random Forest algorithm in this particular scenario

and to some extend treat its values as a probability of exist-

ence of an error, it was used and compared against its classi-

fication counterpart.

Python [28] was used for implementation and functions

from NumPy [29], Pandas [30], scikit-learn [31] and imbal-

anced-learn [32] libraries were a basis for the implementation

of the algorithm and the evaluation of performance such as

accuracy, recall, precision, etc.

Hyperparameter optimization was not initially performed

as some hyperparameters, such as forest size, were the focus

of the study and in order to better understand what are the

disadvantages of the basic model. Optimization of multiple

hyperparameters would result in largely extended training

times, especially if larger forests were to be considered. In

further parts optimization techniques were used in order to in-

crease the performance and assess the full potential of Ran-

dom Forest in error-prediction field.

Similarly, SMOTE [33] oversampling was another tech-

nique that was not used initially, but was introduced later in

order to improve the performance of the model. By default

bootstrapping was enabled throughout the whole experiment

and pruning was not performed as recommended by Breiman

[13]. The order of processes is presented in Fig1.

Fig 1. Phases of experiment

866 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

IV. EXPERIMENTS

Public NASA datasets were used, including those available

within the PROMISE repository. The scope of the tests in-

cludes CM1, KC1, KC2, PC1, PC2 and PC3 sets.

Experiments were conducted on two devices: personal lap-

top and virtual machine provided by the Warsaw University

of Technology.

A. Experiment results

Experiment was divided into a series of incremental steps.

Each step introduced new technique or method, or combined

those previously assessed. The final outcome was the process

presented in Fig 1.

Initially the datasets were analyzed and some results of

analysis are presented in Table I. It can be seen that datasets

are highly imbalanced.

TABLE I.

DATASET PROPERTIES

Dataset Dataset size Error-free

software in

dataset [%]

Number of

metrics

CM1 498 90.2 22

KC2 522 79.5 22

PC1 1109 93.1 22

PC3 1563 89.8 38

KC1 2109 84.6 22

PC2 5589 99.6 37

Before introduction of any enhancement mechanism, it was

assumed that the optimal number of trees for the experiment

should be in the range from 100 to 1000. This observation was

confirmed throughout the experiment. Above 1000 trees any

substantial improvement to the evaluation metrics was not ob-

served as shown in Table II. It is worth noting that the training

time grows almost linearly with the forest size, therefore

lower forest sizes are generally preferred when training time

is limited. Even though, all experiments were performed for

forest sizes of 1 (decision tree), 10, 100, 1000, 10000, 25000

and 50000, results provided in this paper were obtained for

forests with 1000 trees unless stated otherwise.

TABLE II.

BASIC CLASSIFICATION ACCURACY

Number of

trees

1 10 100 1000 10000

Dataset Accuracy

CM1 0.81 0.87 0.86 0.86 0.86

KC1 0.81 0.84 0.85 0.85 0.85

KC2 0.74 0.82 0.82 0.80 0.82

PC1 0.90 0.91 0.92 0.92 0.92

PC2 0.99 0.99 0.99 0.99 0.99

PC3 0.85 0.90 0.90 0.90 0.90

Even though, accuracy score is rather high, it is usually

very close to the percentage of error-free samples in the da-

taset. Analyzing metrics such as recall, precision, and bal-

anced accuracy it was clearly visible that model tends to clas-

sify vast majority of samples as error-free, thus making from

few to even no useful detections (true positive values) as in

case of dataset CM1, as shown in Table III.

TABLE III.

BASIC CLASSIFICATION FOR CM1 DATASET

Accuracy 0.86

Recall 0.00

Precision 0.00

Balanced accuracy 0.49

F1 score 0.00

First technique aiming to improve error-prone software de-

tection that was assessed was threshold adjustment. As this

problem deals with two classes – erroneous software and er-

ror-free software it is primarily a classification problem.

However, one may take a regression approach with the 0.5

threshold as a default one. Adjustment of that selection

threshold, either its lowering or increasing, could potentially

lead to better classification. Exemplary outcome of the exper-

iment for CM1 dataset is presented in Fig 2.

Fig 2. Threshold adjustment for CM1 dataset

Slight change of the threshold around the 0.5 mark in some

cases, provided some minor improvements. Nonetheless, no

direct pattern could be established observing various datasets

and forest sizes. Moreover, it did not help in any way to tackle

the problem of datasets imbalance, still being strongly biased

towards error-free classes. Given method was also combined

with subsequently described methods, however, at each step

it was too unpredictable and, as a result, it was discarded.

