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Abstract—Vision-based semantic segmentation of complex ur-
ban street scenes is a very important function during autonomous
driving (AD), which will become an important technology in
industrialized countries in the near future. Today, advanced
driver assistance systems (ADAS) improve traffic safety thanks
to the application of solutions that enable detecting objects,
recognising road signs, segmenting the road, etc. The basis
for these functionalities is the adoption of various classifiers.
This publication presents solutions utilising convolutional neural
networks, such as MobileNet and ResNet50, which were used as
encoders in the U-Net model to semantically segment images
of complex urban scenes taken from the publicly available
Cityscapes dataset. Some modifications of the encoder/decoder
architecture of the U-Net model were also proposed and the
result was named the MU-Net. During tests carried out on 500
images, the MU-Net model produced slightly better segmentation
results than the universal MobileNet and ResNet networks, as
measured by the Jaccard index, which amounted to 88.85%.
The experiments showed that the MobileNet network had the
best ratio of accuracy to the number of parameters used and
at the same time was the least sensitive to unusual phenomena
occurring in images.

I. INTRODUCTION

S
EMANTIC segmentation of images is a very important
topic in computer vision, and its purpose is to divide

the image into regions of different semantic categories. This
division is connected with the classification of the image in
the sense that it produces per-pixel category prediction instead
of image-level prediction [1]. This means that semantic seg-
mentation can be seen as extending image classification from
the image level to the pixel level. However, the training data
intended for semantic segmentation requires manual labelling
at the pixel level, which is much harder and more time-
consuming than other vision tasks, such as image classification
or object detection.

Much effort has gone into research on image segmentation
in recent years and great progress has been made [2], [3],
[4], [5], [6]. Despite this, segmentation still remains a difficult
problem because of rich intra-class variation, context variation
and ambiguities resulting from the low resolution of images.

State-of-the-art approaches used in semantic segmentation
adopt a fully convolutional network (FCN) with an en-
coder/decoder architecture [7], [8]. The encoder generates low-
resolution image features and then the decoder upsamples

features to segmentation maps and is used for pixel-level
classification of the feature representations.

Semantic segmentation has many different applications, no-
tably including: augmented reality, autonomous driving, image
editing, medical imaging, robotics, smart cities, and many
others [9], [10].

The visual understanding of complex urban street scenes
is crucial for problems concerning the smart city, in which
autonomous vehicles can drive and certain infrastructure el-
ements can communicate to ensure the greatest comfort of
people and reduce the time lost. The use of various large-
scale datasets contributed to a great development of research
on object detection and a popularisation of methods using
deep learning techniques [11], [12]. To use artificial neural
networks (ANN) for the semantic segmentation of complex
urban scenes, researchers can utilise Cityscapes [13], a bench-
mark suite and a large-scale dataset to train and test approaches
for pixel-level and instance-level semantic labelling. Figure 1
shows example images available in the training subset of the
Cityscapes dataset [13]. Images from the training set which
can be semantically segmented using specific colours contain
30 different classes describing defined objects found in the
city.

This paper presents research on the semantic segmentation
of urban scenes using several different convolutional neural
networks with an encoder/decoder architecture. For this pur-
pose, MobileNet [14], [15] and ResNet50 [16], [17] were used
as encoders in the U-Net model [18]. During the studies, some
modifications to the U-Net model were also proposed based
on the experiments carried out. The research work was done
using the Cityscapes dataset [13]. The purpose of this research
was to obtain improved segmentation results, and to assess the
proposed solutions in detail, including their advantages and
disadvantages.

II. MATERIALS AND METHODS

A. Data

Research work was carried out using the Cityscapes dataset
[13]. This is a collection of 3,475 images from cities in
Germany that were recorded during vehicle driving. They are
saved in the png format and have a resolution of 2048×1024
pixels. This set was divided into a subset designed for training,
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Fig. 1. Sample images from the training subset from the city of Stuttgart. (a) Source image. (b) Semantic segmentation in colour. (c) Segmentation with only
vehicles and people marked.

