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Abstract—In this research paper, we propose a novel ap-
proach to digital circuit design using XOR-based decomposition.
The proposed technique utilizes XOR gates as a fundamental
building block for decomposing complex Boolean functions into
simpler forms, leading to more efficient and compact digital
circuits. We demonstrate the effectiveness of our approach
in two different contexts: memory-based logic synthesis and
reversible logic synthesis. In particular, we demonstrate that the
proposed technique can efficiently reduce the number of input
variables, which is a crucial task when using memories in the
design. Obtained results prove that the XOR-based approach
can efficiently complement variable reduction and dimensionality
reduction algorithms. Furthermore, we show its application in
generating the XOR-AND-XOR form of a reversible function
and demonstrate how to combine it with another technique, i.e.,
a functional decomposition for reversible logic synthesis.

I. INTRODUCTION

L
OGIC synthesis is a very important process that enables

efficient design and implementation of complex digital

circuits. Its importance continues to grow since the com-

plexity and performance demands of digital circuits are still

increasing. In recent years, a specific type of logic synthesis,

i.e., memory-based synthesis has gained attention from re-

searchers, leading to the development of numerous algorithms

and techniques in this field, making it a promising approach

for the design of modern electronic systems. Especially logic

synthesis of incompletely specified Boolean functions was

deeply analyzed.

This technique approaches the design of digital circuits from

a different perspective than traditional logic synthesis methods.

Instead of focusing solely on Boolean logic gates and their

interconnections, memory-based logic synthesis incorporates

memories, such as static random-access memory (SRAM) and

read-only memory (ROM), as fundamental building blocks in

the design process. Due to that, this approach can improve the

performance, area, and power consumption of digital circuits.

Lately, a synthesis of specific functions, called index gener-

ation functions [6], [9], [13], gained significant interest due to

the practical applications of their implementations in network

hardware, e.g., in telecommunication and cybersecurity.

Due to the properties of index generation functions, typ-

ically fewer variables than initial N variables can be used

to represent those functions. It is important, especially in

memory-based logic synthesis [11], where the memory size

strongly depends on the number of input variables.

In the literature, the application of linear (i.e., XOR-based)

decomposition in index generation functions minimization was

widely investigated. However, XOR-based logic synthesis is

a relatively new approach to a digital circuit design that

leverages the properties of the exclusive OR (XOR) gate

as a fundamental building block. It is worth noticing that

this approach can often exploit the symmetries of Boolean

functions, leading to more efficient circuits.

This approach implements a function as a composition

of linear and general functions. The layer of XOR gates

implements the first one, while the second one is typically

implemented using memory (RAM/ROM). A typical decom-

position scheme is presented in Fig. 1. Variable reduction is

an optional step that reduces the number of variables, i.e. it

removes those variables that can be removed without loss of

any information. The outputs of this algorithm become the

inputs to a linear function algorithm. This algorithm finds P

reduction equations that use XOR combinations of subsets

of the input variables. In the end, the general function is

implemented using 2PQ memory bits, where Q denotes the

number of output variables.

Fig. 1: The linear decomposition scheme.

Similar approaches, i.e. reduction of a number of variables

(or dimensionality reduction) and implementation of a reduced

general function, are used in other fields, e.g. in reversible

logic synthesis [2] and data mining [3]. Especially the first

field is a promising research area due to its potential to

improve the energy efficiency of digital circuits. Work on

the potential of the exposition of an XOR relationship in the

logic synthesis of boolean functions has also been carried out.

For example, Czajkowski and Brown [5] showed that it leads

to significant resource savings for MCNC (Microelectronics

Center of North Carolina) benchmark functions.

In this paper, we analyze how the XOR-based method used
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previously in index generation functions minimization [6] can

be generalized and applied to any function represented using

binary input vectors. We present the whole algorithm and show

its usefulness using standard benchmark functions. We also

present how the proposed approach can be used in the fields

mentioned above. In particular, lately, the novel form called

XORAX (XOR-AND-XOR) was proposed [2] to represent

a function. This form can ease the reversible synthesis of

some functions. In this paper, we show that the XOR-based

decomposition can be used to perform the first step of XORAX

form generation. We also prove that the proposed method can

be used to improve the results obtained using a functional

decomposition [10].

