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Abstract—The focus of this study is on the optimal use of high
performance computing in the area of environmental security (air
pollution transport, in particular). Contemporary mathematical
models of air pollution transport should include a fairly large
set of chemical and photochemical reactions to be established as
a reliable simulation tool. The investigations and the numerical
results reported in this paper have been obtained by using a
large-scale mathematical model called the Danish Eulerian Model
(DEM).

For optimization of some applications of the Danish Eulerian
Model in various important scientific, social and economic areas,
it is of great importance to simplify the model as much as
possible, preserving the high reliability of its output results. A
careful sensitivity analysis is needed in order to decide how
to do such simplifications. On the other hand, it is important
to analyze the influence of variations of the initial conditions,
the boundary conditions, the rates of some chemical reactions,
etc. on the model results in order to make right assumptions
about the possible simplifications, which could be done. The
sensitivity analysis version of the Danish Eulerian Model was
created for these purposes. Its complexity is of higher order, a real
challenge for the top performance supercomputers nowadays.
The sensitivity analysis version of DEM (SA-DEM) has been
implemented on the new Bulgarian petascale supercomputer
DISCOVERER. It is a part of the European High Performance
Computing Joint Undertaking (EuroHPC), which is building
a network of 8 powerful supercomputers across the European
Union (3 pre-exascale and 5 petascale).

The results of some scalability experiments with SA-DEM on
the new Bulgarian petascale supercomputer DISCOVERER are
presented here. They are compared with similar experiments
performed on the Mare Nostrum III supercomputer at Barcelona
Supercomputing Centre – the most powerful supercomputer in
Spain by that time, upgraded currently to the pre-exascale Mare
Nostrum V, also part of the EuroHPC JU infrastructure.

Keywords: sensitivity analysis, air pollution, numerical model,
supercomputer, parallel algorithm, scalability

I. INTRODUCTION

Environmental security is rapidly becoming a significant

topic of present interest all over the world. It is necessary

to carry out many comprehensive scientific studies and to

analyze carefully the most important physical and chemical

processes during the transport, and transformations under

the transport of air pollutants. An effective performance of

such complicated procedures requires a joined research and

collaboration between experts in the field of environmental

modeling, numerical analysis and scientific computing.

The aim of the present work is to propose a new mechanism

for investigation the sensitivity of the calculated concentration

levels of important pollutants (like nitrogen dioxide NO2 and

especially ozone O3) due to variation of rates of the involved

chemical reactions in a real-life scenario of air pollution

transport over Europe with the Unified Danish Eulerian Model

(UNI-DEM).

In investigation of various highly complex engineering,

physical, environmental, social, and economic systems it is

important to measure relations that describe the effect on the

output results when the conditions for the input change.

Sensitivity analysis (SA) is the study of how uncertainty

in the output of a model can be apportioned to different

sources of uncertainty in the model input [20]. Two classes

in sensitivity analysis are considered in the existing literature:

local SA and global SA. Local SA studies how some small

variations of inputs around a given value change the value

of the output. Global SA takes into account all the variation

range of the inputs, and apportions the output uncertainty to

the uncertainty in the input factors.

In general, several sensitivity analysis techniques are avail-

able [20]. Most existing methods for providing SA rely heavily

on special assumptions connected to the behavior of the

model (such as linearity, monotonicity and additivity of the

relationship between input factor and model output). Among

quantitative methods, variance-based methods are the most

often used [19]. The main idea of these methods is to evaluate

how the variance of an input or a group of inputs contributes

into the variance of model output.

Computational tasks arising in the treatment of large-scale
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air pollution models are enormous. It is highly desirable to

simplify as much as possible the model, keeping high level

of reliability of models’ results. Sensitivity analysis is rather

helpful in order to decide where and how simplifications can

be made. On the other hand, it is important to analyze the

influence of variations of the initial conditions, the boundary

conditions and/or the chemical rates on the model results in or-

der to make right assumptions about the simplifications which

have to be implemented. Such an analysis can give valuable

information about the performance of reliable and reasonable

simplifications or to identify parameters and mechanisms the

accuracy of which should be improved, because the model

results are very sensitive to variations of these parameters and

mechanisms. Thus, the goal could be: (i) improving the model,

(ii) increasing the reliability of the results, and (iii) identifying

processes that must be studied more carefully.

