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Abstract—Food authenticity is a significant concern in the
meat industry, demanding effective detection methods. This
study explores the use of multispectral imaging (MSI) and deep
learning for meat adulteration detection. We evaluate different
deep learning models using transfer learning and preprocess-
ing techniques in a multi-level adulteration classification task.
In addition, we propose a novel approach called one-band
mixed augmentation for band selection in MSI data, which
outperforms traditional reflectance-based feature selection and
enhances model robustness. Furthermore, employing the nine-
crop approach for dataset augmentation improved the accuracy
from 0.63 to 0.74 for DenseNet201 model without transfer
learning. This research contributes to advancing food safety
assessment practices and provides insights into the application
of deep learning for preventing food adulteration. The proposed
one-band mixed augmentation approach offers a novel strategy
for handling band selection challenges in MSI data analysis.

I. INTRODUCTION

F
OOD safety has become a major issue in recent years,

garnering significant attention from regulators and indus-

try stakeholders alike. This issue is particularly critical when

it comes to minced meat, which lacks distinctive morpholog-

ical characteristics, making it more susceptible to intentional

adulteration. Such fraudulent practices not only pose serious

health risks to consumers but also undermine the integrity

of the entire food supply chain, eroding public trust in the

food industry. Consequently, it is imperative to adopt proac-

tive measures for detecting and preventing food adulteration,

ensuring the delivery of safe, reliable, and high-quality food

to consumers.

Traditional methods for detecting meat adulteration typi-

cally involve destructive sample analysis, such as PCR anal-

ysis [1], are time-consuming and require specialized environ-

ments and trained professionals. Consequently, the need for

effective and efficient techniques to detect food adulteration

has become increasingly urgent. To address this challenge, re-

searchers have investigated the use of non-contact technologies

to address meat safety concerns, including the detection of

fraud in processed meat using non-destructive spectroscopic

methods [2]. Additionally, gas sensors have been employed

for monitoring meat quality [3], while electronic noses have

been utilized for monitoring meat spoilage [4]. These advanced

technologies provide cost-effective and rapid alternatives to

traditional methods, and their integration into food safety

regulations reflects their increasing importance in ensuring the

integrity of the food supply [5].

Multispectral imaging (MSI) has received considerable at-

tention in recent years as a fast and non-destructive analytical

approach to determining food quality and safety evaluation.

MSI captures image data in specific wavelength ranges, pro-

viding spatial and spectral information of the object under

analysis. Different meat qualities have different reflection in-

tensities under different spectra [6], making it particularly use-

ful for detecting food adulterants. It has been successfully used

in various food safety applications, including the evaluation of

microbial contamination in ready-to-eat vegetable salad [7],

the assessment of cowpea seed health and differentiation of

fungal species [8], and the evaluation of ready-to-eat pineapple

quality [9]. Additionally, MSI has been used to estimate

microbial spoilage in minced pork [10].

Machine learning models, such as partial least squares

regression (PLSR) and support vector machines (SVM), have

been applied to detect meat adulteration using MSI data [11]–

[14]. However, current research on MSI for meat adulteration

often utilize only limited attributes of the image data, such

as mean and standard deviation, which can be a limitation

in terms of accuracy and reliability. This limitation leaves

room for improving the accuracy and reliability of meat quality

control systems.

To address this limitation and further enhance meat quality

control, the combination of MSI with deep learning tech-

niques, such as convolutional neural networks (CNNs), has

gained attention. We can improve the accuracy and reliability

of meat quality control systems by using these models for

image classification tasks in the food domain, specifically for

meat adulteration. Although some research has explored the

use of CNNs for image classification [15], there is still a gap

in the literature on using these models for meat quality control

systems.

A previous study developed a framework for coffee matu-

rity classification with 15 bands of multispectral data based

on CNNs and achieved a relevant high accuracy on five
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classes [16], achieved up to 98% accuracy on the dataset and

100% accuracy on cross-validation. However, this approach

has not been applied to the problem of meat adulteration and

spoilage in MSI data.

By leveraging the comprehensive information provided by

MSI and harnessing the capabilities of deep learning, we

seek to develop more effective methods for preventing and

detecting meat adulteration. In order to facilitate the goals of

our study, it was necessary to repreprocess data specifically

for meat adulteration, as there was no readily available MSI

image dataset for this purpose. We also adapt state-of-the-art

CNN models and perform several optimizations to ensure their

effectiveness in analyzing the acquired MSI data. Additionally,

we explore the potential of leveraging the rich information

contained in MSI data by experimenting with different pre-

processing approaches.