Fig. 2. Diagram of the U-Net model, in which the characteristic letter "U" is visible. Blue rectangles represent multi-channel feature maps. The current size
of the maps is written on the left. The current number of channels is written above each rectangle. White rectangles are maps transferred to the decoding part
of the model. Blue arrows are convolutional layers, red ones are pooling layers, and green arrows are layers that increase the resolution. Gray arrows connect
feature maps obtained during encoding to their counterparts during decoding [18].

Fig. 3. Proposed encoder block. The first two numerical values are the height and the width of feature maps, and the third is the number of channels. The
pooling layer reduces the resolution of feature maps. Then, the convolution layer uses filters to increase the number of channels. At the end, normalization
is performed.
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Fig. 4. Proposed decoder block. The first two numerical values are the
height and width, the third is the number of channels. The concatenation layer
connects the feature maps of the encoder and the decoder that have the same
resolution, and then the convolutional layer reduces the number of channels.
The next steps are: data normalization and the use of an up-convolutional
layer which increases the resolution of feature maps. The last element of the
block is the normalization layer whose output forms one of the inputs of the
next concatenation layer that begins the next decoder block.

comprising 2975 images, and a subset for testing machine
learning models, containing 500 images.

B. Preprocessing

Pre-processing is to shorten the network training time and
to properly prepare the images so that the learning process is
efficient and the highest possible results of semantic segmen-
tation are obtained on the test set. For this purpose, image
resolution change, random cropping and normalization were
applied.

1) Resolution change: To improve the training time of
ANNs, the original resolution of source images was reduced
from 2048 × 1024 pixels to 600 × 300 pixels using the
nearest neighbour method [19]. Apart from RGB channels,
the rescaled images also contained a channel representing the
segmentation of individual images.

2) Random cropping: In the next step, random cropping
[20] was used to obtain images with the size of 256× 256
pixels. In addition, every image was mirrored with a probabil-
ity of 1/2. This produces more diverse input data and reduces
the risk that the network will analyse the general features of
all images.

3) Normalization: The next step is data normalization. This
means changing the value range of image RGB channels to
the interval of [0, 1]. The last channel, which contains values
representing the semantic segmentation, remains unchanged.

C. Convolutional network models used

During the study, an attempt was made to evaluate two con-
volutional networks, i.e. MobileNet [14], [15] and ResNet50
[16], [17], used as the encoder in the U-Net [18] model to
perform semantic segmentation. Some modifications to the U-
Net model were also proposed based on experiments carried
out on the training set.

1) U-Net model: U-Net is a neural network model whose
original purpose was the semantic segmentation of medical
images [18]. The U-Net model consists of two paths which
make the model diagram resemble the letter "U", namely the
contraction and expansion paths representing the encoder and
the decoder, respectively. Both paths are shown in Figure 2.

2) Modified U-Net model: A modified network model
based on the standard U-Net model with added normalization
layers, abbreviated as MU-Net, was proposed for performing
the semantic segmentation. The Rectified Linear Unit (ReLU)
[21] was used as the activation function. Example network
encoder and decoder blocks are shown in Figures 3 and 4.
Convolutional layers use 3×3 filters. A 1×1 filter is used for
concatenation layers and at the resolution of 256×256 pixels,
when transition to pixel classification occurs. During the
convolution, there is a descent to feature maps with the size of
8×8 pixels. This network is configured only for performing the
semantic segmentation. This is why the appropriate parameters
were selected during many trials to train the network and the
possible decrease of the accuracy during the classification of
the entire image or the detection of individual objects was not
taken into account.

Therefore, during many attempts to teach the network on
the training set, appropriate parameters were selected

3) MobileNet: The Mobilenet [14] is a convolutional net-
work that can be used on mobile devices. It is characterized
by fewer parameters and a shorter training time than other
models of convolutional networks. It has a high ratio of
accuracy to the parameter number. The MobileNetV2 network
[15] is an extension of the Mobilenet network. The authors
mention semantic segmentation as one of the applications of
this network. The main changes compared to the previous
version are the use of the ReLU6 activation function instead
of ReLU, and of the so-called bottleneck [22]. According
to the authors’ calculations, this network is more accurate
than the original version, while the number of parameters is
significantly reduced.