II. PRELIMINARIES

A. Basic notation

Let N denote the number of input variables, and K denote

the number of rows in a function truth table. Notice that K =
2N for completely specified Boolean functions.

To present an algorithm of XOR-based decomposition, we

introduce a concept of discernibility set. It will be denoted as

Cp,q , where p and q (p, q ∈ {1, 2, . . . ,K}, p < q) are indexes

of vectors of {0, 1}N , such that F (p) ̸= F (q), where F (p) is

the output value for row number p in a function truth table.

We define discernibility set as follows:

Cp,q = {x ∈ X : x(p) ̸= x(q)}, (1)

where X denotes the set of input variables.

In particular, Cp,q represents input variables where vectors

number p and q differ. For example, in Table I the first and

third vectors differ on variable x2. Thus, C1,3 = {x2}.

TABLE I: An example function.

idx x1 x2 x3 F (X)

1 0 0 0 0

2 0 0 1 0

3 0 1 0 1

4 0 1 1 1

5 1 0 0 1

6 1 0 1 1

7 1 1 0 0

8 1 1 1 0

Notice that for any index generation function, the condition

F (p) ̸= F (q) is true for every possible pair of values p and q

since the output values are unique consecutive integer values.

This observation simplifies computations for such functions.

However, it leads to higher memory consumption since many

more Cp,q sets might be generated.

The collection of all Cp,q will be denoted as RC, i.e.

RC = {Cp,q : p, q ∈ {1, 2, . . . ,K}, p < q}. (2)

Its complement, i.e., collection of all sets that are not present

in the RC, will be denoted as COM (RC). Additionally,

the complement limited to r-element sets will be denoted as

COM (RCr). The discernibility sets for all possible values of

p and q can be represented using the discernibility matrix.

Example 2.1: Consider the example function (N = 3, O =
1,K = 8) presented in Table I. All calculated Cpq sets for this

function (i.e., RC) are presented in Table II. Notice that pairs

of p and q values such that F (p) = F (q) were omitted in the

calculation (e.g. C1,2 is not present since the value for both

the first and second rows equals zero). Based on the calculated

sets, we get

RC1 = {{x1}, {x2}},

RC2 = {{x1, x3}, {x2, x3}},

RC3 = ∅.

Therefore, we get the following complements:

COM (RC1) = {{x3}},

COM (RC2) = {{x1, x2}},

COM (RC3) = {{x1, x2, x3}}.

TABLE II: Cp,q sets for the example function

p, q Cp,q p, q Cp,q

1,3 {x2} 3,7 {x1}
1,4 {x2, x3} 3,8 {x1, x3}
1,5 {x1} 4,7 {x1, x3}
1,6 {x1, x3} 4,8 {x1}
2,3 {x2, x3} 5,7 {x2}
2,4 {x2} 5,8 {x2, x3}
2,5 {x1, x3} 6,7 {x2, x3}
2,6 {x1} 6,8 {x2}

Since we check whether F (p) ̸= F (q), the proposed

approach can be applied also to functions that do not return

only 0 or 1. In particular, both multiple-output functions and

functions with multiple-valued output can be decomposed us-

ing the same technique as long as input vectors are represented

as binary vectors.

Example 2.2: Consider the function presented in Table III.

It represents the following mapping: F : {0, 1}6 → {1, 2, 3}.
Using the same approach as in Example 2.1, we get the RC

presented in Table IV.