Through our research, we aim to provide valuable informa-

tion on the utilization of MSI and deep learning techniques,

which can lead to the development of advanced approaches

to ensure food safety and preserve the integrity of the meat

supply chain. The findings of our study hold great promise

for substantial advancements in current practices, leading to

the development of more efficient and dependable methods

for preventing and detecting food adulteration. As a result,

these advancements will play a crucial role in safeguarding

the safety and integrity of the food supply chain.

II. METHODOLOGY

In this study, we conducted experiments using 180 minced

meat samples from 9 adulteration classes. We extracted multi

spectral images in 18 bands and encoded and resized them

into the required size by a deep learning model. We started

with fine-tuning SOTA CNNs models to detect patterns and

features indicative of meat adulteration, but the particularities

of our image dataset indicated that training from scratch might

be a better option for learning relevant features. The best-

performing model was selected as the baseline. Additionally,

we explored three different pre-processing modalities to assess

their impact on the model’s performance.

A. Datasets

The data acquisition process followed the pipeline illustrated

in Fig. 1. Our study utilized a dataset consisting of MSI images

depicting chicken and pork meat samples with varying levels

of adulteration. The levels of adulteration spanned from 0%

(indicating pure chicken) to 100% (representing pure pork),

with nine intervals in between: 0%, 10%, 25%, 40%, 50%,

60%, 75%, 90%, and 100%. Chicken and pork were purchased

from four different butcher shops (b1, b2, b3, b4) in Greece.

Samples from each butcher shop contained five instances per

adulteration level resulting in 45 samples per butcher shop.

In total, the dataset contains 180 samples from four butcher

shops.

The images were acquired using the Videometer lab sys-

tem developed by the Technical University of Denmark and

commercialized by “Videometer A/S” (http://www.videometer.

Fig. 1. Multispectral Imaging Acquisition pipeline

com). The MSI images consist of 18 bands for each meat

sample. The samples were kept at 4°C and captured after

24 h. There are a total of 180 sample image files of various

temperatures and various adulteration levels. The final size of

the dataset is 3240 (180x18) grey-scale images from 180 meat

samples. The dataset includes nine classes, each representing

a different level of adulteration.

B. Data Preprocessing

Proper data preprocessing is crucial as it is the foundation

for subsequent data analysis. By performing appropriate data

preparation techniques, we can guarantee that the analysis

results are reliable and carry significant implications. Addi-

tionally, it allows us to address any potential issues or biases in

the data and optimize the performance of our machine learning

model.

TABLE I
DETAILS OF IMAGE BANDS AND CORRESPONDING WAVELENGTHS USED

BY VIDEOMETER LAB MSI CAMERA FOR CAPTURING MSI DATASET.

the band and wavelength details

band band1 band2 band3 band4 band5 band6
region
wavelength

UV
405nm

Violet
435nm

Blue
450nm

Blue
470nm

Cyan
505nm

Green
525nm

band band7 band8 band9 band10 band11 band12
region
wavelength

Green
570nm

Yellow
590nm

Red
630nm

Red
645nm

Red
660nm

Red
700nm

band band13 band14 band15 band16 band17 band18
region
wavelength

NIR
850nm

NIR
870nm

NIR
890nm

NIR
910nm

NIR
940nm

NIR
970nm

a) Image Preprocessing: Each sample in the dataset

contains 18 grey-scale images of 18 non-uniformly distributed

wavelengths with a size of 1200 by 1200 pixels. Each image

represents a spectral feature of a sample in a particular band.

Table I presents a detailed overview of the chosen wavelength

bands utilized in our study. The selected wavelengths cover

a spectrum ranging from 405nm to 970nm, comprising a

total of 18 bands. Notably, this includes one band in the

ultraviolet (UV) region and six bands within the near-infrared

(NIR) region. This information provides a comprehensive

understanding of the specific wavelengths employed in our
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research analysis. Fig. 2 shows all 18 bands of a sample which

is 10%pork-90%chicken.

In order to accommodate the large extracted images within

the proposed models, we first resize the images to a standard-

ized size of 224 by 224 pixels. This resizing ensures uniformity

and compatibility across the dataset. Following the resizing

step, we employ min-max scaling to encode the images as

values ranging from 0 to 1. This preprocessing technique

effectively normalizes the pixel values, allowing for efficient

handling and analysis of the data

b) Label Extraction: The images were labeled based on

the information contained within their names, including the

adulteration level, band number, sample name, and storage

condition. We converted it into integers ranging from 0 to

8. Specifically, ’0’ denotes pure chicken, while ’8’ represents

pure pork. For adulteration levels between 10% to 90%, we

assigned integer values from 1 to 7 to represent varying

ratios of pork and chicken: 10% pork - 90% chicken, 25%

pork - 75% chicken, 40% pork - 60% chicken, 50% pork

- 50% chicken, 60% pork - 40% chicken, 75% pork - 25%

chicken and 90% pork - 10% chicken. This scale indicates

the percentage of pork and chicken present in each sample,

irrespective of which meat has adulterated the other. In the case

of pork-adulterated chicken, a smaller scale number denotes a

higher level of adulteration. We chose to utilize a single scale

to simplify the paper, instead of employing separate scales for

each meat species.