4) ResNet50: ResNet50 is a network belonging to the
group of so-called residual neural networks [16] introduced
in 2015, where the 50 in the name represents the number
of network layers. They are characterized by the possibility
of skipping some layers during the analysis. The ResNet
network has a block-skipping mechanism which transfers to
the next layer the parameter value processed only by the
activation function. Network blocks use the bottleneck method
just like in MobileNetV2. The ResNet50V2 network has a
small block consisting of a normalization layer followed by a
ReLU activation function. Pre-activation, i.e. the use of blocks
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before fully convolutional layers, speeds up the training of the
network and improves its accuracy.

5) Decoders used: A decoding part was added to each
neural network used to encode image features so that the
numbers of encoder and decoder parameters are similar. In
addition, in the case of Mobilenet and ResNet50, the same
decoder was used for v1 and v2. Because of the similar number
of parameters in the MU-Net and ResNet50 encoders, the MU-
Net model uses the same decoder as the ResNet50 model.

Data from Table I shows that regardless of using one
decoder for the MobileNet network and another for the re-
maining networks, every U-Net model has a different number
of decoder parameters. This is due to the different number of
channels in specific encoder layers. The consequence of this
is that concatenation layers that follow these layers and have
these layers as input also have a different number of channels,
resulting in a different number of parameters.

TABLE I
THE NUMBER OF PARAMETERS IN THE ENCODING AND DECODING PARTS

OF NETWORKS BASED ON THE U-NET MODEL.

Number of parameters
Network Encoder Decoder Entire U-Net model

MobileNet 3 228 864 2 788 834 6 017 698
MobileNetV2 2 257 984 2 288 610 4 546 594

ResNet50 23 587 712 19 483 426 43 071 138
ResNet50V2 23 564 800 15 698 722 39 263 522

MU-Net 25 163 136 19 554 850 44 717 986

III. EXPERIMENTS COMPLETED AND THEIR RESULTS

The accuracy of segmentation performed with CNNs was
measured using the Jaccard index. This is the most widespread
method of evaluating semantic segmentation. It allows cal-
culating the similarity of the obtained segmentation to the
manually labelled by experts. After the process of training
on a set of 2,975 images, the results obtained were evaluated
on a set of 500 images 256×256 pixels in size, produced by
the random cropping of the original test set. It can be said that
all ANNs achieved very similar results, as shown in Table II
and in Figure 5.

TABLE II
TABLE SHOWING THE ACCURACY OF THE U-NET MODEL NETWORK USING

SPECIFIC ENCODERS. THE RESULTS TURNED OUT TO BE VERY SIMILAR

DESPITE VERY LARGE DIFFERENCES IN THE NUMBER OF PARAMETERS.

Encoding network Jaccard index values
MobileNet 86.19%

MobileNetV2 86.20%
ResNet50 86.23%

ResNet50V2 86.27%
MU-Net 88.85%

It is worth noting that the improvements in the new versions
of both MobileNet and ResNet50 led to a slight increase in the
Jaccard index values of the semantic segmentation, while the
number of parameters was reduced by, respectively: 24.4%
and 8.9%. For this reason, only the newer versions of both
networks were used in subsequent experiments that checked

the accuracy of segmentation using the Jaccard index. It can
be concluded that increase of performance is not caused by
reducing the number of parameters, it is the result of improving
the network architecture. The difference in Jaccard index
values between the most and least accurate ANNs amounts
to 2.7%.

A. Noise in images

The impact of noise on the accuracy of the segmentations
performed was checked for 59 images from the test set
from the city of Lindau. Noise was introduced in the images
using the Hue, Saturation, Value (HSV) colour space and an
additional Holdness parameter. The channel values of Hue
vary from 0 to 180, and of Saturation and Value from 0 to
255. The Holdness parameter has values from the interval [1,
8] and is inversely proportional to the hue variation. Table
III shows the segmentation results measured with the Jaccard
index. Figure 6 shows an example source image before and
after noise was added, and Table III shows the segmentation
results measured with the Jaccard index. Noise with the values
of (Hue, Saturation, Value, Holdness) = (10, 22, 22, 1) was
added to all images from the test set from the city of Lindau.
Even though the noise had been selected so that it would not
hinder humans from recognizing any image elements, ANNs
encountered a problem and Jaccard index values fell by about
20%.