TABLE III: An example with multiple-valued output.

idx x1 x2 x3 x4 x5 x6 F (X)

1 1 0 0 0 0 0 1

2 0 1 1 1 1 0 1

3 0 0 1 0 0 1 2

4 1 0 1 1 1 1 2

5 0 1 0 0 1 0 3

6 0 1 0 0 0 0 3

B. Memory-based logic synthesis

Memory-based logic synthesis plays an important role in

embedded systems, which often rely heavily on memory for

storing and processing data. For example, nonvolatile Read

Only Memories (ROMs) are used to store some fixed data used

in a design, or to implement a truth table or a state machine.
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TABLE IV: Cp,q sets for the example function

p, q Cp,q p, q Cp,q

1,3 {x1, x3, x6} 2,5 {x3, x4}
1,4 {x3, x4, x5, x6} 2,6 {x3, x4, x5}
1,5 {x1, x2, x5} 3,5 {x2, x3, x5, x6}
1,6 {x1, x2} 3,6 {x2, x3, x6}
2,3 {x2, x4, x5, x6} 4,5 {x1, x2, x3, x4, x6}
2,4 {x1, x2, x6} 4,6 {x1, x2, x3, x4, x5, x6}

This technique helps to optimize the design of digital circuits

that interface with memory.

In modern embedded systems, Field-Programmable Gate

Arrays (FPGAs) are used very often due to the wide range

of applications, including signal processing, video processing,

networking, and data storage. The fundamental building blocks

used to implement a digital circuit described typically using

a hardware description language, are Look-Up Tables (LUTs).

A LUT is a small, programmable memory block that can

store a truth table, which implements a Boolean function. The

number of inputs to a LUT can vary depending on the FPGA

architecture, but in modern devices equals typically 4 to 6.

Additionally, FPGAs very often contain memories.

The main goal of memory-based logic synthesis [11] is to

minimize the memory usage of the design. The typical ap-

proach is to use functional decomposition to divide a function

into smaller subfunctions that can be efficiently implemented

using memories or LUTs. Additionally, a variable reduction [3]

is often used to remove redundant information from a function.

However, this technique fails for some functions [6], or the

number of variables can be further minimized. For example,

the XOR-based decomposition reduces the number of variables

by using the additional layer of XOR gates.

C. Reversible logic synthesis

Reversible logic synthesis is a process of designing circuits

that can run both forward and backwards, meaning that can

perform both computation and its inverse. In order to do so,

the circuit has to have the same number of input and output

variables and the implemented function must be a bijection

(i.e., the input values can be uniquely determined from the

output values and vice versa). In this process, the main goal

is to minimize the number of gates required to implement

a function.

In order to unify the approach for the comparison of differ-

ent reversible logic synthesis methods, several gate libraries

are used. The smallest complete set of gates, proposed in

[14] and called the NCT gate library, contains three gates:

NOT, CNOT and Toffoli gates. Any reversible function can

be implemented using a combination of those three gates.

The first gate is a one-bit gate that performs the logical

negation operation. The second gate is a two-bit gate, mean-

ing it has two input signals and two output signals, which

implements the following mapping (x, y)→ (x, x⊕y), where

⊕ denotes the XOR function. The Toffoli gate is a three-bit

gate with two control bits and a single target bit. It implements

the following mapping (x, y, z)→ (x, y, xy ⊕ z).

The NCT library is commonly used in the design of

reversible circuits due to its simplicity and efficiency. However,

it can be extended to include some additional gates, such

as SWAP and Fredkin gates (NCTSF library) or multiply-

controlled gates (GT and GT&GF libraries). Reversible cir-

cuits are implemented as a cascade of those reversible logic

gates.

There are several significant applications of reversible logic

synthesis. Due to the asymptotic zero power dissipation

achievable by reversible computation [1], it can be used in low-

power computing, making them an attractive option for mobile

devices, wearables, and Internet of Things (IoT) devices.

Reversible circuits are also important in quantum computing

since quantum algorithms require reversible logic gates for

their implementation. Reversible logic synthesis might be also

useful in optical computing and DNA computing.

III. XOR-BASED DECOMPOSITION

The existence of the XOR-based decomposition can be

verified using a simple test [6], [9] : xi⊕xj is a decomposition

function of F iff {xi, xj} ∈ COM (RC2). Similarly, pair of

functions xi⊕ xj and xj ⊕ xk is a decomposition function of

F iff {xi, xj , xk} ∈ COM (RC3), and so on.

