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Abstract—Social choice function or voting procedure is one of
the crucial concepts in the domain of political sciences. It maps
individuals’ preferences over a set of candidates to some subset
(possibly one-element) of the candidates who can be thought
as the winners of an election procedure. The paper is aimed at
applications of formal concept analysis methods to study of social
choice functions. We will construct concept lattices over selected
set of social choice functions characterized by possessing some
properties deemed as important from the point of view of political
sciences. We will discuss issues connected with reducibility of both
objects and attributes, irreducibility of object concepts as well
as attribute concepts and attribute implications. We will discuss
also the shape of the constructed concept lattice of social choice
functions which in some part is exceptionally regular from the
perspective of the lattice theory.

I. INTRODUCTION

T
HIS paper is aimed at some applications of formal

concept analysis (FCA) methods [32], [6] in social choice

theory [16], [4], [19], one of the most important research

domains of political sciences. We concentrate on social choice

functions or voting procedures which are concepts of a crucial

importance in the theory of social choice [4], [5], [18]. Our aim

is to offer a non-standard approach to studying and comparing

popular social choice functions. The FCA has been used in

broadly meant social choice theory (cf., e.g., [27], [27], [8]

or even [6] ) but not with such a specific goal as here. Also,

various non-classical approaches has been proposed in this

area. For example, fuzzy logic has been applied with success to

model various aspects of social choice (cf., e.g.[9], [21], [10],

[22], [12], [23], [11]) Another line of non-classical research

in this area, which is relevant for our purposes, is based on

the rough-sets theory (RST) [25], [24], [26]. In particular, the

research presented in [3], [13] concentrated on the issue of

reduction of voting criteria and on measuring of similarity

and dissimilarity of different social choice functions, ideas and

methods used in comparison of voting procedures.

Actually, rough set theory can be viewed as a similar theory

to formal concept analysis in the domain of data mining

and knowledge discovery [31], [30] and such view drove our

attention to the idea of application of formal concept analysis

methods in the area of social choice functions.

The rest of the paper is organized as follows. In Section

2 some basic concepts of theory of social choice functions

are introduced and discussed including voting procedures and

criteria used for comparisons of different voting procedures.

In Section 3 formal context of social choice functions and its

concept lattice are introduced together with an investigation of

the structure of concept lattice of these social choice functions.

Section 4 is devoted to analysis of information provided by

concept lattice of social choice functions, including attribute

independency, reduction of information and attribute implica-

tions holding in the analyzed context of voting procedures.

Section 4 is followed by Conclusions discussing results and

presenting directions for further research.

II. SOCIAL CHOICE FUNCTIONS

We consider social choice problem in a general setting

which may be characterized as follows. There is a set of

experts E = {ej}j∈J and a set of options (alternatives)

O = {oi}i∈I . Each expert ej is assumed to represent his or

her testimonies over the set of options O in the form of a

binary preference relation Rj ⊂ O ×O where Rj(oi1 , oi2) is

meant to represent preference of the expert ej for the option

oi1 over the option oi2 , i.e., that in his or her opinion option

oi1 is better than the option oi2 . Preference relations Rj may

be assumed to exhibit various properties. Often, the transitivity

(Rj(oi1 , oi2)∧Rj(oi2 , oi3) implies Rj(oi1 , oi3)), completeness

(∀i1, i2 ∈ I either Rj(o1, o2) or Rj(o2, o1) holds), and some

form of anti-symmetry (e.g., Rj(o1, o2) =⇒ ¬Rj(o2, o1)),
is assumed.

In such a setting, the social choice function F may be

defined as follows:

F (X, {Rj}) = Y (1)

where X,Y ⊆ O are sets of options such that Y ⊆ X , and

{Rj} is a set of preference relations on O.
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Thus, a social choice function determines which options Y

are to be selected from a set of options X in view of the

preference relations {Rj} of a group of experts.

Voting procedures used in the elections may be interpreted

as social choice functions. Often, the voting procedure is

required to indicate as Y exactly one element subset of X

(cf. (1)), i.e., Y = {oi} and the option (candidate) oi is then

called the winner of the election. In case of voting procedures

we will usually refer to experts and options as voters and

candidates, respectively.