While it is important to label each image accurately, we

also wanted to ensure that the labels were practical for the

intended application. In this case, we use one-hot encoding to

encode the image labels into a numerical format, which assigns

a unique numerical value to each category. This approach

enabled us to quickly generate statistics and analyze the model

performance based on different adulteration levels.

C. Basic Adulteration Classification Pipeline

This study focuses on developing an automated method

for detecting adulteration in meat samples using multispectral

image analysis. The problem is approached as a classification

task, where the performance of various deep-learning models

is compared. To ensure consistency, we employ a standardized

classification pipeline. This involves inputting an array with

dimensions (224, 224, 18), representing the 18 bands of

information in each sample, into the models. The models are

then trained to predict the degree of adulteration based on the

input image array.

To evaluate the effectiveness of different CNN-based mod-

els, we compare five models available in the Keras library [17].

The initial selection includes VGG16 and VGG19 [18], which

serve as established benchmarks for image classification tasks.

Additionally, Inception-ResNetV2 [19] and InceptionV3 [20]

are chosen for their superior performance in computer vision

tasks. Furthermore, we include DenseNet [21], known for its

promising outcomes in similar studies.

To leverage pre-existing knowledge, transfer learning is

applied to the selected CNN models. This allows us to explore

if pre-trained models can enhance the performance of our task.

Fig. 3 illustrates the basic experiment pipeline of the CNN

models, providing an overview of the process.

We evaluate the performance of our models using two meth-

ods. Firstly, we perform a simple train/test split by partitioning

the data into two sets, with the training set containing 80%

of the data and the test set containing 20%. Given the limited

number of samples in our dataset, we also use 5-fold stratified

cross-validation (SCV) to evaluate the models more precisely.

The models are trained using the backpropagation algo-

rithm. This algorithm works by calculating the loss function

gradient concerning the network weights and using this gradi-

ent to update the weights in a direction that minimizes the

loss function. This process is repeated iteratively until the

network converges on a set of weights that minimizes the loss

function. The specific methods and hyperparameters depend on

each model. We evaluate the models using accuracy, precision,

recall, and F1 score. We chose these metrics to understand the

models’ performance thoroughly.

D. Transfer Learning

To enhance the classification performance of our model, we

opted to incorporate transfer learning into our training process

and to evaluate its effectiveness. Given the limited nature

of our dataset, transfer learning was considered a potential

solution to optimize the model and improve its accuracy.

The base model weights obtained from ImageNet [22], which

consists of millions of images and 1000 labels, were used to

initialize our model and provide a solid foundation for further

training.

When dealing with datasets that contain more than three

channels, such as our 18-channel multispectral data, transfer

learning requires adjusting the pre-trained weights to accom-

modate the additional channels. Fine-tuning is performed on

the first convolutional layer, configured to enable the neu-

ral network to read 18-channel images. In this process, the

weights of the first convolutional layer are modified to accept

the input of 18 channels. This is done by averaging the pre-

trained weights of the first convolutional layer’s three channels

and replicating the resulting weights 18 times to accommodate

all 18 input channels.

To align with our experiment’s 9-class classification objec-

tive, we modified the fully connected output layer of all five

models from 1000 to 9. Furthermore, to adapt transfer learning

to our specific task, we made variations in the trainable layers

of each utilized network. The trainable and non-trainable

layers of the models are specified below.

• VGG-16 consists of 16 trainable layers. While the first

two layers remain fixed, the subsequent 14 layers are

trainable. The original fully connected layers of 4096 and

4096 were replaced by adapted layers with sizes of 256

and 128, respectively.

• VGG-19 comprises 19 trainable layers, where the first

seven layers are untrained, while the remaining 12 layers

are trainable. Similar modifications were made to the
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Fig. 2. The 18 bands for a 10% pork-90% chicken sample.

Fig. 3. Baseline CNN Classification Experiment Design

fully connected layers, adjusting their original sizes of

4096 and 4096 to sizes of 256 and 128.

• InceptionV3 has 310 trainable layers. The first 150 layers

are untrained, while the rest are made trainable. The

original fully connected layer, initially sized of 2048, is

replaced with two new fully connected layers sized of

256 and 128, respectively.

• Inception-ResNetV2 The first 150 layers are untrained,

while the remaining 578 are trainable. The original fully

connected layers, sized of 1536, are substituted with two

new fully connected layers sized of 256 and 128.