Therefore, to find a decomposition function, we need to gen-

erate RCr and look for a decomposition using the increasing

value of r. In the result, we get:

F (x1, x2, . . . , xN ) = G(y1, y2, . . . , yN−1). (3)

The first N − r + 1 inputs in the G function correspond

to those inputs of the F function that are not used in a de-

composition function. The last r−1 inputs are obtained using

a decomposition function, e.g. yN−1 might equal to xi ⊕ xj

if a decomposition function for r = 2 is found.

Example 3.1: Consider again the function F from our pre-

vious example (Example 2.1). Notice that both COM (RC2)
and COM (RC3) are not empty. Therefore, two possible

decompositions are:

1) y1 = x3 and y2 = x1 ⊕ x2,

2) y1 = x1 ⊕ x2 and y2 = x2 ⊕ x3.

In the first case, we get

F (x1, x2, x3) = G(x3, x1 ⊕ x2),

while in the second case we get

F (x1, x2, x3) = G(x1 ⊕ x2, x2 ⊕ x3).

In both cases, the number of variables was reduced by one.

Truth tables for both cases are presented in Table V. Notice

that the number of rows is also reduced (from 8 to 4). The

first column shows the row numbers from the original truth

table to which the newly generated value corresponds.

The same approach can be applied to the function from

Example 2.2. Based on the RC we know that x1 ⊕ x3 is

a decomposition function, since {x1, x3} ̸∈ RC ⇒ {x1, x3} ∈
COM (RC2). Therefore, we get:

y1 = x2, y2 = x4, y3 = x5, y4 = x6, y5 = x1 ⊕ x3.
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TABLE V: The example function after decomposition.

(a) Function after decomposition
number 1.

idxs y1 y2 G(Y )

1, 7 0 0 0

3, 5 0 1 1

2, 8 1 0 0

4, 6 1 1 1

(b) Function after decomposition
number 2.

idxs y1 y2 G(Y )

1, 8 0 0 0

2, 7 0 1 0

4, 5 1 0 1

3, 6 1 1 1

Algorithm 1 Finding decomposition

1: labels← [{i} : i ∈ {1, 2, . . . , N}]
2: dm, bins← Algorithm_2()
3: while True do

4: dec← Algorithm_3(dm, bins)
5: if dec is None then

6: break

7: end if

8: dm← Algorithm_4(dm, dec)
9: labels← Algorithm_5(labels, dec)

10: end while

11: return labels

The complete algorithm is presented as Algorithm 1. Firstly,

Algorithm 2 is used to generate a discernibility matrix. Array

labels is used to represent the current form of a function.

Based on that the Algorithm 3 is used to find a decomposition.

If a decomposition is found, we need to modify the matrix

(Algorithm 4) and labels (Algorithm 5, where ∆ denotes the

symmetric difference of two sets).

The proposed algorithm uses the discernibility matrix to

find a possible representation of an input function using XOR

gates. This matrix represents all generated Cp,q sets for all

possible pairs p and q (p < q). In Algorithm 2 a pseudocode

for matrix generation is presented. Notice that in the 5th line,

we check whether the value of the function differs between

rows number p and q. If so, the value of the XOR operation

of those rows is added to the matrix. An added row has ones

on those positions where vectors number p and q differ, i.e.

the Cp,q set. In order to reduce the computational complexity

of the whole algorithm, we analyze RCr using the increasing

value of r. Therefore, the rows from the matrix are divided

into bins, based on their size, i.e. bin Bi represents RCi.

Furthermore, repeating values from each bin are removed.

The process of multilevel function minimization consists

of iteration of the basic decomposition steps, presented as

Algorithm 3. To speed up computation, we start each iteration

by checking whether |Ba| =
(

n
a

)

or |Ba| = 0. In the first case,

RCa = ∅. Thus, it is impossible to find a decomposition for

that value of a. On the other hand, in the second case Ca = ∅.
Thus, we can simply return {xi : i ∈ {1, 2, . . . , a}}. The

found decomposition (lines 7-11) is represented as a vector.