Particular voting procedures differ in that how the winner

is selected. For example, some arrive at the decision in an

iterative way and the voters are requested to express their

preferences several times, often with respect to a changing

set of candidates. Often, the agenda is established which

determines in which order the candidates are voted for. Most

of voting procedures do not require voters to express their

whole preference relations, at least not at the very beginning,

but assuming existence of such a complete preference relation

(ranking of the candidates) makes it possible to derive the win-

ner of the election (assuming they always vote in accordance

with their complete preference relation).

There are many postulated properties which are desired

to be met by a fair voting procedure properly reflecting

the preferences of the voters. However, it turns out that it

is impossible to find one possessing all desired properties.

Thus, satisfaction of such desired properties may be treated

as criteria in evaluation of particular voting procedures.

In our approach, based on our previous work [3], [11], [13],

[23], our point of departure is the following list of desired

properties (criteria) of voting procedures:

A - Condorcet winner If each time a candidate is preferred by

the majority of voters when compared to any other candidate

then it has to be the winner.

B - Condorcet loser If all other candidates are preferred by

the majority of voters when compared to a given candidate

then the latter candidate cannot be the winner.

C - majority winner if a candidate is top-ranked in the

rankings of the majority (more than 50%) of voters then this

candidate have to be the winner.

D - monotonicity If a candidate is the winner then if it is

ranked higher by a voter then it has still to be the winner and

if a candidate is not the winner then if ranked lower by a voter

cannot become the winner.

E - weak Pareto winner If for a given candidate o1 there

exists another candidate o2 which is ranked higher than o1 by

all voters then o1 cannot be the winner.

F - consistency If the set of voters E is divided in two groups

(E = E1 ∪ E2), in any possible way, and a candidate is the

winner both for E1 and E2 then it has to be the winner for

E.

G - heritage If a candidate oi ∈ O is the winner then it has

to be the winner also when any subset of candidates O1 ⊆ O

is considered such that oi ∈ O1

In the paper we will consider some popular voting proce-

dures which are briefly characterized below.

Amendment Candidates are voted individually, in some order,

and if a candidate gets the majority of votes it becomes the

winner; otherwise the next candidate is voted.

Copeland the winner is a candidate for which the highest is the

difference between the numbers of pairwise comparisons with

other candidates in which it is voted by majority, respectively,

as better and as worse.

Dodgson the winner is the candidate for which the minimum

number of changes in voters rankings is needed to make it a

Condorcet winner.

Schwartz if there is a Condorcet winner it is the winner;

otherwise the set OS ⊆ O of all candidates who are voted

as better by majority of voters in pairwise comparison with

all candidates belonging to the set O \OS are the winners.

Max-min/Egalitarian The winner is the candidate whose

worst position over the rankings of all voters is the highest.

Plurality Only top-ranked candidates for each voter are taken

into account and the winner is the one which is most often

among them.

Borda Each position in the ranking is assigned a score, highest

for the top position and lowest for the last one and the winner

is a candidate for which the sum of scores of the positions it

takes in rankings of particular voters (the Borda count) is the

highest.

Approval Each voter points out a subset of preferred can-

didates and the winner is the option which is present in the

highest numer of these subsets.

Black The winner is the Condorcet winner, if it exists;

otherwise the Borda voting procedure is used.

Runoff Works like Plurality but two best candidates are

selected and then Plurality voting is repeated for just two of

them.

Nanson The Borda voting procedure is iteratively repeated

and in each iteration a candidate with the lowest Borda count

is excluded from the voting in the following iteration.

Hare The Plurality voting procedure is iteratively repeated

and in each iteration candidates with the lowest number of

top positions in the rankings are excluded from the voting in

the following iteration.

Coombs The winner is a candidate which is top-ranked by

the majority of voters, if it exists. Otherwise, the procedure is

iteratively repeated but in each iteration the candidate which

is most often ranked as the last one is eliminated.

III. FORMAL CONCEPT ANALYSIS

Formal concept analysis (FCA) was introduced by Wille in

[32]. FCA is founded on lattice theory and aimed at data anal-

ysis and representation. FCA uses tabular-type data represen-

tations called formal contexts where objects are characterized

by mono-valued attributes1. In FCA data are represented and

analyzed by concept lattices using algebraic, order and logical

methods based on concept lattices. A construction of concept

lattices is based on Galois connections determined by formal

contexts. Here we present basic notions of FCA. For a detailed

1In the process of development, FCA was broadened also for multi-valued
attributes by means of conceptual scaling [6].
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presentation of formal concept analysis see the first monograph

on FCA by Ganter and Wille [6] and for elements of lattice

theory see an excellent textbook freely available on-line by

Burris and Sankappanavar [2].

