
An Enhancement of Reinforcement Learning by

Scheduling with Learning Effects

Radosław Rudek

General Tadeusz Kościuszko Military University of Land Forces

Czajkowskiego 109, 51-147 Wrocław, Poland

Email:rudek.radoslaw@gmail.com

Abstract—This paper present results, which reveal that ap-
proaches obtained for scheduling problems with learning effects
can be successfully used to improve the quality of machine
learning methods. It is illustrated by modelling some aspects of
Q-learning agents as scheduling problems with the learning effect,
and constructing sequencing and dispatching algorithms, which
take into account the existence of learning. Their application to
determine the sequence of tasks processed by Q-learning agents
can visibly speed up their convergence to an optimal strategy.
Furthermore, we show that a dispatch of tasks according to the
longest processing time algorithm for parallel computing can be
replaced by a more efficient procedure, if agents can learn. The
numerical analysis reveals that our approach is efficient, robust
and only marginally dependents on a learning model and an
accurate approximation of task processing times.

I. INTRODUCTION

T
HE LEARNING effect takes place in typical human

activity environments or in automatized manufacturing,

where a human support for machines is needed during ac-

tivities such as operating, controlling, setup, cleaning, main-

taining, failure removal, etc. It was also observed that perfor-

mances (objectives) of an industrial system can be essentially

improved if the learning ability is utilized (see [1]). It can

be done by determining the sequence of processed jobs,

which takes into consideration not only the given objectives,

but also the presence of learning, i.e., decreasing processing

times/costs of jobs. Thereby, time/cost objectives (e.g., the

maximum completion time) can be additionally improved

(in a specified range) by the sequence (schedule) of jobs

(e.g., [2], [3], [4]). In other words, additional benefits from

learning can be gained. It is worth highlighting this scheduling

approach does not interfere a system nor require any changes

of its structure. Therefore, it is a significant advantage, which

makes this non-invasive method universal and applicable to

improve (optimize) different systems, where learning is present

and a sequence of processed jobs can be (at least partially)

controlled.

Although scheduling problems with the learning effect

have attracted particular attention in research society (e.g.,

[1], [5], [6], [7], but surprisingly, there was no attempt to

apply them to enhance machine learning algorithms, except

our idea. However, from the perspective of the discussed

utilization of learning by scheduling, there is no difference

if the reduction in time or cost required to process a job is

the result of human learning or machine learning. Thereby,

the mentioned additional benefits from learning can be also

gained for dynamically changing systems, which use machine

learning. Such illustrative example will be shown in this paper.

Machine learning methods or intelligent agents ([8]) very

often act like human, especially in the context of adaptation,

self-improvement and autonomous learning, which is present

not only during training stages, but first and foremost during

their regular exploitation (working stages). In particular, it

refers to reinforcement learning algorithms (RL), where an

autonomous agent can learn to choose actions in an envi-

ronment to achieve its goals (see [9], [10]). Such behavior

results in robustness and high (increasing) efficiency of these

approaches, thereby they have attracted particular attention in

different domains (e.g., [11]).

Although there are lots of studies devoted to this group of

algorithms, they usually focus on improving them in fields

such as learning policies, representation of states, exploration

and exploitation strategies and others (e.g., [9], [10]). How-

ever, there is lack of research on methods that are able to

additionally increase the efficiency of RL by the utilization

of its learning ability, without interfering a structure of an

algorithm. Therefore, as the preliminary result in this domain,

we will show that the speed of convergence of RL can be

visibly improved by processing tasks according to a schedule

that takes into account the existence of learning (an iterative

improvement). It is depicted on the example of finding the

shortest path in 2D mesh topology environment by RL. We

choose Q-learning based algorithm, which is comprehensible

and representative, since the considered relations also hold

for other techniques, e.g., temporal difference learning (TD),

state-action-reward-state-action (SARSA) (for more details

see [10]).

In this paper, we model some aspects of Q-learning as

scheduling problems with the learning effect. On this basis,

the efficiency of the algorithm can be improved if tasks are

processed according to a given sequence following from the

analysis of scheduling problems. Furthermore, we show that

a dispatch of tasks according to the longest processing time

(LPT) algorithm (see [12]) for parallel computing can be

replaced by a more efficient strategy, if agents can learn. Our

approach does not interfere a structure of machine learning

methods and its computation overhead is negligible. It is

showed to be efficient, robust and only marginally depen-

dents on a learning model and an accurate approximation of

Proceedings of the 18
th Conference on Computer

Science and Intelligence Systems pp. 689–697

DOI: 10.15439/2023F4564

ISSN 2300-5963 ACSIS, Vol. 35

IEEE Catalog Number: CFP2385N-ART ©2023, PTI 689 Thematic track: Computer Aspects of

Numerical Algorithms

values of task processing times. It is especially crucial for

the application of reinforcement learning methods in varying

environments, where they should adapt quickly, whereas deter-

ministic algorithms cannot be used. Therefore, the contribution

of this paper is not to make new better learning agents, but

to reveal that approaches obtained for scheduling problems

with learning effects can be successfully used to improve the

quality of machine learning methods. The presented promising

preliminary results open new perspectives for the application

of scheduling theory.