Indexes of bits set to 1 in this vector represent input variables

that will be used to minimize an input function. For example,

comb = (11000) shows that XOR of the first and second input

Algorithm 2 Generation of discernibility matrix

1: dm← ∅
2: for p← 1 to K − 1 do

3: for q ← p+ 1 to K do

4: if F (p) ̸= F (q) then

5: dm = dm ∪ (vp ⊕ vq)
6: end if

7: end for

8: end for

9: bins← split_to_bins(dm)
10: return dm, bins

Algorithm 3 Finding decomposition (single iteration)

1: for a← 2 to N do

2: if |Ba| =
(

n
a

)

then

3: continue

4: else if |Ba| = 0 then

5: return {xi : i ∈ {1, 2, . . . , a}}
6: end if

7: for comb ∈ combinations(n, a) do

8: if ¬∃v ∈ Ba : ∀c ∈ comb : v(c) = 1 then

9: return {xi : i ∈ comb}
10: end if

11: end for

12: end for

13: return None

variables is a decomposition function of F , i.e.

F = G(x3, x4, x5, x1 ⊕ x2).

Notice that in this approach we return the first found

function. Such an approach is called First-Fit [6]. Other ap-

proaches to selecting decomposition functions were proposed

in the literature. However, the described one is the fastest and

provides good results in terms of the solution quality (i.e., the

number of variables). On the other hand, it generates slightly

worse results for specific functions, e.g. M-out-of-N coders.

For example, if comb = (11000), then we get the following

content of labels: [{3}, {4}, {5}, {1, 2}] that represents the

function G mentioned above. Notice that found decomposition

function (i.e., using variables x1 and x2) is used as the last

input to the new representation, while the other input variables

come before it. Therefore, the algorithm will more likely find

a decomposition using input variables that have not been used

in the previous iterations. In the result, the compound degree

(i.e., the number of inputs to the XOR operation) of each

variable yi might be similar.

Since the number of Cp,q sets strongly depends on the value

of K, the proposed approach is very efficient especially if

K ≪ 2N .

The described approach treats the value of a function as

a single output. However, a multi-output logic function

F : BN → BQ, (4)
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Algorithm 4 Modification of discernibility matrix

1: jdx← 1
2: for idx← 1 to N do

3: if idx ̸∈ dec then

4: new_dm[:, jdx] = dm[:, idx]
5: jdx← jdx+ 1
6: end if

7: end for

8: for idx← 1 to |dec| − 1 do

9: col1← dm[:, dec[idx]]
10: col2← dm[:, dec[idx+ 1]]
11: new_dm[:, jdx] = col1⊕ col2
12: jdx← jdx+ 1
13: end for

14: return new_dm

Algorithm 5 Modification of labels

1: new_labels← ∅
2: for idx← 1 to |labels| do

3: if xidx ̸∈ dec then

4: new_labels← new_labels ∪ labels[idx]
5: end if

6: end for

7: for idx← 1 to |dec| − 1 do

8: l1← labels[dec[idx]]
9: l2← labels[dec[idx+ 1]]

10: new_labels← new_labels ∪ (l1∆l2)
11: end for

12: return new_labels

where B = {0, 1} can be implemented using XOR-based

decomposition to each output variable separately. Recall that

we denote by Q the number of output variables. The proposed

approach is presented as Algorithm 6. In that case, the final

result is a composition of found decompositions, where each

function returns a single bit value.

IV. APPLICATION IN MEMORY-BASED LOGIC SYNTHESIS

In this paper, we applied the proposed approach to some

well-known functions. The obtained results are presented in

Table VI. The variable reduction algorithm was applied to

all analyzed functions, and the total number of reducts and

the size of the shortest one are both presented in the table.

Each reduct was then used as an input function to our

linear decomposition algorithm. For each function, we show

how many decompositions with the specified value of output

variables (P ) were found. xor5 function is presented here

to prove that described method correctly finds decomposition

with a single multi-input XOR gate.