A formal context is defined as a triple of the form (G,M, I),
where G and M are sets, while I is a binary relation I ⊆ G×
M . Elements of set G and M are called objects and attributes

respectively as well as an extent and an intent, respectively,

of the context (G,M, I). The fact that a ∈ G and m ∈ M are

in relation I will be denoted as a I m, and will be described

as that object a possesses attribute m, or that attribute m is

possessed by object a.

For context (G,M, I) two different operators between

power sets ℘(G) and ℘(M) are defined:

X 7→ Xi = {m ∈ M : a I m, ∀ a ∈ X},

Y 7→ Y e = {a ∈ G : a I m, ∀ m ∈ Y },

for each X ⊆ G, Y ⊆ M . Operator ·i is called an intension

operator and operator ·e is called an extension operator. One

can note that operators ·i and ·e are perfectly dual in the sense

of order theory, thus in FCA there is commonly used practice

to denote these operators by the same prime symbol ·′ [6]. This

practice is justified by the formal properties of extension and

intension operators presented in Table I and makes calculation

easier. It also does not lead into confusion: in Table I for

example, since Y ⊆ M , then formula (3b) Y ′ = Y ′′′ can be

rewritten as Y e = Y eie.

TABLE I
BASIC PROPERTIES OF INTENSION AND EXTENSION OPERATORS

FOR FORMAL CONTEXT (G,M, I) AND SETS X,X1, X2 ⊆ G AND

Y, Y1, Y2 ⊆ M [6].

(1a) X1 ⊆ X2 ⇒ X′

2
⊆ X′

1
(1b) Y1 ⊆ Y2 ⇒ Y ′

2
⊆ Y ′

1

(2a) X ⊆ X′′ (2b) Y ⊆ Y ′′

(3a) X′ = X′′′ (3b) Y ′ = Y ′′′

(4a) (X1 ∪X2)′ = X′

1
∩X′

2
(4b) (Y1 ∪ Y2)′ = Y ′

1
∩ Y ′

2

A formal concept of context (G,M, I) is pair (A,B) with

A ⊆ G, B ⊆ M , such that A = B′ and B = A′. A and

B are called the extent and the intent of the concept (A,B)
respectively. The family of all formal concepts of context

(G,M, I) is denoted by B(G,M, I). If (A,B) ∈ B(G,M, I)
and g ∈ A, then g is an object from the concept (A,B).
Using properties form Table I one can show that for any

object g ∈ G and any attribute m ∈ M , the following

equations hold: ({g}′′, {g}′), ({m}′, {m}′′) ∈ B(G,M, I).
Concept ({g}′′, {g}′) is called an object concept of object

g whereas concept ({m}′, {m}′′) is an attribute concept of

attribute m. The object concept of any object g ∈ G we denote

by γ̃(g) and the attribute concept of any attribute m ∈ M we

denote by µ̃(m). If (A,B) = ({g}′′, {g}′), then object g is

called an own object of concept (A,B), i.e. g posses only

those attributes which are contained in B. Analogically, If

(A,B) = ({m}′, {m}′′), then attribute m is called an own

attribute of concept (A,B), i.e. m is possessed only by those

objects which are contained in A.

Let (G,M, I) be a formal context. On family B(G,M, I)
we define relation ≼ in the following way:

(A1, B1) ≼ (A2, B2) ⇔ A1 ⊆ A2(:⇔ B2 ⊆ B1).

where (A1, B1), (A2, B2) ∈ B(G,M, I). In this case

(A1, B1) is called a subconcept of (A2, B2) and (A2, B2)
is called a superconcept of (A1, B1). The relation ≼ is a

partial order on the family B(G,M, I) and it is called the

hierarchical order (or simply order). One can show that the

family B(G,M, I) ordered by the relation ≼ is a complete

lattice called the concept lattice of the context (G,M, I). We

denote that lattice by B(G,M, I).
Having the relation ≼ defined for the concept lattice one

can equivalently consider two binary operations denoted as ∧
and ∨ which can be expressed in terms, respectively, of the

infimum and supremum with respect to relation ≼. Namely,

a ∧ b = inf{a, b} and a ∨ b = sup{a, b}. Thanks to the

semantics of the infimum and supremum, these operations may

be easily extended for arbitrary sets of arguments. The Basic

Theorem on Concept Lattices [32], [6] shows that in the case

of the concept lattice B(G,M, I) these operations and their

generalizations for arbitrary sets of concepts are given by the

following equations respectively:
∧

i∈I

(Ai, Bi) = (
⋂

i∈I

Ai, (
⋃

i∈I

Bi)
′′),

∨

i∈I

(Ai, Bi) = ((
⋃

i∈I

Ai)
′′,

⋂

i∈I

Bi).