The remainder of this paper is organized as follows. The

illustrative application of the reinforcement learning is given

in the next section, which includes the formal definition of the

shortest path problem and the Q-learning algorithm dedicated

to solve it. Next, the considered issue is expressed as schedul-

ing on parallel processors with the learning effect and on this

basis scheduling (dispatching) algorithms are proposed. Their

application to enhance the Q-learning algorithm is analysed

numerically. Finally, the last section concludes the paper.

II. REINFORCEMENT LEARNING

In this section, we will describe an environment, which is

used to illustrate and analyse the application of the algorithms

constructed for scheduling with the learning effect to improve

the efficiency of reinforcement learning methods.

A. The shortest path problem

The shortest path problem is well known and its determinis-

tic cases can be solved inter alia by Dijkstra’s algorithm or A*

search. However, it also constitutes an excellent environment

for comprehensive analysis of various other methods also with

learning effects (see [13]). It will be used for a similar purpose

in this paper.

There is given a graph G = (V,E), where V is the

set of vertices (nodes) and E is the set of edges (links).

Each edge (u,w) has an associated length (weight) l(u,w),
where u,w ∈ V ; G is undirected, thereby l(u,w) = l(w, u).
We consider the 2D mesh topology, interconnecting in a

grid fashion, where each node has at most four neighbors,

thus, the following notation can be used to describe nodes:

V ′ = {(xu, yu) : 1 ≤ xu ≤ X ∧ 1 ≤ yu ≤ Y, u ∈ V } and

X and Y are the number of vertical and horizontal nodes in

the mesh, respectively; such mesh is called X × Y size. The

objective is to find the shortest path (SP) between each of

n source nodes from the set S = {s1, . . . , sn} ⊂ V to one

destination node d ∈ V (“hot spot”).

B. Q-learning

In this section, we will briefly describe a reinforcement

learning algorithm that is based on a typical Q-learning

method (see [10], [14]). For mode details concerning similar

applications of Q-learning see [15] or [16]. The discussed

algorithm is a model free reinforcement learning technique,

which was chosen for the purpose of this paper, since it is

transparent for analysis and the idea behind our approach

can be clearly illustrated. Its behaviour will be depicted on

the example of solving in an adaptive manner the shortest

path problem. On this basis, we will show that properties

obtained for a scheduling problem with the learning effect

can be applied to improve the efficiency of Q-learning.

In the considered approach, the Q-learning agent on the

basis of the current node (say u) and the state-action func-

tion Q chooses the next node (say w), subsequently it re-

ceives the reward depending on the distance between these

nodes. This process is repeated until the destination node

(say d) is reached. The Q-function is represented by a set

{Q1, . . . , Qu, . . .Q|V |} of |V | tables, further called Q-tables.

The quality of a state-action function (table) Qu(d, w) defined

for each node u ∈ V is the total expected discounted reward

received by selecting (in node u) the next node w on the way

to the destination node d. Using the RL nomenclature, the

state is represented by the pair [u, d], whereas w is the action

taken in this state.

The determination of a next node and the update of the Q-

function for each current node u ∈ V proceed according to

the following steps:

1) The next node w is determined according to a greedy

strategy that always chooses a node with the highest Q-

value, i.e.,

w = arg max
w′∈N (u)

{Qu(d, w
′)},

where u is the current node, d is the destination node

and N (u) is the set of neighbor nodes of u. The

greedy strategy is simple and transparent, but together

with the optimistic initialization of Q-tables with zeros

and the application of negative rewards, it still drives

exploration.

2) The Q-value for node u is updated according to the

following rule:

Qu(d, w) = (1− α)Qu(d, w) + r(u,w)

+ γmax
a′

{Qw(d, a
′)},

where α ∈ [0, 1] is a learning rate, γ ∈ [0, 1] is

a discount factor, r(u,w) = r(w, u) = −l(u,w) is

the reward equal to the negative value of the length

between nodes u and w and maxa′{Qw(d, a
′)} is the

best expected Q-value in node w to reach the destination

node d. In a typical Q-learning implementation, terms

[r(u,w) + γmaxa′{Qw(d, a
′)}] are multiplied by α.

Although it is omitted in the presented approach to

avoid potential deadlocks, Q-values is convergent (since

r < 0).

3) To improve learning the forward update of Q-value of

node w is proceeded:

Qw(d, u) = (1− α)Qw(d, u) + r(u,w)

+ γ max
a′∈N (u)

{Qu(d, a
′)}.

The above procedure is applied starting from the source

node sj ∈ S until the destination node d is reached (i.e.,

starting u is equal to sj). It is repeated for the given

690 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

pair (sj , d) until the same value of the path is obtained

for the given number of succeeding iterations (denoted by

TerminateCondition). This process of finding the shortest

path for (sj , d) will be called task j; for convenience, we will

also use the following notation j ∈ S ≡ sj ∈ S. Since in the

considered example, the destination node d is the same for

all tasks, then it does not need to be implemented a part of a

state.

It can be observed that the application of distributed

or parallel computing can improve efficiency of algorithms

and it is commonly used nowadays, therefore, we present

a parallel version of the considered approach. Thus, a set

A = {A1, . . . , Am} of m Q-learning agents are applied. Each

agent Ai calculates the shortest paths for the source nodes

(tasks) from the set Si ⊂ S, where Si are disjoint sets such

that S1∪. . .∪Sm = S. Due to relatively long latency access to

shared Q-tables (caused by mutexes, communication, etc.) in

reference to very fast calculation times of the Q-values, each

agent has its own set of Q-tables. The formal description of

the Q-learning agent is given by Algorithm 1.