In the table, the ∆1 and ∆2 columns display the reduction

factor in memory usage. The reduction factor is calculated

using two different scenarios. The first formula, which is

calculated using the following equation:

∆1 = 2N−P (5)

Algorithm 6 Finding decomposition for each output

1: res← ∅
2: for i← 1 to Q do

3: res = res ∪ Algorithm_1(X,Y [:, i])
4: end for

5: return res

compares the memory usage of the implementation from an

input function to the implementation using XOR-gate decom-

position. The second formula, which is calculated using the

following equation:

∆2 = 2N
′
−P (6)

compares the memory usage obtained after variable reduction

to the final implementation, where N ′ is the size of the shortest

reduct. In both formulas, the smallest value of P obtained for

a function is used. For example, ∆1 = 2 means that memory

usage is halved compared to the direct implementation (i.e.,

without using a decomposition algorithm).

The proposed approach can not directly operate on don’t

care terms, since it relies on the XOR operation. Typically,

such terms can be ignored, set to 0 or set to 1. For add6

and clpl function, we set each don’t care term to 0. For 9sym

function, we add rows to make it a complete function and

analyzed all possible values of don’t care terms.

As already mentioned, memory-based logic synthesis was

often used in the implementation of index generation func-

tions. a well-known example of such a function consists of ten

40-bit vectors [12] and a unique consecutive integer value from

1 to 10 is assigned for every vector. In this paper, we denote

this function as igf40. Using the variable reduction algorithm

[3], it is possible to find more than 2200 reducts with N ′ = 4,

and more than 100k in total (N ′ ∈ {4, 5, 6, 7}). In this paper,

we applied the described approach to all those functions after

variable reduction. For example, in Table VIIa, we present

a function after variable reduction, where N ′ = 5. In Table

VIIb we present that function after linear decomposition,

where y4 = x4 ⊕ x32 and P = 4. In the end, the number of

variables was minimized to 4 for more than 99% of reducts.

The most striking observation to emerge from the results is

that the proposed approach lead to significant memory usage

minimization. It is because obtained values of P are smaller

than both the number of input variables N and the sizes of

the shortest reducts.

When Algorithm 1 fails for some functions, e.g. rd53, Algo-

rithm 6 can be used. In that particular case, N = 5, K = 32,

and Q = 3. Therefore, we can apply the proposed approach

three times, each time focusing on a single output signal. This

technique leads to decompositions with the following number

of inputs: P1 = N = 5, P2 = 4, and P3 = 1. In the end,

the memory usage is minimized from 25 ∗ 3 = 96 bits to

25+24+21 = 50 bits. Notice that the third function does not

need to be implemented using memory, since the number of

inputs after decomposition (i.e., P3) equals 1.
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TABLE VI: Experimental results

Database / function N K no. of reducts size of the shortest reduct P no. of decompositions ∆1 ∆2

9sym 9 87 (512) 1 9 8 1 21 21

add6 12 432 1 12 10 1 22 22

br1 12 34 2 7 6 2 26 21

br2 12 35 3 8 6 3 26 22

clpl 11 20 9 8
4 5

27 24
5 4

igf40 40 10 100172 4
4 99552

236 0
5 620

house 17 232 4 8
6 2

29 22
9 2

kaz 22 31 5574 5

2 2

220 23
3 43

4 677

5 4347

6 505

xor5 5 16 (32) 1 5 1 1 24 24

TABLE VII: Decomposition of igf40 function (single reduct).

(a) A function after variable reduction.

x4 x7 x8 x26 x32 F

0 0 1 0 1 1

1 1 1 1 0 2

1 0 1 1 1 3

1 1 0 1 1 4

1 0 0 1 0 5

1 1 0 0 0 6

0 1 1 0 0 7

1 1 1 0 0 8

0 1 0 1 1 9

0 0 1 0 0 10

(b) A function after linear decom-
position.

y1 y2 y3 y4 F ′

0 1 0 1 1

1 1 1 1 2

0 1 1 0 3

1 0 1 0 4

0 0 1 1 5

1 0 0 1 6

1 1 0 0 7

1 1 0 1 8

1 0 1 1 9

0 1 0 0 10

The size of the memory required to implement a function

is calculated as

MEM = 2N ∗Q. (7)

Furthermore, the size of a memory required after the applica-

tion of Algorithm 6 equals

MEM
′ =

Q
∑

i=1

2Pi . (8)