The rest of the paper is organized as follows: In Section II

the general concept of global sensitivity analysis is introduced

in terms of ANOVA high-dimensional model representation. In

Section III the Danish Eulerian Model is described, including

its high-performance parallel code UNI-DEM and its special

sensitivity analysis version SA-DEM. In Section IV numerical

results from some scalability experiments with SA-DEM on

two of the most powerful supercomputers in Europe are given.

Finaly, some conclusins are drawn.

II. SENSITIVITY ANALYSIS CONCEPT

A. Global Sensitivity Indices

When the sensitivity of the concentrations calculated by

UNI-DEM (or any other deterministic mathematical model) is

studied, it is convenient to introduce some stochastic variables

and equations.

It is assumed that the mathematical model can be presented

as a model function

u = f(x), x = (x1, x2, . . . , xd) ∈ Ud ≡ [0; 1]d (1)

is a vector of input parameters with a joint probability density

function (p.d.f.) p(x) = p(x1, . . . , xd). In general, real prob-

lems are characterized by multiple outputs. Here it is assumed

that a scalar output is given. It is also assumed that input

variables are independent (non-correlated input variables) and

the density function p(x) = p(x1, x2, . . . , xd) is known, even

if xi are not actually random variables. This implies that the

output u is also a random variable, as it is a function of the

random vector x, with its own p.d.f.

It is reasonable to introduce an indicator that measures the

importance of the influence of a given input parameter onto the

output. The main indicator referred to a given input parameter

xi, i = 1, . . . , d (normalised between 0 and 1) is defined as

D[E[u|xi]]

Du
, (2)

where D[E[u|xi]] is the variance of the conditional expectation

of u with respect to xi and Du is the total variance according

to u. This indicator is named first-order sensitivity index by

Sobol’ [23] or correlation ratio by McKay [13]. A brief review

of measures of importance used in variance-based methods for

sensitivity analysis is given in [3].

The total sensitivity index [10] provides a measure of the

total effect of a given parameter, including all the possible

joint terms between that parameter and all the others. The total

sensitivity index (TSI) of input parameter xi, i ∈ {1, . . . , d}
is defined in the following way [10], [23]:

Stot
xi

= Si+
∑

l1 6=i

Sil1+
∑

l1,l2 6=i,l1<l2

Sil1l2+. . .+Sil1...ld−1
(3)

where Si is called the main effect (first-order sensitivity index)

of xi and Sil1...lj−1
is the j-th order sensitivity index (respec-

tively two-way interactions for j = 2, three-way interactions

for j = 3 and so on) for parameter xi (2 ≤ j ≤ d). The

higher-order terms describe the interaction effects between the

unknown input parameters xi1 , . . . , xiν , ν ∈ {2, . . . , d} on

the output variance. Usually for practical computations the

set of input parameters is classified according their TSI [3]:

very important if 0.8 < Stot
xi

, important if 0.5 < Stot
xi

< 0.8,

unimportant if 0.3 < Stot
xi

< 0.5, and irrelevant if Stot
xi

< 0.3.

In subsection II-B we will show how sensitivity indices

Sl1 ... lν are defined via the variances of conditional expecta-

tions Dl1 = D[fl1(xl1)] = D[E(u|xl1)], Dl1 ... lν , 2 ≤ ν ≤ d
(see, equation (8)). It is often reasonable to assume (see [12],

[17]) that relatively small subsets of input variables in high-

dimensional models have the main impact on the output.

The high dimensional sums can be neglected when many

practical problems are studied. This means that one can use

low-order indices preferably, but should be able to control the

contribution of higher-order terms.