The objective of the Q-learning agents is not only to find

the shortest paths for all given nodes, but to minimize the time

of finding them. Let tj be the processing time of task j, i.e.,

time of calculating the shortest path from the source node sj
to the destination node d, whereas C(Ai) =

∑

j∈Si
tj be the

calculation time taken by Q-learning agent Ai to find shortest

paths for all nodes from the related set Si, i.e., to process

tasks from this set. Thus, the time objective is expressed as the

minimization of calculation time of the shortest paths for all

source nodes (processing of all tasks), which is the maximum

calculation time tmax among all Q-learning agents: tmax =
maxi=1,...,m{C(Ai)}.

Since there are multiple agents, then the calculations are

distributed among them, i.e., the set S of source nodes (tasks)

is partitioned into subsets {S1, . . . , Si, . . . , Sm}, which are

assigned to related agents {A1, . . . , Ai, . . . , Am}. Thus, an

assignment algorithm has an essential impact on the minimiza-

tion of the objective value tmax. To construct such methods,

which are efficient, we will express the considered problem

as scheduling on identical parallel processors. On the basis of

its properties, we will propose scheduling algorithms, which

will be applied to handle calculations (tasks) by Q-learning

agents (i.e., to determine the assignment of calculations and

their processing sequences).

Furthermore, we will show that calculations can be speeded

up (i.e., tmax can be further minimized) if the allocation

algorithms takes into consideration not only the potential time

required to find a solution, but also learning (an iterative

improvement), which is an inner nature of Q-learning.

III. SCHEDULING WITH LEARNING EFFECTS

At first, we will present the general concept how the time

minimization of finding the shortest paths by the Q-learning

agents can be perceived as scheduling on parallel identical

processors or in other words parallel machine scheduling.

Next, the related scheduling problem will be formally defined.

Algorithm 1 Q-learning agent Ai

1: Determine the set of the source nodes Si ⊆ S

and their processing sequence

2: Initialize Q−tables: {Q1, . . . , Q|V |}

3: for each sj ∈ Si do

4: distance := ∞

5: distance∗ := ∞

6: distanceprev := ∞

7: counter := 0

8: s := sj

9: while counter < TerminateCondition do

10: distance := 0

11: counter := counter + 1

12: u := s

13: while u 6= d do

14: w := argmaxw′∈N (u){Qu(d, w′)}

15: distance := distance+ l(u, w)

16: r(u, w) := −l(u, w), r(w, u) := −l(w, u)

17: Qu(d, w) := (1 − α)Qu(d, w) + r(u,w)

+γmaxw′∈N (w){Qw(d, w′)}

18: if w 6= d then

19: Qw(d, u) := (1− α)Qw(d, u) + r(w, u)

+γmaxu′∈N (u){Qu(d, u′)}

20: end if

21: u := w

22: end while

23: if distance < distance∗ then

24: distance∗ := distance

25: end if

26: if distance 6= distanceprev then

27: counter := 0

28: end if

29: distanceprev := distance

30: end while

31: end for

32: {Q1, . . . , Q|V |} are the Q−tables containing strategy

to find the shortest paths for

the considered pairs (sj , d), sj ∈ Si

Each Q-learning agent can be represented in a schedul-

ing problem by a processor, i.e., Ai ≡ Pi, whereas a

task (say j) that is finding the shortest path (such that

TerminateCondition is true) from a source node (say sj ∈
S) to the destination node d by a Q-learning agent is called a

job (also j).

The processing time tj of task j, i.e., the time required to

find (calculate) the shortest path (sj , d), can depend on the

number of nodes from a source node to the destination node

(including). Hence, we model it by the processing time pj of

job j, which is given as follows:

pj = |xd − xsj |+ |yd − ysj |, ∀sj ∈ S. (1)

Note that pj is not an exact value of the real processing time

tj required to find the related shortest path, but it only models

RADOSŁAW RUDEK: AN ENHANCEMENT OF REINFORCEMENT LEARNING BY SCHEDULING WITH LEARNING EFFECTS 691

this parameter in scheduling domain, i.e., it should reflect the

relations such that tj < tk implies pj < pk.

For a better comprehension, we will analyse the following

computational example.

Example 1

Let us verify the accuracy of model (1) for the following set-

tings generated from the uniform distribution: graph G(V,E)
of size 100×100, lengths of edges l(u,w) ∈ {1, . . . , 5}, where

(u,w) ∈ E, 100 random source nodes sj = (xsj , ysj), where

xsj ∈ {2, . . . , 99}, ysj ∈ {2, . . . , 99}, and destination node

d = (xd, yd) = (99, 99). On this basis, we ran implemented

Q-learning algorithm and measured (in milliseconds) the time

of finding the shortest path by a single agent from a source

node sj to the destination node d, i.e., processing time tj of

task j. Such analysis was done for each source node sj ∈ S,

but to measure relevant times tj , Q-tables were cleared before

processing each task. Thus, each of them was processed as the

only task by a Q-learning agent. We refer each measured tj
to the modelled value – the job processing time pj – obtained

according to (1). The result of this analysis is shown in

Figure 1, where related pairs (pj , tj) are presented according

to the non-decreasing order of pj . It can be seen that there are

some bias such that tj < tk not always refers to pj < pk, but

the general tendency holds as required (and expected).