Further studies were done on SMOTE oversampling tech-

nique. As presented in Table IV, it aimed to reduce the learn-

ing bias resulting from dataset imbalance by equalizing pro-

portions via creating artificial samples.

TABLE IV.

DATASET SIZES BEFORE AND AFTER OVERSAMPLING

 Before SMOTE After SMOTE

Faulty Not faulty Faulty Not faulty

CM1 45 428 428 428

KC1 307 1696 1696 1696

KC2 96 399 399 399

PC1 73 980 980 980

PC2 21 5288 5288 5288

PC3 151 1333 1333 1333

As presented in Table V and Table VI, significant improve-

ments could be noticed. Not only, was the accuracy improved,

but more importantly precision and recall values also, which

indicate that the true error-free software was now properly de-

tected and classified.

ILONA BLUEMKE, PAWEŁ BORSUKIEWICZ: EXPERIMENTS ON SOFTWARE ERROR PREDICTION USING DECISION TREE AND RANDOM FOREST 867

TABLE V.

DATASET SIZES BEFORE AND AFTER OVERSAMPLING

 Accuracy

Before After
CM1 0.86 0.94

KC1 0.85 0.91

KC2 0.80 0.85

PC1 0.92 0.96

PC2 0.99 1.00

PC3 0.90 0.93

TABLE VI.

OVERSAMPLED CLASSIFICATION FOR CM1 DATASET

Accuracy 0.94

Recall 0.98

Precision 0.88

Balanced accuracy 0.91

F1 score 0.93

In the final part of the experiment hyperparameter optimi-

zation for the previously analyzed oversampling technique

was added. Similarly to the forest size selection, this step be-

comes more and more computationally intensive with the in-

crease in number of the combinations that have to be consid-

ered. Performing grid search and cross-validation proved to

be successful in improving results, as can be seen in Table

VII. Comparison of balanced accuracies obtained throughout

the experiment was presented in Fig 3.

TABLE VII.

RESULTS AFTER HYPERPARAMETER OPTIMIZATION

 Dataset
CM1 KC1 KC2 PC1 PC2 PC3

Accuracy 0.95 0.91 0.87 0.98 1.00 0.94

Recall 0.98 0.91 0.89 0.98 1.00 0.95

Precision 0.91 0.91 0.86 0.97 0.99 0.93

F1 score 0.95 0.91 0.87 0.98 1.00 0.94

Balanced
accuracy

0.95 0.91 0.86 0.98 1.00 0.94

Fig 3. Balanced accuracy comparison

B. Comparison with other studies

Comparing obtained results with other studies within the

domain, one can reference AUC obtained in a study by Catal

et al. [10]. As presented in Fig. 4, results for all of the datasets

that were covered by both experiments have significantly

improved.

 Nonetheless, when comparing the results with studies

based on neural networks, such as the ones obtained via

implementation of ADBBO by P. Kumudha et al. [19], pre-

sented in Fig. 5, it can be observed that the Random Forest

provided better results for PC1 and CM1 datasets, while it was

outperformed by Neural Network in case of KC1 and KC2

datasets.

Fig 4. AUC comparison with prior study

Fig 5. AUC comparison with prior study

A recent study by T.F. Husin et al. [26] was analyzing Least

Square Support Vector Machine (LSSVM) combined with the

use of SMOTE technique. Even though, it was concluded that

SMOTE significantly improved obtained results, as presented

in Fig. 6, those results were not close to the results obtain in

this or any of two previously mentioned studies.

Fig 6. AUC comparison with new study

V. CONCLUSIONS

The aim of our study was to assess the viability of applica-

tion of Decision Tree and Random Forest algorithms within

the scope of error-proneness detection field. The series of ex-

periments was conducted for six different datasets and total

algorithm training time was approximately 150 hours with the

majority of this time spent on the final version. Therefore, due

to vastness of collected data detailed results presented in sec-

tion IV focused only one of them – CM1. Study was per-

formed on the data acquired from PROMISE repositories

started with the analysis of the most basic models, which

turned out to be insufficient due to the bias towards error-free

classification resulting from dataset imbalance. Subsequently,

a set of techniques was deployed in order to improve its per-

formance. They included hyperparameter optimization, basic

868 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

feature selection, threshold adjustment and SMOTE over-
sampling technique.