B. The Sobol’ Approach

The Sobol’ method is one of the most often used variance-

based methods. To our best knowledge the Sobol’ sensitivity

measure [23] was first published in [22]. An important ad-

vantage of this method is that it allows to compute not only

the first-order indices, but also indices of a higher-order in a

way similar to the computation of the main effects. The total

sensitivity index can be calculated with just one Monte Carlo

integral per factor.

The method for global SA applied here is based on a

decomposition of an integrable model function f in the d-

dimensional factor space into terms of increasing dimension-

ality:

f(x) = f0 +
d

∑

ν=1

∑

l1<...<lν

fl1...lν (xl1 , xl2 , . . . , xlν ) (4)

where f0 is a constant. The total number of summands in

equation (4) is 2d (see [25]) and, in general, this so called high

dimensional model representation [23] is non-unique. But, if

each term is chosen to satisfy the following condition
∫ 1

0

fl1...lν (xl1 , xl2 , . . . , xlν )x. lk = 0, 1 ≤ k ≤ ν ≤ d (5)

then (4) is unique. The representation (4) is called ANOVA-

representation of the model function f(x) [24]. Here and
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hereafter the variables of integration are markeed by a dot

below in the integration formulae.

The functional decomposition of [0; 1]d ANOVA (meaning:

ANalysis Of VAriance) -representation has been studied by

many authors [2], [9], [21], [26]. Sobol’ has proven [22] that

the decomposition (4) is unique on the assumption (5) and the

functions of the right-hand side can be defined in a unique

way by multidimensional integrals [24]:

• f0 =

∫

Ud

f(x)x. ;

• fl1(xl1) =

∫

Ud−1

f(x)
∏

k 6=l1

x.k − f0, l1 ∈ {1, 2, . . . , d};

• fl1l2(xl1 , xl2) =

∫

Ud−2

f(x)
∏

k 6=l1,l2

x.k − f0 − fl1(xl1) −

fl2(xl2), l1, l2 ∈ {1, . . . , d}.

An additional essential property of the terms in the ANOVA-

representation is their mutual orthogonality:
∫

Ud

fi1...iµ(x)fj1...jν (x) x. = 0,

(i1, . . . , iµ) 6= (j1, . . . , jν), µ, ν ∈ {1, . . . , d}.

It follows from the assumption that the above subsets of

indices differ from one another at least one element and the

corresponding integral vanishes for this index due to (5).

The quantities

D =

∫

Ud

f2(x)x. − f2
0 (6)

Dl1 ... lν =

∫

f2
l1 ... lν

(x)x. l1 . . . x. lν

are called variances (total and partial variances, respectively)

and have been obtained after squaring and integrating over Ud

the equality (4) on the assumption that f(x) is a square inte-

grable function (thus all terms in (4) are also square integrable

functions). Therefore, the total variance of the model output is

partitioned into partial variances [22] in the analogous way as

the model function, that is the unique ANOVA-decomposition:

D =

d
∑

ν=1

∑

l1<...<lν

Dl1...lν . (7)

It is obvious that the use of terms of probability theory is

based on the following interpretation: in general, the input

parameters are random variables distributed in Ud that de-

fines fl1 ... lν (xl1 , xl2 , . . . , xlν ) also as random variables with

variances (6). For example fl1 is presented by a conditional

expectation:

fl1(xl1) = E(u|xl1)− f0

and respectively

Dl1 = D[fl1(xl1)] = D[E(u|xl1)].

Based on the above assumptions about the model function and

the output variance, the following quantities

Sl1 ... lν =
Dl1 ... lν

D
, ν ∈ {1, . . . , d} (8)

are called Sobol’ global sensitivity indices [22], [24]. This

formula coincides for ν = 1 with (2) and the so defined

measures correspond to the main effect of input parameters

as well as the interactions effect. Using the definition of these

measures as ratios of variances and dividing (7) by D, it is

easy to show that the following properties hold for the Sobol’

global sensitivity indices: Sl1 ... lν ≥ 0, and

d
∑

ν=1

d
∑

l1<...<lν

Sl1 ... lν = 1. (9)

Based on the results discussed above it is clear that the

mathematical treatment of the problem of providing global

sensitivity analysis consists in evaluating total sensitivity in-

dices (3) and in particular Sobol’ global sensitivity indices

(8) of corresponding order. And that leads to computing of

multidimensional integrals: I =
∫

Ω
g(x)p(x) x. , Ω ⊂ R

d,
where g(x) is a square integrable function in Ω and p(x) ≥ 0
is a probability density function, such that

∫

Ω
p(x) x. = 1.