Fig. 1: Relations between measured task processing times tj
and modelled job processing times pj

It can be seen in Figure 1 that model pj approximates

measured times tj (in a constant range) if an agent processes

only one task. However, due to the learning ability of an agent,

the time required to perform a task decreases with the number

of previously processed tasks. Let us consider the following

example.

Example 2

Given a task related with node s1 = (xs1 , ys1) = (2, 2),
for which its processing times are measured (in milliseconds)

depending on the number of previously processed tasks.

Namely, an agent performs tasks from the following groups

(1), (2, 1), (2, 3, 1), ..., (2, 3, . . . , 100, 1) such that j = 1 is

always processed as the last and Q-tables are cleared before

a next group is processed. Other settings are the same as in

the earlier example. The result of the analysis is shown in

Figure 2, which illustrates a learning curve of an agent, which

is similar to learning curves observed in industrial systems

(see [17], [18]). The model of decreasing task processing times

(learning curve) will be proposed subsequently.

On the basis of the above observations, let us define

formally the related scheduling problem. There are given a

set J = {1, . . . , n} of n jobs that model tasks S and a set

P = {P1, . . . , Pm} of m identical processors referring to Q-

learning agents {A1, . . . , Am}. Each processor is continuously

available and can process at most one job at a time. Once it

begins processing a job it continues until this job is finished

and there are no precedence constraints between jobs. Each job

j is characterized by the processing time p̃j(vi) dependent on

the number of previously processed jobs vi by processor Pi. It

models a variable task processing time (see Figure 2), which

depends (due to learning) on the number vi of previously

processed tasks by agent Ai. In general, it can be describe

by the following:

p̃j(vi) = pj ·f(vi), (2)

where pj is the normal processing time of job j defined

as the job processing time of a job without influence of

learning, which is calculated on the basis of source and

destination nodes related with a task and given by (1); it

models a processing time of a task, which is processed by

an agent as the first one, i.e., without influence of learning

(see Figure 1). Moreover, a function f(vi) is a learning curve

that describes decreasing processing times dependent on the

number of processed jobs vi (see Figure 2).

Note that the only assumption concerning f is that the func-

tion is non-increasing for the considered scheduling model, but

it is only a model, which does not have to precisely describe

the decreasing task processing times. Nevertheless, we will

show that even such imprecise and general model (following

(1) and (2)) is sufficient to derive properties, which allow

us construct a task assignment algorithm that improves Q-

learning.

The schedule of jobs can be un-

ambiguously defined by their sequences

π = {π1, . . . , πi, . . . , πm}, where πi denotes the sequence of

jobs on Pi and πi(k) is the index of the kth job in πi for

i = 1, . . . ,m. Moreover, ni is the number of jobs assigned

to Pi, i.e., the cardinality of πi. Note that πi refers to the

sequence of tasks from set Si assigned to be processed by

agent Ai. For each job πi(k), we can determine its completion

692 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

Fig. 2: A measured task processing time depending on the number of previously processed tasks

time C
(i)
πi(k)

on processor Pi:

C
(i)
πi(k)

=

ni
∑

k=1

p̃πi(k)(k). (3)

On this basis C
(i)
πi(ni)

models the calculation time C(Ai) taken

by Q-learning agent Ai to find shortest paths for all nodes from

the related set Si, i.e., to process tasks from this set. Since

the objective of Q-learning agents is to minimize the time of

finding all shortest paths tmax, then the criterion value (we

use a similar symbol) for the scheduling problem is defined

by Cmax(π) = maxi=1,...,m{C
(i)
πi(ni)

}.

Formally, the objective is to find such a schedule π∗ =
{π∗

1 , . . . , π
∗
m} of jobs (i.e., assignment of jobs to processors

and their sequences) that minimizes the maximum completion

time (makespan):

π∗,minargπ∈Π

{

max
i=1,...,m

{

C
(i)
πi(ni)

}
}

, (4)

where Π is the set of all schedules π.

For convenience and to keep an elegant description of the

considered problem we will use the three field notation scheme

X | Y | Z (see [19]), where X describes the processor

environment, Y describes job characteristics and constraints

and Z represents the minimization objectives. According to

this notation the scheduling problem with model (2) will be

denoted as Pm|LE|Cmax, whereas its case with constant job

processing times (p̃j(vi) = pj ∀(j, vi)) will be denoted by

Pm||Cmax.

On the basis of the formulated scheduling problem, we will

propose algorithms that determine the assignment of tasks to

agents and their processing sequences.

IV. JOB SCHEDULING ALGORITHMS

In this section, we focus on the job scheduling problem

with the learning effect. The considered criterion is the min-

imization of the maximum job completion time (makespan).

In the classical version of this problem Pm||Cmax, the job

processing times are constant, thereby their sequence does not

affect the criterion value, and thus, the objective is to find the

allocation of jobs to the processors to minimize the makespan.