The experimental results obtained using the multioutput

approach are presented in Table VIII. The original memory

size and the memory size after decomposition, using equations

(7) and (8) respectively, were both presented. The function

igf40 {6,16,24,31} is a function igf40 after variable reduction,

where P = Q = 4 and the values in the brackets are

indexes of input variables left after the reduction. Thus,

the memory size can not be further minimized using that

approach. However, the multioutput approach leads to lower

memory consumption. We also present a second reduct, where

N ′ = 5 ̸= Q. Similar results were obtained for other analyzed

TABLE VIII: Experimental results (the multi-output approach)

Database /
N M MEM Values of P MEM

′

function

adr4 8 5 1280 {8,7,6,4,2} 468

igf40
4 4 64 {4,3,4,3} 48

{6,16,24,31}

igf40
5 4 128 {1,3,3,3} 26

{4,7,8,26,32}

rd53 5 3 96 {5,4,1} 48

s27_split 7 4 512 {7,6,7,4} 336

z4 7 4 512 {7,5,4,2} 180

functions, leading to a significant minimization of memory

usage (MEM ′ < MEM ).

V. APPLICATION IN REVERSIBLE LOGIC SYNTHESIS

Recently, a novel three-level XOR-AND-XOR form was

proposed [2] to represent autosymmetric functions. It extends

a popular Exclusive Sum of Products (ESOP) form (i.e., XOR-

AND form) by adding an additional XOR level to the repre-

sentation. Using that form, a reversible circuit implementing

a function can be easily constructed.

The first XOR level is used to compute reduction equations.

In particular, it reduces the number of input variables to a fk
function using XOR gates. Therefore, this step is crucial in

this technique and influences the Quantum Cost of the circuit

at most. Notice that this step is analogous to the approach

described earlier in this paper. It corresponds to the scheme

presented in 1, where the linear function corresponds to the

reduction equations and the general function corresponds to

the restriction function fk. Therefore, XOR-based decompo-

sition can be used to find reduction equations. Recall from

Section II-C that those equations can be implemented using

several CNOT gates if we find a decomposition function with
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the value of r limited to two.

Secondly, a fk function is implemented using any logic

minimization tool. Notice that k = N − P . For example, an

ABC [4] tool can be used to synthesize a function. &esop

function derives ESOP from an AND-Inverter graph AIG, and

&exorcism performs heuristic ESOP minimization [8]. This

representation can be then used to find a reversible circuit that

implements a fk.

The final step is used to perform uncomputation, meaning

that the original value is being restored on those lines that

were affected by the reduction equation. It can be achieved by

adding the CNOT gates used in the first level in reverse order.

Example 5.1: Consider the following function in ESOP

form:

ESOP(F ) = x1x3 ⊕ x1x4 ⊕ x2x5 ⊕ x2x6.

We apply the proposed approach to find reduction equations.

In the first iteration of the algorithm, we get x3⊕ x4 as a de-

composition function (since all are smaller in lexicographic

order two input functions are in RC2). Therefore,

F (X) = G(x1, x2, x5, x6, x3 ⊕ x4).

Applying the algorithm the second time, we get x5⊕x6. Since

it leads to COM (RC) = ∅, the algorithm ends. In the end,

we get the following reduction equations:

y1 = x1, y2 = x2, y3 = x3 ⊕ x4, y4 = x5 ⊕ x6.

In the result, we get the following ESOP representation of the

restriction f2 (k = 6− 4 = 2):

ESOP(f2) = y1y3 ⊕ y2y4.

Thus, we get the following XORAX representation of F :

XORAX (F ) = x1(x3 ⊕ x4)⊕ x2(x5 ⊕ x6).

It contains 6 literals and 2 products. Notice that the ESOP

representation contains 8 literals and 4 products.

In Fig. 2 the obtained reversible circuit is presented. The

first two CNOT gates are used to represent the reduction

equations (i.e, x3 ⊕ x4 and x5 ⊕ x6). Next, two Toffoli gates

represent the f2 restriction based on its ESOP form. Finally,

the last two CNOT gates recover the initial value of both x4

and x6 variables by applying XOR operations one more time.