TABLE III
DIFFERENCE IN ACCURACY OF U-NET MODELS BEFORE AND AFTER

NOISE WAS ADDED TO IMAGES.

Encoding network Original set Noisy set
MobileNetV2 75.81% 51.90%
ResNet50V2 74.46% 56.52%

MU-Net 79.36% 59.48%

B. Non-standard lighting – shaded images

The 7 most shaded examples were selected from the test
image set to test the impact of low light on segmentation
accuracy. The results are presented in Table IV.

TABLE IV
A TABLE SHOWING THE ACCURACY OF THE U-NET NETWORK MODEL

CHECKED ON IMAGES WITH POOR LIGHTING CAUSED BY SHADE.

Encoding network Jaccard index value
MobileNetV2 84.22%
ResNet50V2 83.52%

MU-Net 86.39%

The results show that strong image shading does not hinder
obtaining positive segmentation results. The approximately 2%
drop in accuracy may be due to other features of the selected
images.

C. Class imbalance

Class imbalance is a phenomenon in which the analysed
classes are not equally represented. A dominant number of
pixels belonging to one or several classes may occur in the
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Fig. 5. Example results of a semantic segmentation on a sample image from the test set. (a) Original image (b) MobileNet (c) MobileNetV2 (d) ResNet50
(e) ResNet50V2 (f) MU-Net.

Fig. 6. Example test images from the city of Lindau (a) Original source image (b) Image with added noise with values of (Hue, Saturation, Value, Holdness)
=(10, 22, 22, 1).

semantic segmentation. An example is shown in Figure 7, in
which the road and vegetation are darker, and bright sunlight
penetrates only to a small extent. As a result, two dominant
classes are visible, namely the road and vegetation. ANNs
frequently do not receive images with strongly dominant
classes during training, or receive too few such images to
later produce correct results when the classifier is tested.
To check the segmentation results, 20 images with strongly
dominating classes were selected from the test set, and the
results obtained are presented in Table V. The results from
Table V demonstrate a certain advantage of the ResNetV2
network in this test. The MobileNetV2 network also achieved
a better result than the proposed MU-Net model, which may
indicate some overtraining of this network, which produced
the worst result this time.

IV. CONCLUSIONS

This paper describes the practical properties of neural
network models, namely MobileNet, ResNet, U-Net, and the
MU-Net model, used for the semantic segmentation of images

TABLE V
A TABLE SHOWING THE ACCURACY OF THE U-NET MODEL NETWORK

USING SPECIFIC ENCODERS, CHECKED ON 20 IMAGES WITH DOMINANT

CLASSES.

Encoding network Jaccard index value
MobileNetV2 76.67%
ResNet50V2 79.36%

MU-Net 74.99%

from the Cityscapes dataset [13]. The U-Net model is a very
interesting approach to the problem of semantic segmentation,
which is an extremely difficult area of digital image analysis.
However, this model has some accuracy limitations and the
constant increase of the number of parameters will not ensure
satisfactory results, which is one of the conclusions. During the
research, the author was able to propose an MU-Net model, i.e.
an ANN dedicated to semantic segmentation, which produced
results slightly better than universal networks like MobileNet
or ResNet. However, the MobileNetV2 network turned out to
be the most interesting and promising ANN used. It has a
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Fig. 7. Example image with semantic segmentation showing non-standard lighting and class imbalance. Most of the image is covered by the road and
vegetation, while bright sunlight and moving cars occupy a small fragment of the image. (a) Original image. (b) Semantic segmentation containing mainly
two classes.

very good ratio of accuracy to the number of parameters and,
at the same time, is less affected by non-standard phenomena
in images. Due to the constantly increasing computing power
of mobile devices, neural networks designed for analysing
images on mobile devices with even better parameters can
be expected in the near future. In future research, it is
definitely worth investigating improving the accuracy of the
semantic segmentation of noisy images and the issue of
class imbalance. There are also other interesting directions
of research, e.g. performing a semantic segmentation that
simulates autonomous vehicle driving using recorded videos,
and carrying out a three-dimensional semantic segmentation
of urban scenes. It is also worth trying to supplement training
sets using various augmentation methods, but keeping in mind
the need to prevent learning the wrong patterns.
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