Let us analyse job assignment (dispatching) algorithms for

the problem Pm||Cmax. One of the primary and efficient

methods is a list scheduling, which assigns jobs to the first

available processor according to an order defined by a list

(see [12]). If the sequence of jobs on the list is random, then

the worst case of the algorithm (further denoted by RND)

is
Cmax(RND)

C∗

max

= 2 − 1
m

and its computational complexity

is O(nm) (see [20], [12]), where C∗
max denotes an optimal

criterion value. However, its efficiency can be improved if

jobs are assigned according to their longest processing times

(LPT), then its worst case is
Cmax(LPT)

C∗

max

≤ 4
3 − 1

3m , whereas

its computational complexity is O(n log n+mn) (see [12]).

Note that RND can be straightforwardly applied to the

problem of finding shortest paths by Q-learning agents without

any definition of a scheduling problem nor any model of task

processing times. It only assigns each task to the first available

agent. On the other hand, the application of LPT requires a

model of task processing times, which has to be sufficient only

to determine the non-decreasing relation between tasks during

the assignment process.

However, unlike a typical approaches to parallel compu-

tations, we will reveal that in case of learning algorithms

(such as Q-learning), not only the assignment of tasks is

important, but their processing sequences by an agent seem to

be essential. It will be shown on the basis of the formulated

scheduling problem with learning. At first, we will provide

a property for a single processor case 1|LE|Cmax (referring

to one Q-learning agent), which holds for the problem with

different learning models (e.g., [5], [6], [7]).

Property 1: The problem 1|LE|Cmax can be solved opti-

mally by scheduling jobs according to their shortest normal

processing times pj (SNPT rule).

RADOSŁAW RUDEK: AN ENHANCEMENT OF REINFORCEMENT LEARNING BY SCHEDULING WITH LEARNING EFFECTS 693

If job processing times are constant, then the sequence

of jobs is immaterial for the makespan minimization on a

single processor 1||Cmax. However, following Property 1, it

is no longer valid if job processing times can vary. This is

a premise for a more efficient processing of tasks by a Q-

learning agent, which will be analysed numerically in the next

section. Furthermore, it can be easily extend to a scheduling

on parallel processors (tasks processed by multiple agents).

Property 2: There exists an optimal solution to the consid-

ered problem Pm|LE|Cmax such that jobs on each processor

are scheduled according to their shortest normal processing

times pj (SNPT).

Based on Property 2, we propose a list scheduling algorithm,

where jobs on the list are sequenced according to their shortest

processing times (further denoted by SNPT). Such conclusion

is not only opposite to the popular and efficient LPT algorithm

often used for parallel computing ([12]), but it does not

follow from any other combined analysis on machine learning

algorithms and parallel computing.

It is worth noticing that our theoretical analysis showed

that SNPT rule overwhelms LPT in the domain of scheduling

problems with the learning effect. It is completely against

the existing approaches to dispatch tasks for parallel learning

algorithms according to LPT or RND (randomly).

Recall that a job is equivalent to a task, thereby a schedule

π for jobs (obtained on the basis of LPT, RND or SNPT)

straightforwardly determines the assignments (dispatching) of

tasks to Q-learning agent and their processing sequences by

each agent.

V. NUMERICAL ANALYSIS

In this section, we will use scheduling algorithms LPT, RND

and SNPT in the domain of the Q-learning and the shortest

path problem. Namely, we will analyse how Q-learning agents

can improve their efficiency (running times) if they process

tasks according to sequences determined by the application

of scheduling algorithms LPT, RND and SNPT. In other

words, we run implemented Q-learning agents and measure

(in milliseconds) the real time of finding the shortest paths

depending on different sequences of processed tasks (i.e.,

LPT, RND, SNPT).1 The impact of scheduling algorithms

on running times of Q-learning is analysed for the following

settings.

2D-mesh (environment):

• mesh (graph) size X × Y : 100× 100,
• lengths (weights) of links between nodes l(u,w): gener-

ated from the uniform distribution over the integers in the

following ranges of values {1, . . . , 5} and {1, . . . , 100},

where u,w ∈ V ,
• destination node d (“hot spot”): (xd, yd) = (X−1, Y−1),
• size |S| of the set S of source nodes (number of tasks):

1000, 2000 and 4000,
• source node coordinates (xsj , ysj): xsj ∈ {2, . . . , X−1},

ysj ∈ {2, . . . , Y − 1}, sj ∈ V , where j = 1, . . . , |S|.

1Q-learning and scheduling algorithms were coded in C++ and simulations
were run on PC, CPU Intelr CoreTM i7-2600K 3.40 GHz and 8GB RAM.

Q-learning (agent):

• m ∈ {1, 2, 10, 20} agents, α = 0.9, γ = 0.9,

TerminateCondition = 5,

• the applied Q-learning always provided optimal solution

(the shortest path) for the considered settings, which was

verified by Dijkstra’s algorithm.

Job scheduling algorithms:

• m ∈ {1, 2, 10, 20} processors,

• job processing times (the model of task processing times)

pj = |xd − xsj |+ |yd − ysj | for j = 1, . . . , |S|,
• algorithms LPT, RND, SNPT.