As a result it was possible to observe that implementation
of mechanisms aiming at improvement of performance of al-
gorithms resulted in models being able to quite accurately
classify samples present within PROMISE repository. High
values of precision and recall, in most cases above 90%,
may assure one that software errors can be well detected us-
ing Random Forest algorithm. It was also shown that usually
random forests of sizes between 100 and 1000 are the most
appropriate as above that values accuracy does not seem to
improve, while computation time does. Nonetheless, it is
also worth mentioning that single decision trees also pro-
vided useful results, however, they cannot quite compete
with the anti-overfitting properties of the forest. Further, if
predictions trained on PROMISE datasets are to be reason-
able, one shall counter negative effects of imbalanced
dataset – oversampling was proved to be a viable solution
that significantly increased values of evaluation parameters
such as balanced accuracy. Additionally, if training time is
not limited, hyperparameter optimization may further im-
prove obtained results. Finally, there has not been found any
reason to use regression instead of classification it this par-
ticular classification problem. Throughout the study, it was
found that threshold adjustment technique could result in
slight improvements, however, it could not be reliably used.

In order to further improve results obtained by Random
Forest, one may consider application of more advanced fea-
ture selection methods. Similarly, it would be reasonable to
use MOOD and QMOOD object metrics. Further, one could
consider creation of their own datasets, based on publicly
available repositories. Performing a training on data gath-
ered from projects in the same language, technology or do-
main as the target test set could also make prediction algo-
rithm more sensitive to crucial aspects of assessing error-
proneness for a given case.

REFERENCES

[1] F. Elberzhager, A. R. Rosbach, Eschbach, J. Münch, “Reducing Test
Effort: A Systematic Mapping Study on Existing Approaches”, Infor-
mation and Software Technology, vol. 54, no. 10, 1092-1106, 2012.

[2] K. Bareja, A. Singhal, “A Review of Estimation Techniques to Re-
duce Testing Efforts in Software Development”, http://dx.doi.org/
10.1109/ACCT.2015.110, 2015.

[3] J. Hryszko, L. Madeyski, “Cost E ectiveness of Software Defect Preff -
diction in an Industrial Project”, http://dx.doi.org/ 10.1515/fcds-2018-
0002, 2018.

[4] Y.Z. Bala, P.A. Samat, K.Y. Sharif, N. Manshor, “Current Software
Defect Prediction: A Systematic Review”, http://dx.doi.org/
10.1109/AiIC54368.2022.99114586, 2022

[5] F. Matloob et al., “Software Defect Prediction Using Ensemble Learn-
ing: A Systematic Literature Review”, http://dx.doi.org/ 0.1109/AC-
CESS.2021.3095559, 2021.

[6] Y. Zhao, K. Damevski, H,Chen, “A Systematic Survey of Just-in-
Time Software Defect Prediction”, http://dx.doi.org/ 10.1145/
3567550, 2023.

[7] T. Menzies , J. DiStefano, A. Orrego , R. Chapman, “ Assessing pre-
dictors of software defects”, in Proc Predictive software models work-

shop, pp. 1-5, 2004.
[8] G. Boetticher, T. Menzies, T. Ostrand, PROMISE Repository of Em-

pirical Software Engineering Data, West Virginia University, Depart-
ment of Computer Science 2007.

[9] C. Catal, B. Diri, B. Ozumut, “An artificial immune system approach
for fault prediction in object oriented software”, pp. 238-245,
http://dx.doi.org/ 10.1109/DEPCOS-RELCOMEX, 2007.

[10] C. Catal, B. Diri, “Investigating the effect of dataset size, metrics sets,
and feature selection techniques on software fault prediction prob-
lem”, http://dx.doi.org/ 10.1016/j.ins.2008.12.001, 2009.

[11] J. Brownlee, “Clonal selection theory & CLONALG. The clonal se-
lection classification algorithm”, in Technical Report 2-02, Swinburne
University of Technology, 2005.

[12] J. H. Carter, “The immune system as a model for pattern recognition
and classification”, http://dx.doi.org/10.1136/jamia.2000.0070028, 2001.

[13] L. Breiman, “Bagging predictors.”, Mach Learn 24, pp.123–140,
https://doi.org/10.1007/BF00058655Y, 1996.

[14] D. Mundada, A. Murade, O. Vaidya, and J. N. Swathi, “Software Fault
Prediction Using Artificial Neural Network And Resilient Back Propa-
gation”, Int. J. Comput. Sci. Eng., vol. 5, no. 03, pp. 173–179, 2016.

[15] Z. Xiang, L. Zhang, "Research on an Optimized C4.5 Algorithm
Based on Rough Set Theory", http://dx.doi.org/ 10.1109/
ICMeCG.2012.74, 2012.