This means that in general case one needs to compute 2d

integrals of type (6) to obtain Stot
xi

. As we discussed earlier

the basic assumption underlying representation (4) is that the

basic features of the model functions (1) describing typical

real-life problems can be presented by low-order subsets of

input variables [12], [17], that are constants, terms of first and

second order. Thus, the high-dimensional sums (referred to

higher-order interactions effects) in (4) can normally be ne-

glected. Therefore, based on this assumption, one can assume

that the dimension of the initial problem can be reduced.

Nevertheless, the calculating of the integrals defined by

formulas (6) requires integration of different integrands that

is not effective according to the computational cost. The

procedure for computing global sensitivity indices measuring

effect (main or otherwise) of the input parameters that is

overcoming this disadvantage has been proposed by Sobol’

[24]. Consider an arbitrary set of m variables (1 ≤ m ≤ d−1):

y = (xk1
, . . . , xkm

), 1 ≤ k1 < . . . < km ≤ d, and let z be

the set of d − m complementary variables. Thus x = (y, z).
Let K = (k1, . . . , km).

The variances corresponding to the subsets y and z can be

defined as

Dy =

m
∑

n=1

∑

(i1<...<in)∈K

Di1 ... in , (10)

Dz =
d−m
∑

n=1

∑

(j1<...<jn)∈K̄

Dj1 ... jn ,

where the complement of the subset K in the set of all

parameter indices is denoted by K̄. The first sum in (10)

is extended over all subsets (i1, . . . , in), where all indices

i1, . . . , in belong to K. Then the total variance corresponding

to the subset y is D
tot
y = D − Dz and it is extended over

all subsets (i1, . . . , iν), 1 ≤ ν ≤ d, where at least one

il ∈ K, 1 ≤ l ≤ ν.

The procedure for computation of global sensitivity indices

is based on the following representation of the variance Dy =

TZVETAN OSTROMSKY ETAL.: SENSITIVITY STUDY OF A LARGE-SCALE AIR POLLUTION MODEL ON THE BULGARIAN PETASCALE SUPERCOMPUTER DISCOVERER 1095



∫

f(x) f(y, z′)x. z.
′ − f2

0 (see [24]). The last equality allows

to construct a Monte Carlo algorithm for evaluating f0,D and

Dy, where ξ = (η, ζ):

1

N

N
∑

j=1

f(ξj)
P
−→ f0,

1

N

N
∑

j=1

f(ξj) f(ηj , ζ
′
j)

P
−→ Dy + f2

0 ,

1

N

N
∑

j=1

f2(ξj)
P
−→ D+ f2

0 ,

1
N

∑N

j=1 f(ξj) f(η
′
j , ζj)

P
−→ Dz + f2

0 .

For example, for m = 1, y = {xl1}, l1 ∈ {1, . . . , d} and

z = {1, . . . , d}\l1:

Sl1 = S(l1) = D(l1)/D, Stot
l1

= D
tot
l1

/D = 1− Sz.

It is important to estimate the computational cost for com-

puting the sensitivity indices in order to be able to compare this

approach with other existing approaches. The computational

cost of estimating all first-order (m = 1) and total sensitivity

indices via the scheme proposed by Sobol’ can be defined

as N(2d + 1) model function evaluations (N model runs

for f0, dN model runs for the first-order terms, and dN
model runs for the total effect terms), where N is the sample

size and d is the number of input parameters. It should be

noted that the most frequently used variance-based methods

as Sobol’ method and FAST (Fourier Amplitude Sensitivity

Test) (and their improved versions) have a computational cost

proportional to dN of estimating all main and total effects of

input parameters (see [18]).