For each combination of the defined mesh parameters, a

set IQ of random instances (replications) were generated,

where its cardinality is equal to |IQ| = 100. On their basis,

the impact of scheduling algorithms on running times of Q-

learning is evaluated (as percentage speed up δ) in reference

to the running times obtained with LPT as follows for each

instance I

δ(TS(I)) =
tmax(LPT (I))− tmax(TS(I))

tmax(TS(I))
× 100%,

where TS ∈ {LPT,RND,SNPT } and tmax(TS(I)) is

the measured (in milliseconds) maximum calculation time

(running time) among all Q-learning agents (equivalent to the

makespan) that processed tasks according to the applied task

scheduling algorithm TS for the instance I ∈ IQ.

Thus, for each instance I , the running times (in

milliseconds) of finding the shortest paths by Q-learning

agents are measured, which processed tasks according to

LPT, RND and SNPT, respectively. The results concerning

mean, minimum, and maximum speed up δ (in percents)

and running times tmax (in milliseconds) of Q-learning

are given in Table I, where the related are calculated

for each set IQ of instances as follows: δ(TS,min) =
minI∈IQ{δ(TS(I))}, δ(TS,max) = maxI∈IQ{δ(TS(I))},

δ(TS,mean) =
∑

I∈IQ
δ(TS(I))/|IQ|, and

tmax(TS,min) = minI∈IQ{tmax(TS(I))},

tmax(TS,max) = maxI∈IQ{tmax(TS(I))},

tmax(TS,mean) =
∑

I∈IQ
tmax(TS(I))/|IQ|. Note that

the higher value of δ then better, whereas it is oppositive

for tmax. Moreover, only mean values of δ and tmax are

correlated, whereas min and max are informative. For a better

comprehension, let us consider the first row of Table I for

minimum values of RND. We have the minimum speed up

δ = −2% and minimum running time tmax = 204 ms of

Q-learning. However, -2% does not refers to 204, it only

means that there was a running time of Q-learning using

RND for which the minimum speed up comparing to the

approach using LPT was -2%, i.e., LTP caused a result 2%

faster than RND. On the other hand, minimum tmax = 204
means that the smallest running time of Q-learning using

RND was 204 ms.

In the previous studies on machine learning, a sequence

of processing tasks has not been taken into account as an

694 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

TABLE I: Speed up and running times of Q-learning depending on sequences determined by scheduling algorithms in reference

to results obtained by LPT

n m l(u,w) LPT RND SNPT

mean min max mean min max mean min max

500 1 5 δ[%] 0 0 0 5 -1 11 18 9 22

tmax [225] [220] [238] [213] [205] [238] [192] [190] [206]

100 δ[%] 0 0 0 5 0 9 14 10 16

tmax [225] [218] [231] [212] [201] [226] [196] [192] [198]

2 5 δ[%] 0 0 0 4 0 9 15 11 17

tmax [221] [217] [224] [208] [201] [220] [192] [189] [195]

100 δ[%] 0 0 0 5 -1 10 14 11 16

tmax [215] [210] [218] [204] [198] [217] [188] [185] [194]

10 5 δ[%] 0 0 0 4 0 9 13 8 17

tmax [209] [204] [216] [202] [196] [211] [184] [181] [195]

100 δ[%] 0 0 0 4 -3 9 15 9 19

tmax [228] [222] [237] [220] [211] [231] [198] [194] [211]

20 5 δ[%] 0 0 0 2 -1 8 12 8 17

tmax [213] [209] [222] [206] [196] [216] [189] [184] [195]

100 δ[%] 0 0 0 3 -1 12 14 11 22

tmax [219] [213] [250] [212] [203] [224] [192] [188] [204]

1000 1 5 δ[%] 0 0 0 6 0 12 17 14 19

tmax [262] [257] [266] [244] [236] [258] [224] [220] [226]

100 δ[%] 0 0 0 6 0 10 12 11 16

tmax [248] [245] [253] [234] [226] [248] [220] [218] [224]

2 5 δ[%] 0 0 0 5 0 9 15 12 17

tmax [240] [234] [245] [228] [219] [241] [207] [205] [212]

100 δ[%] 0 0 0 6 -1 10 16 14 19

tmax [241] [238] [245] [228] [219] [245] [207] [206] [209]

10 5 δ[%] 0 0 0 4 -1 9 17 14 20

tmax [234] [229] [242] [222] [215] [236] [197] [195] [202]

100 δ[%] 0 0 0 3 -2 8 17 15 19

tmax [231] [229] [237] [222] [213] [235] [197] [194] [199]

20 5 δ[%] 0 0 0 3 0 7 13 10 17

tmax [219] [215] [227] [212] [206] [221] [192] [190] [198]

100 δ[%] 0 0 0 3 -1 7 15 8 18

tmax [224] [221] [231] [217] [209] [227] [195] [191] [206]

4000 1 5 δ[%] 0 0 0 5 1 8 14 12 17

tmax [333] [331] [342] [316] [307] [329] [292] [288] [295]

100 δ[%] 0 0 0 4 -1 8 11 8 14

tmax [329] [325] [332] [313] [303] [331] [292] [290] [301]

2 5 δ[%] 0 0 0 5 0 10 15 12 18

tmax [286] [284] [291] [272] [260] [286] [249] [246] [254]