Therefore concept lattices can be viewed as hierarchical con-

ceptual structures equipped with some operations on concepts

and representing data stored in formal contexts. When the

number of objects or the number of attributes in formal

contexts are relatively small, then concept lattices can be used

also for visualization of information stored in their formal

contexts. In the next section we present a relatively small con-

cept lattice representing a selection of social choice functions

characterized by selected voting criteria, briefly introduced in

section II.

IV. CONCEPT LATTICE OF SOCIAL CHOICE FUNCTIONS

This section is devoted to construction and structural anal-

ysis of proposed lattice of social choice functions. We start

with definition of formal context of social choice functions on

the basis of consideration conducted in the previous section.

Let

SCF := (GSCF,MSCF, ISCF)

be a formal context where set GSCF comprises all voting

procedures presented in Section II, set MSCF consists of

selected criteria denoted by letters A, ..., G in Section II, while

set of pairs ISCF is the incidence relation presented in Table

II.

Now, on the basis of formal context SCF we construct the

concept lattice of social choice functions B(GSCF,MSCF, ISCF)
(Fig. 1) and study its properties2.

2Diagrams of concept lattices are generated with usage of ConExp software
by Serhiy A. Yevtushenko.
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TABLE II
A FORMAL CONTEXT OF SELECTED SOCIAL CHOICE FUNCTIONS. ROWS

CORRESPOND TO FORMAL OBJECTS WHICH ARE SOCIAL CHOICE

FUNCTIONS AND COLUMNS CORRESPOND TO FORMAL ATTRIBUTES

WHICH ARE SOME CRITERIA INTRODUCED IN SECTION II.

Voting Criteria
procedures A B C D E F G

Amendment × × × ×

Copeland × × × × ×

Dodgson × × ×

Schwartz × × × ×

Max-min × × × ×

Plurality × × × ×

Borda × × × ×

Approval × × ×

Black × × × × ×

Runoff × × ×

Nanson × × × ×

Hare × × ×

Coombs × × ×

Fig. 1. Concept lattice of social choice functions B(GSCF,MSCF, ISCF).
Half-black nodes represent object concepts while half-blue nodes represent
attribute concepts .

Fact 1: Concept lattice of social choice functions

B(GSCF,MSCF, ISCF) is nondistributive, i.e., it is not the case

that ∀C1, C2, C3 ∈ B(GSCF,MSCF, ISCF) C1 ∧ (C2 ∨ C3) =
(C1 ∧ C2) ∨ (C1 ∧ C3) nor C1 ∨ (C2 ∧ C3) = (C1 ∨ C2) ∧
(C1 ∨ C3).

In order to show this one can consider the following formal

context:

K1 := (G1,M1, I1),

where G1 := GSCF, M1 := {Condorcet −
winner, consistency, heritage}, and I1 :=
ISCF ∩ (G1 × M1). Now one can note that its concept

lattice B(G1,M1, I1), which is presented in Fig. 2, is a

famous N5 lattice [2] and can be embedded into concept

lattice of social choice functions B(GSCF,MSCF, ISCF).

Fig. 2. Concept lattice B(G1,M1, I1).

This by famous theorems by Dedekind and by Birkhoff

implies that concept lattice of social choice functions

B(GSCF,MSCF, ISCF) is neither modular nor distributive (see

e.g. [2]).

The fact that concept lattice B(GSCF,MSCF, ISCF) lacks

such regular property as distibutivity is not surprising. In fact

it is quite rare phenomenon that real, non-manipulated data

generate concept lattice possessing some regular properties.

For example, one can consult concept lattice presented in [17]

and generated from Threats Matrix (in German Gefahren-

matrix) used in commanding of tactical actions by German

Fire Service [1], [7]. However, looking at the concept lattice

presented in Fig. 1 one can note that the left part of this lattice

diagram reveals some regularity. Namely, the concept lattice of

social choice functions B(G1,M1, I1) contains as sublattices

some distributive lattices or some Boolean algebras. Moreover,

some subcontexts generated from context SCF of social choice

functions generate lattices possessing some regularity.