The computing of higher-order interactions effect can be

performed by an iterative process. For example,

S(l1l2) = D(l1l2)/D = Sl1 + Sl2 + Sl1l2 ,

and Sl1l2 can be obtained assuming that the corresponding

first-order sensitivity indices have already been computed.

III. DESCRIPTION AND PARALLEL IMPLEMENTATIONS OF

THE DANISH EULERIAN MODEL (DEM)

DEM is a powerful large scale air pollution model, with

more than 30-year development history [28], [15], [16], [29].

Over the years it was successfully applied in different long-

term environmental studies in various areas. processes in the

atmosphere should be taken into account, which are mathemat-

ically represented by a complex PDE system. To simplify it

a proper splitting procedure is applied. As a result the initial

system is replaced by several simpler systems (submodels),

connected with the main physical and chemical processes.

These systems should be calculated in a large spatial domain,

as the pollutants migrate quickly on long distances, driven by

the atmosphere dynamics, especially on high altitude. Here

they are exposed to temperature, light and other condition

changes in extremely wide range, so does the speed of most

chemical reactions. One of the major sources of difficulty is the

dynamics of the atmospheric processes, which require small

time-step to be used (at least, for the chemistry submodel) in

order to get a stable numerical solution of the corresponding

system. All this makes the treatment of large-scale air pollution

models a tuff and heavy computational task. It has always been

a serious challenge, even for the fastest and most powerful

state-of-the-art supercomputers. [7], [29].

The Danish Eulerian Model (DEM) [27], [28] is mathemati-

cally represented by the following system of partial differential

equations:

∂cs
∂t

= −
∂(ucs)

∂x
−

∂(vcs)

∂y
−
∂(wcs)

∂z
+ (11)

+
∂

∂x

(

Kx

∂cs
∂x

)

+
∂

∂y

(

Ky

∂cs
∂y

)

+

+
∂

∂z

(

Kz

∂cs
∂z

)

+

+Es +Qs(c1, c2, . . . , cq)− (k1s + k2s)cs ;

s = 1, 2, . . . , q ;

where the following notation is used:

q - number of equations = number of chemical

species,

cs - concentrations of the chemical species consid-

ered,

u, v, w - components of the wind along the coordi-

nate axes,

Kx,Ky,Kz - diffusion coefficients,

Es - emissions in the space domain,

k1s, k2s - coefficients of dry and wet deposition

respectively (s = 1, . . . , q),

Qs(c1, c2, . . . , cq) - non-linear functions that de-

scribe the chemical reactions between the species.

A. Splitting into submodels and domain decomposition

The above rather complex system is split into three sub-

systems (submodels), according to the major physical and

chemical processes as well as the numerical methods applied

in their solution (marked by different colors in the right-hand-

side of the system). These are (i) the horizontal advection

and diffusion, (ii) chemistry, emissions and deposition and (iii)

vertical exchange submodels, respectively. The discretization

of the spatial derivatives in the right-hand-sides of these sub-

models results in forming three large systems of ordinary

differential equations.

Chemical reactions play a significant role in the model.

Moreover, both non-linearity and stiffness of the equations

are mainly introduced by the chemistry (see [30]). On the

other hand, this is one of the models of atmospheric chem-

istry, where the chemical processes are described with great

detail in a very accurate way. The chemical scheme used in

the model is the well-known condensed CBM-IV (Carbon

Bond Mechanism; the scheme was proposed in [8], but some

enhancements have been obtained in [28] by adding several
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reactions for handling the ammonia-ammonium transforma-

tions in the atmosphere). It includes 35 pollutants and 116

chemical reactions, where 69 are time dependent and the rest

47 are time-independent. The scheme is suitable and adequate

to study cases of high concentrations of chemical species.