100 δ[%] 0 0 0 4 0 8 13 11 16

tmax [282] [279] [286] [267] [258] [282] [247] [244] [250]

10 5 δ[%] 0 0 0 4 0 7 15 13 19

tmax [238] [235] [246] [227] [221] [242] [204] [202] [208]

100 δ[%] 0 0 0 3 0 8 14 9 19

tmax [226] [224] [234] [217] [212] [227] [197] [195] [211]

20 5 δ[%] 0 0 0 3 0 8 16 12 18

tmax [218] [216] [227] [212] [204] [219] [188] [185] [193]

100 δ[%] 0 0 0 3 -1 9 15 12 19

tmax [219] [215] [228] [211] [205] [220] [188] [186] [194]

approach of speeding up these methods (in particular Q-

learning). Similarly for computing them in parallel, it might

be expected that the most efficient among task assignment

(scheduling) algorithms is LPT, next RND and SNPT is

the worst, or more likely that the differences in running

times of machine learning methods are negligible for different

sequences of processed tasks. However, the numerical analysis

following our theoretical research reveals that it does not have

to be so (in fact it is completely opposite to the popular

approach).

It can be seen in Table I that a proper sequence of processed

tasks (see SNPT) can significantly speed up Q-learning (even

22% and not less than 8%). The running times of Q-learning

tmax(LPT) using LPT are 204–342 ms depending on the

number of tasks n and agents m, whereas the impact of values

of lengths (weights) l(u,w) is negligible. Similar relations

hold for RND and SNPT. The best running times are obtained

for Q-learning that processed tasks according to SNPT, which

is consistent with the theoretical results. It can be seen that

SNPT always speeds up Q-learning, i.e., 11–18% (mean),

but at least 8–15% (min) and even 14–22% (max); see also

Figure 5. For RND, we have speed up about 2–6% (mean)

and 7–12% (max), whereas its minimum speed up of RND in

reference to LPT is -3–1% (min), where the negative values

mean that for some cases LPT is slightly better.

Let us analyse running times of a single agent and multiple

agents. For m = 1 and n = 500, we have the following

average running times tmax(LPT) = 225 ms, tmax(RND) =
213 ms, tmax(SNPT) = 192 ms, thereby SNPT is about

30 ms and 20 ms faster than LPT and RND, respectively.

Thus, SNPT is visible better not only than LPT, but also than

random sequence. It shows that our approach can significantly

speed up Q-learning even for a single agent. On the other

hand, for m = 20 and n = 4000 for which LPT should

RADOSŁAW RUDEK: AN ENHANCEMENT OF REINFORCEMENT LEARNING BY SCHEDULING WITH LEARNING EFFECTS 695

be (according to other studies) an efficient task assignment

method for parallel computing, the mean running times are

as follows: tmax(LPT) = 219 ms, tmax(RND) = 211 ms,

tmax(SNPT) = 188 ms. Once again, LPT is the worst and a

random sequence is better, but they are overwhelmed by SNPT

for all analysed instances. It can be seen that the proposed

approach is robust, it is slightly affected by the number of

agents (Figure 3) or tasks (Figure 4). Moreover, the mean

speed up is over 15% in reference event to LPT (well known

to be very good algorithm for such cases).

(a) Calculation time (lower – better)

(b) Speed-up vs LPT (higher – better)

Fig. 3: Mean calculation times and speed-ups of algorithms for

different numbers of processors (agents); following Table I

Finally, the time required by considered scheduling algo-

rithms (in particular SNPT) to determine sequences of pro-

cessed tasks does not exceed 1 ms (even for greater instances

n = 4000 and m = 20), which is negligible. Hence application

of our approach significantly speeds up Q-learning (about

15%) without additional effort, it does not interfere Q-learning

structure nor cause time overhead. It is especially crucial for

varying environments, where Q-learning should adapt quickly.

Thus, it can be used in a similar way for other related machine

learning methods.

VI. CONCLUSIONS

Following dependencies observed in production and man-

ufacturing systems related with a human factor (learning),

we modelled relations, which occur between tasks processed

by machine learning algorithms. Namely, we presented pre-

liminary results, which revealed that approaches obtained

for scheduling problems with learning effects (known from

production and manufacturing) can be successfully used to

(a) Calculation time (lower – better)

(b) Speed-up vs LPT (higher – better)

Fig. 4: Mean calculation times and speed-ups of algorithms

for different numbers of jobs (tasks); following Table I

(a) Calculation time (lower – better)

(b) Speed-up vs LPT (higher – better)

Fig. 5: Mean, minimum and maximum values of calculation

times and speed-ups; following Table I

improve the quality of machine learning methods. It was illus-

trated by modelling some aspects of Q-learning as scheduling

problems with the learning effect. The previous studies on

machine learning had not taken into consideration that the

existence of learning can be utilized and bring additional

696 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

benefits. On the basis of our approach, we claimed that the

efficiency of Q-learning algorithms can be improved (running

times) if tasks are processed according to a given sequence.

Furthermore, we showed that for a parallelized Q-learning an

assignment of tasks by SNPT is significantly more efficient

than LPT, which is somehow in opposition to an intuition

following from the previous studies on the sole LPT rule

without the presence of learning (e.g., [12], [21]). The numer-

ical analysis revealed that the dependency between running

times and applied task processing (scheduling) algorithm is

not incidental, but it is a rule.