• DenseNet201 has 706 trainable layers, with the first 150

layers left untrained and the remaining layers made train-

able. Two new fully connected layers were introduced,

having sizes of 256 and 128, respectively.

By adjusting the trainable layers in the specified way, the

neural networks were fine-tuned to better suit our specific

problem and data characteristics. The modified models were

then used to conduct our experiments and to analyze their

performance.

E. Hyperparameter Optimization

After experimenting with several optimizers, including

Adam, Adamax, Adamgrad, and SGD, we selected the Adam

optimizer for its superior performance. Then, we set the output

layer with softmax activation function.

We utilized a learning rate scheduler function to optimize

our model’s performance. Our approach involved setting an

initial learning rate of 0.0001 and employing an exponential

decay function that reduced the learning rate by 0.095 at

each epoch. The exponential decay scheme provided a smooth

decay path, which was particularly effective during the initial

stages of training. This strategy helped to improve the learn-

ing capacity of the model and yielded better results in our

experiments.

F. Cross Validation

Cross-validation (CV) is a widely used technique in ma-

chine learning and data analysis to evaluate the predictive

performance of models. It helps optimize hyperparameters,

identify dataset issues, and prevent overfitting, ultimately

improving the effectiveness of models in real-world applica-

tions. Stratified cross-validation is an essential variant of CV

when working with imbalanced datasets. It ensures that each

fold contains representative samples from all classes in the

same proportion as the original dataset, mitigating the risk of

biased assessments of model performance. By using stratified

cross-validation, we can obtain more reliable estimates of the

model’s generalization capabilities and make better-informed

decisions about its suitability for real-world applications.

For our experiments, we used a five-fold stratified cross-

validation (5-SCV) approach. The data was divided into five

folds, each containing an equal distribution of samples from

all classes. The models were then trained on four folds and

validated on the remaining one. This process was repeated

five times, with each fold used as the validation set once. The

stratified aspect of the cross-validation ensured that the class

distribution was maintained across all folds, preventing bias

in evaluating the models’ performance. The final performance

metrics were calculated as the average of the five iterations,

providing a comprehensive and accurate assessment of the

effectiveness of the models.

G. Model Improvements with Various Data Augmentation

Configurations

To enhance the classification accuracy, we conducted var-

ious experiments on the dataset. We explored several tech-
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niques, such as removing uninformative bands, augmenting the

training set, and cropping the original image to gather more

information. Given the amount of conditions and considered

models, we chose to focus on one model (e.g. DenseNet 201

model). Stratified sampling was applied so that 80%-20% of

the dataset to be used for training and testing for all exper-

iments. Specifically, for the basic adulteration classification

and uninformative bands excluded experiments, the training

set consisted of 144 images with 36 testing images. For one

band augmentation experiment, the training set was extended

to 288 images, while the test set remained at 36 images. The

purpose of this was to determine whether augmentation could

help the model learn more details about the features needed to

classify the original images, rather than the augmented images.

In the cropping experiments, the training set is increased to

576 images (for 4 crops) and 1296 (for 9 crops), while the

test set size remains constant for consistency reasons.

1) Band Selection: Exclude Uninformative Bands using

a Reflectance-based Method: To further refine the dataset

and improve the classification performance of CNN models,

we conducted a band exclusion approach based on previous

research by L.-C. Fengou, P. Tsakanikas, and G.-J. E. Nychas

[23]. This previous study compared the mean and standard de-

viation of the wavelength reflectance of pure chicken and pure

pork at different storage times (0 h, 24 h, 48 h) and identified

the wavelength from 700 to 940 nm as uninformative, which

corresponds to bands 12 to 17 in our dataset. This exclusion

was based on the overlap of wavelength reflectance. It is

worth noting that the band exclusion approach has improved

classification accuracy in previous studies on similar datasets.

By excluding uninformative bands, the amount of noise in the

data was reduced, and the signal-to-noise ratio was increased,

factors which could improve the performance of the models.

To evaluate the impact of the band exclusion on classifi-

cation performance, we trained the CNN models on a 12-

band dataset, where the uninformative bands were excluded.

We selected DenseNet201 as our base model without transfer

learning and trained it on the 9-class classification task.

2) Optimizing Band Selection: Exclude Uninformative

Bands using One-band Mixed Augmentation: Data augmen-

tation is a widespread technique in deep learning used to

increase the size and diversity of the training dataset. In

our experiments, we applied mixed augmentation to enhance

the diversity and size of our training dataset. This technique

involves applying various transformations, such as zooming,

rotating, shifting, and flipping, to the original data to create

new and unique images while preserving the properties of

the original data. Zooming allowed us to change the scale

of the images, while rotation and shearing enabled us to

modify the orientation and shape of the objects within the

images. The width and height shifting helped to translate the

objects in the images, while the horizontal flipping created

a mirror image of the original one. The mixed augmentation

method selects a random combination of transformations from

the set specified in the augmentation pipeline. The chosen

transformations include zooming between 40% and 80% of

the original size, rotating the image up to 45 degrees, shifting

the width and height of the image by up to 10%, shearing the

image up to 20%, and flipping the image horizontally.