Another crucial point on the way towards efficient numer-

ical solution of the sub-models is the domain decomposition

technique. This is a natural way to achieve distributed memory

parallelization of any numerical problem over a large spatial

domain. In some cases, however, like the advection-diffusion

equations in particular, there is always certain overhead due to

the boundary conditions treatment. Minimizing this overhead

is a key point towards efficient optimization. On the other

hand, optimization should not restrict the portability of the

parallel implementation, as the intensive development in the

computer technology inevitably leads to regular updates or

complete replacement of the outdated hardware. Standard

parallel programming tools as MPI and OpenMP (for dis-

tributed / shared memory models) are used in order to preserve

portability of the code. An important issue towards efficient

parallel optimization is also the load-balance. Sometimes

the MPI barriers, used to force synchronization between the

processes in data transfer commands, do not allow good load-

balance. This obstacle can be avoided to some extent by using

non-blocking communication routines from the MPI standard

library.

More details about the numerical methods, applied to solve

these systems, can be found in [1], [11], [28].

B. Parallelization strategy

The MPI standard library is used as a main parallelization

tool. The MPI (Message Passing Interface) was initially de-

veloped as a standard communication library for distributed

memory computers. Later, proving to be efficient, portable

and easy to use, it became one of the most popular par-

allelization tools for application programming. Now it can

be used on much wider class of parallel systems, including

shared-memory computers and clustered systems (each node

of the cluster being a separate shared-memory machine). Thus

it provides high level of portability of the code.

In the case of DEM, MPI parallelization is based on the

space domain partitioning [15], [16]. The space domain is

divided into sub-domains (the number of the sub-domains is

equal to the number of MPI tasks). Each MPI task works

on its own sub-domain. On each time step there is no data

dependency between the MPI tasks on both the chemistry

and the vertical exchange stages. This is not so with the

advection-diffusion stage. Spatial grid partitioning between

the MPI tasks requires overlapping of the inner boundaries

and exchange of certain boundary values on the neighboring

subgrids for proper treatment of the boundary conditions. The

subdomains are usually too large to fit into the fastest cache

memory of the corresponding CPU. In order to achieve good

data locality, the smaller calculation tasks are grouped in

chunks (if appropriate) for more efficient cache utilization.

An input parameter CHUNKSIZE is provided, which controls

the amount of short-term reusable data in order to reduce

the transfer between the cache and the main (slower access)

memory. It should be tuned with respect to the cache size of

the target machine.

More detailed description of the main computational stages

of DEM and the parallelization techniques used in each of

them can be found in [1], [4], [15], [16], [28], [29], [30].

IV. NUMERICAL EXPERIMENTS WITH SA-DEM ON THE

PETASCALE SUPERCOMPUTER IBM MARENOSTRUM III IN

BARCELONA, SPAIN AND DISCOVERER EUROHPC IN

SOFIA, BULGARIA

Results of scalability experiments with the 2-D fine-

resolution grid version of SA-DEM on two of the most

powerful supercomputers in Europe are shown in Tables I and

II in this section. Some values of the user-defined parameters

of SA-DEM used in the experiments on both machines are as

follows:

• Grid-version: (480× 480× 1) ;

• Time period of modelling: 1 year;

• Time step: 90 sec. (both in advection and chemistry

stages);

• Cache utilization parameter: NSIZE = 32 .

A. Numerical experiments on the IBM MareNostrum III su-

percomputer at BSC - Barcelona, Spain

Characteristics of the system IBM MareNostrum III

• 3028 nodes IBM dx360 M4, 16-core, 32 GB RAM per

node;

• 48488 cores in total (Intel SandyBridge-EP E5-2670,

2600 MHz);

• Total RAM > 94 TB; Disk storage 1,9 PB;

• Interconnection networks: Infiniband / Gigabit Ethernet;

• Theoretical peak performance ∼ 1 PFLOPS.

B. Numerical experiments on the EuroHPC JU supercomputer

DISCOVERER in Bulgaria

Below are described some of the most important technical

characteristics of the DISCOVERER supercomputer, installed

2 years ago in Sofia Tech Park. by Atos company. The machine

is part of a new network of 8 powerful supercomputers in the

the European Union, build up and governed by the European

High Performance Computing Joint Undertaking (EuroHPC

JU).