Thus, our approach is efficient and robust, since it does

not depend on a learning curve model nor accurate values of

the normal job (task) processing times, but requires only their

non-decreasing relation. In the same time, it does not interfere

a structure of machine learning methods and its computation

overhead is negligible. On the other hand, it is also the main

limitation of the presented approach, since the SNPT rule

cannot gain additional optimization benefits from knowing the

exact model of learning curves describing the reduction of task

processing times.

Our future research will focus on the application of our

approach to other machine learning methods as well as on

the analysis of different criteria, thereby development of other

efficient algorithms.

ACKNOWLEDGEMENT

This work was supported by the Polish

National Science Centre under grant no.

DEC-2020/37/B/HS4/03235.

REFERENCES

[1] D. Biskup, “A state-of-the-art review on scheduling with learning
effects,” European Journal of Operational Research, vol. 188, pp. 315–
329, 2008.

[2] R. Rudek, “Scheduling on parallel processors with varying processing
times,” Computers & Operations Research, vol. 81, pp. 90–101, 2017.

[3] J. Xu, C.-C. Wu, Y. Yin, C. Zhao, Y.-T. Chiou, and W.-C. Lin, “An order
scheduling problem with position-based learning effect,” Computers &

Operations Research, vol. 74, pp. 175–186, 2016.
[4] C. Zhao, J. Fang, T. Cheng, and M. Ji, “A note on the time complexity

of machine scheduling with DeJong’s learning effect,” Computers &

Industrial Engineering, vol. 112, pp. 447–449, 2017.

[5] J. Pei, X. Liu, P. M. Pardalos, A. Migdalas, and S. Yang, “Serial-batching
scheduling with time-dependent setup time and effects of deterioration
and learning on a single-machine,” Journal of Global Optimization,
vol. 67, pp. 251–262, 2017.

[6] R. Rudek, “A fast neighborhood search scheme for identical parallel
machine scheduling problems under general learning curves,” Applied

Soft Computing, vol. 113, pp. 108 023.1–16, 2021.
[7] C.-H. Wu, W.-C. Lee, P.-J. Lai, and J.-Y. Wang, “Some single-machine

scheduling problems with elapsed-time-based and position-based learn-
ing and forgetting effects,” Discrete Optimization, vol. 19, pp. 1–11,
2016.

[8] M. I. Jordan and T. M. Mitchell, “Machine Learning: Trends,
Perspectives, and Prospects,” Science, vol. 349, pp. 255–260, 2015.

[9] I. Grondman, L. Buşoniu, G. Lopes, and R. Babuška, “A survey of actor-
critic reinforcement learning: standard and natural policy gradients,”
IEEE Transactions On Systems, Man, And Cybernetics - Part C:

Applications And Reviews, vol. 42, pp. 1291–1307, 2012.
[10] R. S. Sutton and A. G. Barto, Reinforcement learning: an introduction.

Cambridge: MIT Press, 1998.
[11] S. Whiteson and P. Stone, “Adaptive job routing and scheduling,”

Engineering Applications of Artificial Intelligence, vol. 17, pp. 855—
-869, 2004.

[12] M. Pinedo, Scheduling: Theory, Algorithms and Systems (5rd ed.). New
York: Springer, 2016.

[13] Y. Wang, X. Li, and R. Ruiz, “An exact algorithm for the shortest path
problem with position-based learning effects,” IEEE Transactions on

Systems, Man, and Cybernetics: Systems, vol. 47, pp. 3037–3049, 2017.
[14] C. Watkins, “Q-Learning,” Machine Learning, vol. 8, pp. 279–292,

1992.
[15] W. Y. Kwon, I. H. Suh, and S. Lee, “SSPQL: stochastic shortest path-

based Q-learning,” International Journal of Control, Automation, and

Systems, vol. 9, pp. 328–338, 2011.
[16] A. Konar, I. G. Chakraborty, S. J. Singh, L. C. Jain, and A. K. Nagar, “A

deterministic improved Q-learning for path planning of a mobile robot,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 43,
pp. 1141–1153, 2013.

[17] Z. S. Givi, M. Y. Jaber, and W. P. Neumann, “Modelling worker
reliability with learning and fatigue,” Applied Mathematical Modelling,
vol. 39, pp. 5186–5199, 2015.

[18] C. H. Glock and Y. M. Jaber, “Learning effects and the phenomenon
of moving bottlenecks in a two-stage production system,” Applied

Mathematical Modelling, vol. 37, pp. 8617–8628, 2013.
[19] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rin-

nooy Kan, “Optimization and approximation in deterministic sequencing
and scheduling: a survey,” Annals of Discrete Mathematics, vol. 5, pp.
287–326, 1979.

[20] R. Graham, “Bounds for certain multiprocessing anomalies,” Bell System

Technical Journal, vol. 45, pp. 1563–1581, 1966.
[21] W. Li and J. Yuan, “LPT online strategy for parallel-machine scheduling

with kind release times,” Optimization Letters, vol. 10, pp. 159–168,
2016.

RADOSŁAW RUDEK: AN ENHANCEMENT OF REINFORCEMENT LEARNING BY SCHEDULING WITH LEARNING EFFECTS 697