[16] P. Bishnu and V. Bhattacherjee, “Software Fault Prediction Using
Quad Tree-Based K-Means Clustering Algorithm”, pp. 1146–1150,
http://dx.doi.org/ 10.1109/TKDE.2011.163, 2012.

[17] P. Bishnu and V. Bhattacherjee, “Outlier Detection Technique Using
Quad Tree” in Proc Int’l Conf. Computer Comm. Control and Infor-

mation Technology, pp. 143-148, 2009.
[18] A. Okutan and O. Taner, “Software defect prediction using Bayesian

networks”, http://dx.doi.org/ 10.1007/s10664-012-9218-8, 2014.
[19] P. Kumudha, R. Venkatesan, “Cost-Sensitive Radial Basis Function

Neural Network Classifier for Software Defect Prediction”,
http://dx.doi.org/ 10.1155/2016/2401496, 2016.

[20] S. Gupta, D. Gupta, “Fault Prediction using Metric Threshold Value
of Object Oriented Systems”, International Journal of Engineering

Science and Computing, vol. 7, no. 6, pp. 13629–13643, 2017
[21] E. Erturk, E. Akcapinar, “Iterative software fault prediction with a hy-

brid approach”, http://dx.doi.org/ 10.1016/j.asoc.2016.08.025, 2016.
[22] J. S. R. Jang, "ANFIS: adaptive-network-based fuzzy inference sys-

tem", http://dx.doi.org/ 10.1109/21.256541, 1993.
[23] F. Alighardashi, M. Ali, Z. Chahooki, “The Effectiveness of the Fused

Weighted Filter Feature Selection Method to Improve Software Fault
Prediction”, pp. 5, http://dx.doi.org/10.22385/jctecs.v8i0.96, 2016.

[24] C. Lakshmi Prabha, Dr.N. shivakumar “Software Defect Prediction Us-
ing Machine Learning Techniques” , Proc. of the Fourth International

Conference on Trends in Electronics and Informatics, IEEE Xplore Part
Number: CFP20J32-ART; ISBN: 978-1-7281-5518-0, 2020.

[25] Y. Shen, S. Hu, S, Cai, M. Chen, “Software Defect Prediction based
on Bayesian Optimization Random Forest”, http://dx.doi.org/
10.1109/DSA56465.2022.00149, 2022.

[26] T.F. Husin, M.R. Pribadi, Yohannes, “Implementation of LSSVM in
Classification of Software Defect Prediction Data with Feature Selec-
tion”, 9th Int. Conf. on Electrical Engineering, Computer Science and

Informatics (EECSI2022), pp.126-131, 2022.
[27] MD.A. Jahangir, MD. A.Tajwar, W. Marma, “Intelligent Software

Bug Prediction: An Empirical Approach”, http://dx.doi.org , 101109/
ICREST57604.2023.10070026, 2023.

[28] Python Core Team, “Python: A dynamic, open source programming
language”, Python Software Foundation, accessed 28.04.2022,
https://www.python.org/

[29] C.R. Harris, K.J. Millman, S.J. van der Walt et al. “Array program-
ming with NumPy”, Nature 585, pp. 357–362, http://dx.doi.org/
10.1038/s41586-020-2649-2, 2020.

[30] W. McKinney, “Data structures for statistical computing in python”,
Proc. of the 9th Python in Science Conference, vol 445, pp. 56-61,
http://dx.doi.org/ 10.25080/Majora-92bf1922-00a, 2010.

[31] Pedregosa et al., “Scikit-learn: Machine Learning in Python”, Journal

of Machine Learning Research 12, pp. 2825-2830, 2011.
[32] G. Lematre, F. Nogueira, C. K. Áridas, “Imbalanced-learn: A Python

Toolbox to Tackle the Curse of Imbalanced Datasets in Machine
Learning”, Journal of Machine Learning Research 17, pp. 1-5,
http://dx.doi.org/ 10.48550/arXiv.1609.06570, 2017.

[33] N. V. Chawla, K. W. Bowyer, L. O. Hall, W. P. Kegelmeyer,
“SMOTE: synthetic minority over-sampling technique”, Journal of

artificial intelligence research, pp. 321-357, 2002.

ILONA BLUEMKE, PAWEŁ BORSUKIEWICZ: EXPERIMENTS ON SOFTWARE ERROR PREDICTION USING DECISION TREE AND RANDOM FOREST 869