Fig. 4. Example of Augmentation

Fig. 4 shows one augmentation of one 25% pork-75%

chicken sample in the dataset. The image underwent several

augmentations. First, it was rotated at an angle of -34.97 de-

grees in a counterclockwise direction. Second, it was translated

horizontally by -0.075 and vertically by 11.85 pixels. Third,

it was sheared by -0.175, meaning that the object’s shape in

the image was distorted. Fourthly, the image was zoomed in

by a factor of 0.74 along the x-axis and 0.50 along the y-axis.

Finally, the image was flipped horizontally.

Multispectral images contain several bands of information,

each of which may have varying contributions to the classi-

fication performance. In order to determine which bands are

more informative for our models, we conduct data selection

experiments. To do this, we first apply data augmentation

techniques individually to each band in the dataset. Then,

we combine the augmented bands and train models on each

combination of bands. In this experiment, data augmentation

was performed for each band in the dataset, by splitting

the data into 144 samples for training and 36 for testing.

We applied the described band augmentation process to the

training set, which increased the training set size to 288 (for

each sample, one band was augmented). Each sample had a

shape of (224,224,18), where 224 represents the width and

height of the image, and 18 represents the number of bands.

Consequently, the final input training shape became (288, 224,

224, 18). Fig. 5 shows the augmentation pipeline of our data.

We evaluate the performance of each model and compare

the results to a baseline model (DenseNet 201 without transfer

learning) without augmentation. By comparing the perfor-

mance of all combinations, we can identify the bands that have

performed above the baseline and are therefore considered

informative. This process allows us to identify the bands that

provide the most useful information for classification and can

help optimize the selection of bands for future experiments.

Furthermore, this approach can be used to investigate the

impact of data augmentation on individual bands and could

help us understand the effect of each augmentation technique

on the overall classification performance.

3) Augmentation by Applying Cropping to All Bands: To

strike a balance between the amount of information conveyed
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Fig. 5. Pipeline of One-band mixed Augmentation.One band of the original samples is augmented, replacing the original image. The augmented samples are
combined with the original samples to form the training set.

by an image and the computational cost required for process-

ing it, image cropping is a beneficial preprocessing technique.

By cropping larger images into smaller clips, we can increase

the dataset size without sacrificing crucial information, espe-

cially when obtaining additional datasets in the same field is

challenging.

For the baseline classification, we resized the original im-

ages, which had dimensions of (1200 x 1200) pixels, to (224

x 224) pixels. However, this resizing process may result in a

loss of information and potentially impact the accuracy of the

classification results. To address this challenge, we propose an

approach that involves cropping the raw images into four or

nine clips. Through experimentation, we determined that four

clips, each measuring (600 x 600 pixels), or nine clips, each

measuring (400 x 400) pixels, were the most suitable sizes.

Fig. 6. Example of Image Cropping preprocessing. This image is randomly
chosen from the MSI dataset and shows the 4-cropped and 9-cropped versions
of the original image.

To maintain the spatial relationship between each cropped

image and its original location, we incorporated position

information into the extracted CSV file, alongside the corre-

sponding label. This facilitated a clear understanding of the

relative location of each cropped clip throughout the data

preprocessing pipeline. For the four-cropped approach, we

used position information such as lt (top left), lr (bottom left),

lb (bottom right), and rb (top right). For the nine-cropped

approach, position information included lt (top-left), mt (top-

middle), rt (top-right), lm (middle-left), mm (middle-middle),

rm (middle-right), lb (bottom-left), mb (bottom-middle), and

rb (bottom-right). An example of the cropped images is shown

in Fig. 6.

This approach effectively increases the dataset size while

preserving the essential information from the original images.

Additionally, the inclusion of position information provides

valuable context for interpreting and analyzing the cropped

clips. Overall, cropping and incorporating position information

are effective preprocessing techniques for MSI data, enhancing

the analysis quality and facilitating the utilization of these

data in machine learning models. In our study, we performed

cropping on the original image data, generating four and nine

crops, respectively.

III. RESULTS

In this study, we present a comprehensive evaluation of the

efficacy of various deep learning models.

We used well-known CNN models including VGG16 and

VGG19, Inception-Resnet v2, Inception v3, and DenseNet201

to explore their performance for 9-class adulteration clas-

sification task. To further optimize model performance, we

leveraged transfer learning techniques.