System properties:

– System model type: ATOS BullSequana XH2000;

– The system consists of 12 racks, 376 blades, 1128 nodes

(18 of them – Fat nodes), 2 login nodes (for public access

to the system);

– There are 2256 processors and 144384 cores in total;

– Total RAM: 302592 GB (128 GB per node); total disk

storage: ∼ 12 PB;

– Interconnection: Dragonfly+ with 200 Gbps (IB HDR)

bandwidth per link;

– Sustained max. performance: 4.518 PFLOPS (on Linpack

standard benchmark tests);
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TABLE I
TIME (T) IN SECONDS, SPEED-UP (SP) AND PARALLEL EFFICIENCY (E) OF SA-DEM (FINEST GRID) ON THE SPANISH SUPERCOMPUTER

IBM MARENOSTRUM III AT BSC, BARCELONA

Time and speed-up of SA-DEM (MPI + OpenMP) on IBM MareNostrum III

(480× 480× 1) grid, 35 species, CHUNKSIZE=32

# CPU # Advection Chemistry TOTAL

/threads NODES T [s] (Sp) E [%] T [s] (Sp) E [%] T [s] (Sp) E [%]

10 1 80606 (10) 100 % 73426 (10) 100 % 165006 (10) 100 %
40 3 18760 (43) 108 % 15938 (46) 115 % 38775 (43) 106 %
80 5 9837 (82) 103 % 8551 (86) 107 % 21728 (76) 95 %

160 10 5130 (157) 98 % 4332 (169) 106 % 12525 (132) 82 %
320 20 2870 (281) 88 % 2292 (320) 100 % 8097 (204) 64 %
640 40 1511 (534) 83 % 1192 (616) 96 % 5299 (311) 49 %
960 60 1206 (669) 70 % 790 (929) 97 % 4034 (409) 43 %

1600 100 869 (927) 58 % 486 (1510) 94 % 3269 (505) 32 %
2400 /2 150 728 (1107) 46 % 407 (1804) 75 % 2415 (683) 28 %
4800 /4 300 265 (3040) 63 % 156 (4712) 98 % 1482 (1113) 23 %

15360/16 960 105 (7698) 50 % 48 (15170) 99 % 509 (3239) 21 %

TABLE II
TIME (T) IN SECONDS, SPEED-UP (Sp) AND THE TOTAL EFFICIENCY (E) OF SA-DEM ON THE EUROHPC JU SUPERCOMPUTER

DISCOVERER IN SOFIA, BULGARIA

Time (T) in seconds and speed-up (Sp)

of SA-DEM on DISCOVERER
(480× 480× 1) grid, 35 species, CHUNKSIZE=32

NP # Advection Chemistry TOTAL

(MPI) NODES T [s] (Sp) T [s] (Sp) T [s] (Sp) E [%]

10 1 72142 ( 10.0 ) 64726 ( 10.0 ) 146335 ( 10 ) 100 % %
20 2 36175 ( 19.9 ) 30027 ( 21.6 ) 71129 ( 21 ) 103 % %
40 3 18297 ( 39.4 ) 14295 ( 45.3 ) 36619 ( 40 ) 100 % %
80 5 9523 ( 75.8 ) 7839 ( 82.6 ) 20383 ( 72 ) 90 % %

160 10 4781 ( 150.9 ) 3925 ( 164 ) 11769 ( 124 ) 78 % %
320 20 2525 ( 285.7 ) 2037 ( 317 ) 6861 ( 213 ) 67 % %
640 40 1332 ( 541.7 ) 1034 ( 626 ) 4852 ( 302 ) 47 % %
960 60 1017 ( 709.7 ) 697 ( 929 ) 3472 ( 421 ) 44 % %

1600 100 787 ( 916.7 ) 463 ( 1398 ) 2822 ( 519 ) 32 % %

– Theoretical peak performance: 6 PFLOPS, ratio (max to

peak): 0.753;

– TOP500 ranking: # 91 in the world, # 27 in EU by the

time of instalation (June 2021).