Let

K2 := (G2,M2, I2),

be a formal context, where G2 := GSCF, M2 := {Condorcet−
winner,majority winning, weak Pareto, monotonicity},

and I2 := ISCF ∩ (G2 × M2), thus K2 is subcontext of

social choice functions context SCF. Then concept lattice

B(G2,M2, I2) is presented in Figure 3. One can note that

concept lattice B(K2) is distributive.

For another example let us consider the following subcon-

text of social choice functions context SCF:

K3 := (G3,M3, I3),

where G3 := GSCF, M3 := {Condorcet −
loser, majority winning, weak Pareto,monotonicity},

and I3 := ISCF ∩(G3×M3). One can note that concept lattice

B(K3) presented in Figure 4 is Boolean lattice isomorphic

to the power set algebra of a four-element set.
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Fig. 3. Distributive concept lattice B(G2,M2, I2).

Fig. 4. Boolean concept lattice B(G3,M3, I3).

V. INFORMATION PROVIDED BY LATTICE OF SOCIAL

CHOICE FUNCTIONS

This section is devoted to the analysis of social choice

functions listed in Section II by means of the FCA. We

will concentrate on issues of attribute independency, reduction

of information and on attribute implications derived from

proposed formal context of social choice functions by means

of FCA.

A. Attribute Independency

Let us start our consideration with the independency of

attributes in the formal context SCF of social choice functions

(voting procedures). Let (G,M, I) be the formal context.

Attributes in X ⊆ M are independent if there are no trivial

dependencies between them i.e. functional (or ordinal) depen-

dencies where set of attributes Y is functionally (ordinally)

dependent on set of attributes X and Y ⊆ X . Following [29]

we recall:

Lemma 1: Attributes are independent if they span a hyper-

cube in a concept lattice.

For example concept lattice of social choice functions

has four coatoms and these formal concepts as

coatoms are also attribute concepts, namely these

are µ̃(majority winning), µ̃(Condorcet − loser),
µ̃(weak Paretto) and µ̃(monotonicity). These attributes

are independent since every three attributes from this set (by

their attribute concepts) span a hypercube in the concept

lattice B(GSCF,MSCF, ISCF). In fact, in concept lattice

B(GSCF,MSCF, ISCF) it is easier to characterize sets of

attributes which are not independent: in concept lattice

B(SCF) there are four two-element chains of attribute

concepts, namely:

• {µ̃(Condorcet− winner), µ̃(majority winning)},

• {µ̃(heritage), µ̃(consistency)},

• {µ̃(heritage), µ̃(monotonicity)},

• {µ̃(consistency), µ̃(monotonicity)}.

Sets of attributes which are not independent are exactly sets

of attributes containing at least one pair of attributes such that

their attribute concepts are contained in one of the above two-

element chains.

B. Reducibility of Information

Reduction of information is one of the main advantages

of formal concept analysis. Here we describe reduction of

information within concept lattice of social choice functions.

Let us recall that context (G,M, I) is called clarified if for

any objects g, h ∈ G, g′ = h′ implies g = h and for any

attributes m,n ∈ M , m′ = n′ implies m = n. Now let us

note the following facts:

Fact 2: Context SCF is not clarified.

It is so since, e.g., {Coombs}′ = {Runoff}′ but obviously

Coombs ̸= Runoff . However, for the set of all attributes

of context SCF (denoted by MSCF) one of the necessary

conditions for a clarified context holds, i.e.:

Fact 3: For all attributes (criteria) m,n ∈ MSCF the

following implication holds:

{m}′ = {n}′ ⇒ m = n.

It is easily seen in Fig. 1 where there are no two criteria

determining the same attribute concept.

Let us recall that for any formal context (G,M, I), object

g ∈ G is reducible if its object concept γ̃(g)is supremum-

reducible, i.e., can be represented as the supremum of strictly
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smaller concepts what implies that concept γ̃(g) has no unique

lower neighbour in concept lattice B(G,M, I). Analogously,

for any context (G,M, I), attribute m ∈ M is reducible

if its attribute concept µ̃(m) is infimum-reducible, i.e., can

be represented as infimum of strictly greater concepts, i.e.

concept γ̃(m) has no unique upper neighbour in concept lattice

B(G,M, I). Now one can note that:

Fact 4: The social choice function Dodgson (more formally:

the object representing this social function in the lattice) is

reducible. The rest of social choice functions from the context

SCF are irreducible.