Furthermore, we experimented with various data augmen-

tation configurations such as rotation, shifting, schearing,

flipping and zooming.
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We also explored the impact of band selection on model

performance, including the exclusion of non-informative bands

based on reflectance and augmentation experiments in this

study.

By evaluating the performance of various models, our

objective was to provide insights into the selection of the

most appropriate deep-learning architecture and preprocessing

techniques for meat adulteration detection.

A. Best-performing model identification for meat adulteration

classification

Table II shows the performance of different deep learning

architectures on a 9-class classification task with and without

transfer learning. The details of each model is explained in

II-D. The results showed that DenseNet201 without transfer

learning achieved the best accuracy of 0.63 and a precision of

0.64, while DenseNet201 with transfer learning achieved the

best accuracy of 0.62 and the precision of 0.61 on all data sets

and combinations.

B. Evaluation of baseline model performance for various data

augmentation configurations

As DenseNet201 was the best-performing model, it was

selected as a baseline for later experiments. The details of data

augmentation are explained in section II-G2. The experiments

focus on investigating the effects of band selection and aug-

mentation techniques on the model performance. The results

of these experiments are summarized in Table III, demon-

strating that excluding non-informative bands improves model

accuracy. Furthermore, excluding uninformative bands based

on augmentation is shown to enhance model performance,

with varying influences observed for different bands. Addition-

ally, the use of all-band cropping augmentation, particularly

employing the nine-crop approach, leads to the best results.

These findings highlight the significance of band selection and

augmentation methods in improving model performance for

multispectral imaging data, contributing valuable insights to

the field.

1) Band Selection: Exclude Uninformative Bands using a

Reflectance-based Method: In this experiment, we trained

the baseline model on a 12-band dataset for the 9-class

classification task. The bands were selected based on the mean

and standard deviation of reflectance for pure classes. The

results showed that using 12 bands outperformed models using

18 bands in all metrics, which achieved an accuracy of 0.69

while using 18 bands achieved an accuracy of 0.63.

2) Optimizing Band Selection: Exclude Uninformative

Bands using One-band Mixed Augmentation: A mixed band

augmentation which is detailed in section II-G2 was applied to

the baseline model. Table.IV shows the mean performance of

the model under varying band augmentations. Our experimen-

tal findings indicate that preprocessing the input images with

different band augmentations has a considerable impact on the

model’s learning capacity. In order to balance computational

cost and experimental accuracy, we employed two different

random seeds for conducting the experiments.

The average values of the evaluation metrics are presented

as the experimental results. In particular, our comparison of

the results with the best baseline model introduced in Table II

(achieving 0.63 accuracy for the 9-class DenseNet model with-

out augmentation) led to a decrease in performance, including

bands: 1, 2, 5, 8, 12, 13, 15 and 16. In contrast, we found that

some bands, such as bands: 3, 4, 6, 7, 9, 10, 14, 17, and 18,

improved the model’s performance.

Fig.7 shows that band 4 (470 nm, blue), band 14 (870

nm, NIR), and band 17 (940 nm, NIR) are the top 3 most

informative bands for the dataset using the DenseNet201

model (without transfer learning). The augmentation on band

17 (940nm, NIR) increases the accuracy from 0.72 to 0.81.

Therefore, the choice of performing band preprocessing is crit-

ical in optimizing the model’s accuracy for this classification

task.

Fig. 7. Comparison of accuracies for various band augmentations on the
dataset. The orange columns indicates the top 3 performing augmentation
bands, the red line represents the baseline accuracy of the 9-class experiment
without augmentation.

Based on the accuracies presented in Table IV, the six low-

est performing bands (band1, band5, band8, band12, band13,

and band15) were removed. The remaining 12 bands were

stacked. The training process for this experiment adhered to

the same settings as described in the baseline experiment. The

5-fold cross-validation produced average performance metrics,

achieving 0.72 accuracy and 0.72 F1 score.

3) Augmentation by Applying Cropping to All Bands: In

order to address the limitations posed by the limited size of

the MSI dataset, we used the 4-crop and 9-crop approach

to augment the entire 9-class data. Specifically, for the 4-

cropped datasets, each class comprised 80 samples, and we

used 80% of the dataset for training and 20% for testing, by

making sure that none of the cropped versions of the original

image would be found in both sets. We trained the baseline

model in all these experiments. For the 4-cropped datasets,

our experiment achieved 0.71 accuracy for 5-fold stratified

cross validation. For the 9-cropped datasets, each class had

180 samples, resulting after augmentation in a total of 1620
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TABLE II
PERFORMANCE OF VARIOUS MODELS WITH 5 FOLDS CROSS-VALIDATION WITHOUT AND WITH TRANSFER LEARNING USING 18-BAND 9-CLASS MSI

DATA.