Computing node design:

– CPU type: AMD EPYC 7H12 (code name Rome), 64-

core, frequency 2.6 GHz, power consumption 280W;

– CPU sockets per node: 2, CPU Cores per node: 128;

– Main memory per node : 256GB (Each of the 18x Fat

nodes has 1024GB Memory);

– Memory type and frequency : 16GB DDR4 RDIMM

3200MT/s DR, (The fat nodes are equipped with 64-GB

DDR4 RDIMM 3200MT/s DR);

– Node DP TeraFlop/s peak performance: 5.325TFlops;

– Node sustained performance on Linpack tests:

3.940TFlops;

– DP ratio TeraFlop/s – peak vs Linpack: 0,74 ;

– Linpack node power consumption: 665.1 W per 256 GB

compute node; 747.0 W per Fat compute node (Cooling

subsystem power consumption excluded);

– Number and bandwidth of network interfaces : 1x

200Gbps HDR.

High performance network properties:

– Interconnection family: IB HDR;

– Interconnection bandwidth per link: 200 Gbps (IB HDR);

– Expected latency (worst case for a 1 kB message): 520ns;

– Interconnection topology: Dragonfly+ ;

– Number of compute nodes per isle ( 2 Racks): 192;

– Blocking factor within isle : 2:1;

– Number of links to I/O partition: 120;

– Performance: 40 X HDR 200Gb/s ports in a 1U switch,

80 X HDR100 100Gb/s ports in a 1U switch;

– Aggregate switch throughput: 16 Tb/s;

– Up to 15.8 billion messages-per-second;

– Switch latency: 130 ns.

Management network properties:

– Network family: Ethernet;

– Network bandwidth : 10GbE/1GbE.

Storage system and I/O capacity:

– Total net capacity of data: 2031.89 TB;

– Total net capacity for metadata storage + home/apps –

15.25 TB; User home folders and application binaries will

be in Data drive; The useable capacity of the filesystem

will be 1 to 2

– Aggregated performance: 20 GB/s;

– Number of data modules: 164 HDD;
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– Number of metadata modules: 11 SSD;

– Data module details: Net capacity provided (PB): 2.03

PB, Performance provided: 20 GB/s, Number and type

of storage elements: 164 HDD + 11 SSD, Size per

storage element: 6 TB + 1.92 TB, CPU Cores per server:

10, Main memory per server: 150 GB, Memory type

and frequency: DDR4 2666 MT/s, Number and band-

width interfaces to control data network: 4 x GigE RJ45

for OS access and hardware management, Number and

bandwidth interfaces to bulk data network (RDMA): 4x

HDR100 IB / 100GbE ports (same ports as for metadata).

V. CONCLUSIONS

Sensitivity analysis and particularly the results, reported in

this work, have an important twofold role: for mathematical

models verification and/or improvement, and/or on the other

hand, for a reliable interpretation of experts of main effect,

interaction and higher-order interaction effect of input parame-

ters on model output. Variance-based analysis is an useful tool

for an advanced investigation of relationships between model

parameters, output results and internal mechanisms regulating

the system under consideration. Specifying the most important

chemical reactions for the model output the specialists from

various applied fields (chemistry, physics) may obtain valuable

information for an improvement of the model and thus it will

lead to an increase of reliability and robustness of predictions.

The results of numerical experiments performed show that:

• The parallel MPI implementation of SA-DEM is well

balanced, portable and runs efficiently on some of the

most powerful supercomputers in Europe, including the

Bulgarian Petascale supercomputer Discoverer, part of the

EuroHPC JU network.

• The efficiency and speed-up is higher in the

computationally-intensive stages. In particular, the

chemistry stage (which does not need any communication

between the tasks) has almost linear overall speed-up. The

advection stage scales pretty well too, taking into account

that there is some unavoidable computational overhead

due to overlapping boundaries of the partitioning.

• The time for the computationally-intensive stages is addi-

tionally reduced in relation with the number of threads in

the hybrid MPI-OpenMP code with the OpenMP lower

level of parallelism switched on, which can be exploited

on core level within a node.

• Further attention should be payed on the optimization of

the I/O processes in order to reduce the slowdown of the

execution on large number of nodes.
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