Four CNOT gates and two Toffoli gates are used in total.

Therefore, the total Quantum Cost (QC) equals

QC = 4 ∗ 1 + 2 ∗ 5 = 14.

Notice that the straightforward implementation from an ESOP

form requires four Toffoli gates, where each of them realizes

the single product of two variables. Thus, its Quantum Cost

equals 20.

The proposed approach can also be combined with a func-

tional decomposition technique [10]. This method decomposes

an input function into smaller irreversible functions that are

connected, and the original function is preserved. The most

important fact is that each function is smaller (in terms of the

Fig. 2: Reversible circuit derived from a XORAX representa-

tion.

number of inputs), which makes it easier to synthesize. This

technique was also used in memory-based logic synthesis to

reduce memory consumption [7].

Each of the smaller functions is synthesized to get a re-

versible circuit and then combined into a single circuit. Be-

cause irreversible functions are implemented, a garbage output

is introduced. In particular, the original value of the signal does

not have to be restored on a line that was affected by reversible

gates.

Example 5.2: Consider a function presented in Table IX.

Using the ABC tool, we get a circuit, where Quantum Cost

equals 120. Using functional decomposition it is possible, to

divide this function into two functions (denoted G and H). The

first function has three inputs (x3, x4, x5) and one output (g).

The second one has four inputs (x1, x2, x6, g) and one output.

The mapping between inputs and output for both functions can

be found using a graph colouring method [7]. Truth tables for

both functions are presented in Table X. Using the ABC tool,

we get Quantum Cost 30 and 38 respectively, meaning 68 in

total.

TABLE IX: An example function.

x1 x2 x3 x4 x5 x6 F (X)

0 0 0 0 0 0 1

0 1 0 0 1 0 1

0 1 0 1 1 0 0

0 0 1 0 0 1 0

0 0 1 1 0 1 0

1 0 1 1 0 0 0

0 1 0 0 0 0 0

1 0 1 0 0 0 1

0 1 0 1 0 0 0

Both functions can be decomposed using the XOR-based

approach. For function G, we get {x3, x4, x5} ∈ COM (RC).
Therefore,

y1 = x3 ⊕ x4, y2 = x4 ⊕ x5.

Linear function can be implemented using a single CNOT gate,
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TABLE X: Functional decomposition of a function.

(a) Function G.

x3 x4 x5 G

0 0 0 0

0 0 1 1

0 1 1 0

1 1 0 1

0 1 0 0

1 0 0 0

(b) Function H .

x1 x2 x6 g H

1 0 0 0 1

0 1 0 0 0

1 0 0 1 0

0 0 1 1 0

0 0 0 0 1

0 0 1 0 0

0 1 0 1 1

while the general function synthesized using the ABC tool has

QC = 6.

For function H , we get {x2, g} ∈ COM (RC). Therefore,

y′
1
= x1, y

′

2
= x6, y

′

3
= x2 ⊕ g.

In that case, the linear function can be implemented using two

CNOT gates. The general function synthesized using the ABC

tool has QC = 5. In total, Quantum Cost was minimized from

68 to 14.

Interestingly, this specific input function can be directly

decomposed using the proposed approach. In that case, after

four iterations of Algorithm 1, we get:

y1 = x4 ⊕ x6, y2 = x1 ⊕ x2 ⊕ x3 ⊕ x5.

Those equations can be implemented using four CNOT gates

(i.e., one for y1 and three for y2), while the general function

has QC = 6, leading to QC = 10 in total.

VI. CONCLUSION

In this paper, we showed how XOR-based decomposition,

which has been previously used in index generation func-

tions synthesis, can be generalized and efficiently applied in

memory-based and reversible logic synthesis. We provided

a complete algorithm and used well-known benchmark func-

tions to prove that it can provide significant minimization of

memory usage. The presented results highlight the potential

of this technique for memory-based logic synthesis. Further-

more, we showed that our algorithm can be easily combined

with other techniques proposed in the literature to achieve

promising results in reversible logic synthesis. Based on our

research we believe that XOR-based decomposition might

become a valuable tool for other researchers and practitioners.
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