CNN models
Without transfer learning With transfer learning
Accuracy(±SD) F1 score(±SD) Recall(±SD) Precision(±SD) Accuracy(±SD) F1 score(±SD) Recall(±SD) Precision(±SD)

VGG16 0.40 (+/- 0.16) 0.38 (+/- 0.19) 0.40 (+/- 0.16) 0.49 (+/- 0.22) 0.53 (+/- 0.09) 0.52 (+/- 0.10) 0.53 (+/- 0.09) 0.60 (+/- 0.14)
VGG19 0.47 (+/- 0.13) 0.46 (+/- 0.16) 0.47 (+/- 0.13) 0.53 (+/- 0.22) 0.52 (+/- 0.12) 0.52 (+/- 0.12) 0.52 (+/- 0.12) 0.63 (+/- 0.09)
Incep-Res v2 0.61 (+/- 0.07) 0.60 (+/- 0.09) 0.61 (+/- 0.07) 0.69 (+/- 0.08) 0.55 (+/- 0.08) 0.56 (+/- 0.07) 0.55 (+/- 0.08) 0.72 (+/- 0.03)
Inceptionv3 0.56 (+/- 0.07) 0.54 (+/- 0.09) 0.56 (+/- 0.07) 0.62 (+/- 0.12) 0.57 (+/- 0.06) 0.57 (+/- 0.06) 0.57 (+/- 0.06) 0.63 (+/- 0.04)
DenseNet201 0.63 (+/- 0.12) 0.64 (+/- 0.12) 0.63 (+/- 0.12) 0.75 (+/- 0.09) 0.62 (+/- 0.07) 0.61 (+/- 0.08) 0.62 (+/- 0.07) 0.70 (+/- 0.10)

TABLE III
PERFORMANCE COMPARISON OF DATA CONFIGURATIONS WITH 5-FOLD STRATIFIED CROSS-VALIDATION

Accuracy(±SD) F1 score(±SD) Recall(±SD) Precision(±SD)
All Bands with Baseline (18 Bands) 0.63 (+/- 0.12) 0.64 (+/- 0.12) 0.63 (+/- 0.12) 0.75 (+/- 0.09)
Uninformative Bands Excluded based on Reflectance 0.69 (+/- 0.06) 0.68 (+/- 0.04) 0.69 (+/- 0.06) 0.76 (+/- 0.01)
Uninformative Bands Excluded based on Augmentation 0.72 (+/- 0.08) 0.72 (+/- 0.08) 0.72 (+/- 0.08) 0.78 (+/- 0.08)
All Bands, Image Cropped to 4 Parts 0.71 (+/- 0.11) 0.71 (+/- 0.13) 0.72 (+/- 0.11) 0.74 (+/- 0.10)
All Bands, Image Cropped to 9 Parts 0.74 (+/- 0.08) 0.73 (+/- 0.09) 0.74 (+/- 0.08) 0.79 (+/- 0.10)

TABLE IV
PERFORMANCE OF THE BASELINE MODEL BASED ON ONE-BAND MIXED AUGMENTATION

band 1 band 2 band 3 band 4 band 5 band 6 band 7 band 8 band 9
Accuracy 0.68 0.71 0.74 0.78 0.69 0.74 0.74 0.68 0.74
F1 score 0.69 0.70 0.76 0.80 0.75 0.76 0.74 0.71 0.77
Recall 0.74 0.75 0.81 0.83 0.78 0.79 0.78 0.76 0.84
Precision 0.71 0.71 0.82 0.84 0.80 0.78 0.74 0.74 0.81

band 10 band 11 band 12 band 13 band 14 band 15 band 16 band 17 band 18
Accuracy 0.75 0.71 0.65 0.69 0.78 0.65 0.71 0.81 0.74
F1 score 0.76 0.73 0.68 0.74 0.81 0.68 0.73 0.82 0.76
Recall 0.79 0.78 0.72 0.80 0.87 0.72 0.77 0.85 0.80
Precision 0.77 0.75 0.70 0.78 0.83 0.71 0.76 0.82 0.80

samples. We used the same train-test split procedure as above

and achieved improved results, with an accuracy of 0.78. The

confusion matrices of the three different inputs are visualized

in Fig.8. 5-fold stratified cross validation is applied on the

9-crop case, achieving an average accuracy of 0.74.

IV. DISCUSSION

In this study, we examine the effects of various augmen-

tations on the MSI dataset, using CNN based deep learning

models for meat adulteration detection. We also inspect the

effect of transfer learning and data preprocessing on their

performance. The best configuration for the 18- Band, 9

class classification is found as DenseNet201 without transfer

learning with an accuracy of 0.63 and F1 score of 0.64.

First we evaluated the performance of different CNN ar-

chitectures on 9-class classification tasks with and without

transfer learning. Our results showed that in the 9-class

classification, DenseNet201 achieved the best accuracy with

and without transfer learning.