One can note that social choice function Dodgson as a formal

object is reducible since its object concept is a supremum of

two different concepts:

γ̃(Dodgson) = γ̃(Nanson) ∨ γ̃(Max−min),

in B(G,M, I), the concept lattice of social choice functions.

Namely the object concept γ̃(Dodgson) is the lattice union of

the object concepts determined by voting procedures Nanson

and the object concept determined by the voting procedure

Max-min. This observation may be expressed in a different

way by saying that the Dodgson social choice function is

Pareto-dominated by the Nanson and Max-min functions. Such

a statement is justified as the attributes of the functions

express their desired properties and thus the aforementioned

dominance is here well-defined.

Concerning the rest of voting procedures from the social

choice functions context SCF, their object concepts have

exactly one lower neighbour in the concept lattice of social

choice functions, thus by Proposition 2 of [6] these object

concepts are irreducible.

Fact 5: All attributes are irreducible.

One can note that every attribute concept determined by

a criterion from the context SCF has exactly one upper

neighbour what in the light of Proposition 2 of [6] shows

that all attribute concepts in the social choice context SCF are

infimum-irreducible.

Fact 6: In the formal context SCF of social choice functions

there is only one concept which is both object concept and

attribute concept.

In order to show this one can note that:

γ̃(Approval) = µ̃(heritage),

i.e. social choice function (voting procedure)Approval and

voting criterion heritage determine the same concept in the

concept lattice of social choice functions. It stems from the

fact, that the property (attribute) heritage distinguishes the

voting procedure Approval from the other procedures and,

at the same time, property heritage is satisfied only by

Approval.

C. Implications holding in the Context of Social Choice Func-

tions

The FCA based analysis of voting procedures brings in

another potentially interesting insight into their functioning.

Namely, implications holding in the context of social choice

functions may provide social choice theorists with valuable

information. Those implications are not laws derived by

theoretical considerations directly from knowledge gathered

in the framework of the social choice theory but they are

derived from the description of the voting procedures created

by politicians and social choice theorist and expressed in terms

of different properties postulated by social choice theorists.

Let us recall the notion of attribute implication. Informally,

implications between attributes are the statements of the

following form "Every object with the attributes a, b, c, ...

also has the attributes x, y, z, ... " [6]. Formally speaking,

an implication between attributes in context (G,M, I) is a

pair of subsets of the attribute set M . If A,B ⊆ M , then

implication between A and B is denoted by A → B. An

implication between attributes may or may not hold in a given

formal context. Instead of formal definition of implication

which holds in a given formal context we recall a transparent

characterization of this notion given in Proposition 19 in [6]:

an implication A → B holds in (G,M, I) if and only if

B ⊆ A′′.

Looking at concept lattice of social choice functions pre-

sented in Fig. 1 one can note relatively large number of

nontrivial implications between singular attributes which are

enlisted below:

• {Condorcet− winner} → {majority winning}
• {heritage} → {consistency}
• {consistency} → {monotonicity}

One of the formal reasons for that is the fact that five of

seven attribute concepts are involved into two chains maximal

with respect to the property that they consist only of attribute

concepts, namely the following two chains:

• {µ̃(Condorcet− winner), µ̃(majority winning)}
• {µ̃(heritage), µ̃(consistency), µ̃(monotonicity)}.

Finally, one can note that maximal antichains consisting

only of attribute concepts have four elements which seems

to be a relatively high number compared to the fact that max-

imal antichains in concept lattice of social choice functions

analyzed within this paper have seven elements, i.e. the width

of the concept lattice of social choice functions is 6.

VI. CONCLUSIONS

The concept lattice of social choice functions constructed

and analyzed within this paper has an interesting and pretty

regular structure. Despite the fact that itself it is nondistributive

lattice it contains quite a few regular sublattices, including

Boolean, distributive and modular lattices of a quite large size

compared to the size of the whole lattice.

From the perspective of social choice theory interesting is

a comparison of the applicability of formal concept analysis

methods and rough sets theory methods. The latter has been

already reported in the literature [3], [13]. One of particular di-

mensions of such comparison will be the issue of information

reduction in both approaches.
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And last but not least, an interesting issue worth of further

research from the perspective of FCA is to find out whether

observations reported in the paper can be interpreted in a

deeper way in the language of the social choice theory. Thus,

the further research in this direction can be focused on one

task: to understand the observed phenomena presented in this

paper in terms of social choice theory.
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