Our findings suggest that the performance of CNN architec-

tures can be influenced by their nature and design. For exam-

ple, DenseNet201 is composed of densely connected layers,

where each layer within a block receives the outputs from

all preceding layers within the same block. This architecture

promotes feature reuse and information flow, mitigating the

vanishing gradient problem.

The number of trainable layers is important because it

affects the depth and complexity of the network. A deeper

network with more trainable layers has the potential to learn

more complex features and patterns in the data. This may

explain why Inception-Resnet v2 and DenseNet201 outper-

formed Inception v3 and VGG architectures in our study. The

higher number of trainable layers in these architectures allows

them to capture more intricate and nuanced information in the

data, leading to improved performance in the classification

tasks.

The achieved results indicated that transfer learning did

not lead to a significant improvement in performance.This

is consistent with the findings of a previous work[24] , they

suggested that models trained from scratch can perform just

as well as those that are pre-trained, even with substantially

less data.

In addition to model architecture, the data configuration was

found to have essential impact on the model performance.

The experiment excluding uninformative bands chosen by re-

flectance revealed that the reflectance-based method improves

classification performance. As shown in Fig.9, the reflectance

of different adulterated samples in the dataset experienced

slight changes as the adulteration level increased. By removing

non-informative bands (700 to 970 nm), the model achieved

better performance using only 12 bands compared to using all

18 bands for the MSI dataset.

Additionally, the experiment demonstrated that the perfor-

mance improvement achieved by using 12 bands was consis-

tent across different folds of the cross-validation, as indicated

by the low standard deviation of the metrics. This consistency
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Fig. 8. Comparison of Confusion Matrices for Original, 4-Cropped, and 9-Cropped Images for the baseline model.

suggests that the exclusion of non-informative bands enhances

the model’s performance, and the results are not dependent on

a specific fold.

Fig. 9. Mean reflectance of samples of different adulteration level.

In the experiment on optimizing band selection using one-

band mixed augmentation, the impact of different bands on the

DenseNet201 model’s performance without transfer learning

was investigated. The results revealed that the choice of bands

for augmentation significantly influenced the model’s learning

capabilities. Specifically, band 4 (470 nm, blue), band 14

(870 nm, NIR), and band 17 (940 nm, NIR) were identified

as the most informative bands for the MSI dataset on the

DenseNet201 model. Augmenting band 17 further improved

the model’s accuracy from 0.72 to 0.81, highlighting the

importance of band selection and preprocessing in optimizing

performance.

Comparing the two methods, one-band mixed augmentation

proved to be a better approach for band selection compared to

reflectance-based feature selection. Although the performance

difference between the two methods was insignificant, the

augmented-based 12-band approach slightly outperformed the

reflectance-based 12-band approach for the MSI dataset. This

finding suggests that one-band mixed augmentation enables a

more comprehensive exploration of the feature space, leading

to a more robust model.

Both experiments show promising results for selecting in-

formative bands in multispectral image classification tasks.

The reflectance-based method provides a straightforward and

intuitive approach, while one-band mixed augmentation allows

for a more exploratory analysis, potentially uncovering new

features beyond spectral characteristics alone. Future research

could explore combining these two approaches to leverage

their respective advantages and further enhance classification

performance.

The size of an original image file, amounting to 103 MB,

is a pertinent consideration in the context of the present

study, which seeks to identify and analyze meat adulteration

in minced chicken-pork samples. Moreover, the extraction of

a (224,224,18) numpy array from the original file raises con-

cerns about the optimal utilization of the information contained

within the multispectral data. To overcome these limitations,

another experiment applied cropping based preprocessing to

the original (1200 x 1200) pixels image.

By employing the four-crop and nine-crop approach to

augment the entire dataset for the 9-class case, significant

improvements were observed. The results indicate that the

nine-cropped dataset achieved the highest accuracy of 0.74,

outperforming both the uncropped and four-cropped datasets.

These findings show the potential of crop augmentation as

an effective approach to address the challenges posed by

limited dataset sizes and for maximizing the utilization of

multispectral data in classification tasks.

V. CONCLUSION

Our study highlights the potential of CNN models for

detecting adulteration in minced meat samples. Among the

evaluated models, DenseNet performed the best, showcasing

its suitability for this task. We found that transfer learning did

not significantly enhance model performance. Preprocessing

data augmentation techniques, particularly our proposed one-

band mixed augmentation approach, proved crucial in improv-

ing the model accuracy. Although our study had limitations,

such as a small dataset and focus on a specific type of

adulteration, it lays the groundwork for future research in this

area. Further exploration of larger datasets and integration of
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additional data types are encouraged to advance food safety

practices.
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