
Abstract—InMap is an interactive and iterative information

retrieval-based automated mapping algorithm that produces

code-to-architecture mapping recommendations. In its original

form, InMap requires an architect to provide feedback for each

code-to-architecture mapping recommendation in a given set

produced (complete feedback). However, architects may delay/

defer deciding on some of the mapping recommendations pro-

vided. This leads us to ask, how would InMap perform if only a

subset of the recommendations provided (partial feedback) or

only a single recommendation (real-time feedback) is reviewed

by the architect? Through carefully designed mapping experi-

ments, we show that an architect giving partial or real-time

feedback does not harm the recall and precision of the recom-

mendations produced by InMap. On the contrary, we observed

from the results of the systems tested a net increase of 2-5%

(depending on the approach). This shows that in addition to In-

Map’s original complete feedback approach, the two new ap-

proaches of collecting feedback presented in this paper, i.e. par-

tial and real-time, create flexibility in how software architecture

consistency checking tool developers may choose to collect

mapping feedback and how architects may opt-to provide feed-

back, with no harm to the recall and precision of the results.

Index Terms—software architecture conformance, auto-

mated source code mapping, software architecture consistency,

software maintenance.

I. INTRODUCTION

OFTWARE engineering industry practitioners use Soft-

ware Architecture Consistency Checking (SACC) to

check the consistency of a software’s implementation with

its architectural design [1, 8, 9, 17]. Its importance is derived

from the fact that if a software system’s implementation no

longer conforms to its originally designed architecture, this

may lead to failure in fulling its architectural design goals or

in meeting intended software quality attributes such as relia-

bility, availability, performance or security [1, 7, 15, 17].

S

Reflexion Modelling is an effective SACC technique as far

as industry acceptance and tool support are concerned [6, 10,

12, 14]. It represents software architecture as a decomposi-

tion of a software system into sub-components/architectural

modules and the relationships/dependencies allowed among

them [10]. It maps the existing codebase onto the defined ar-

chitectural modules revealing any irregular dependencies

amongst the modules. If no irregular dependencies exist, the

system’s codebase is said to conform to its architecture.

However, if dependencies not prescribed in the architecture

exist, then the software’s codebase is said to have diverged

from its intended architecture – a phenomenon known as ar-

chitecture drift or architecture degradation [10, 14, 16].

Mapping code to architecture in Reflexion Modelling is a

tedious manual process, especially for large systems [1].

Nevertheless, techniques exist that attempt to ‘automate’

code-to-architecture mapping in SACC methods [3, 5, 12,

18]. Accomplishing this well is no trivial task, as ideally,

mapping is done by a system expert knowledgeable about

the system, its architecture and its codebase [10]. However,

these techniques attempt to correctly predict which architec-

tural module a portion of the code would be mapped to.

They use various approaches to try and tackle this problem –

from code dependency and clustering [5, 11] to machine

learning, information retrieval and natural language process-

ing techniques [3, 12, 19, 21, 22].

Furthermore, mapping techniques also differ in how an ar-

chitect is involved in verifying the correctness of the result-

ing mapping. Some techniques only involve the architect af-

ter a complete mapping of the codebase, meaning the archi-

tect is given a complete mapping and then can decide if it is

correct [3, 11, 12]. Other mapping techniques do it progres-

sively or interactively in a human-in-the-loop approach. This

means that as the mapping takes place, the architect is asked

to review the mapping suggestions provided to improve

them [19, 20] or resolve the cases that are difficult to map

automatically [5].

Interactive mapping techniques have a similar approach to

obtaining feedback from an architect as mapping progresses.

They require an architect to decide on the correctness of ev-

ery member of a set of mapping recommendations given.

However, it is common to have cases where an architect may

Investigating the Effect of Partial and Real-Time Feedback in

INMAP Code-To-Architecture Mapping

Zipani Tom Sinkala, Sebastian Herold
0000-0002-7288-5552

0000-0002-3180-9182

Department of Mathematics and Computer Science, Karlstad University, Karlstad, Sweden

Email: {tom.sinkala, sebastian.herold}@kau.se

Proceedings of the 18
th Conference on Computer

Science and Intelligence Systems pp. 749–758

DOI: 10.15439/2023F5070

ISSN 2300-5963 ACSIS, Vol. 35

IEEE Catalog Number: CFP2385N-ART ©2023, PTI 749 Thematic track: Software Engineering for

Cyber-Physical Systems

need more knowledge of a system [3, 5, 19, 21, 22] and may

therefore prefer to delay/defer deciding on some mapping

recommendations provided. In other words, given a set of 10

mapping recommendations, it is expected to have the architect

decide about all 10 before progressing with the mapping.

However, the limitation of this approach is that it does not

accommodate a situation where an architect may feel that they

are only able to make a decision about some of the

recommendations produced (not all) or a case where the

architect would want to defer deciding on a given

recommendation to a later point in the mapping exercise. We

thus investigate the effect, in terms of the impact on the recall

and precision of the results, of providing partial feedback in

a code-to-architecture mapping technique we developed in

prior studies called InMap [18, 19, 20, 21, 22]. Additionally,

we are interested in investigating InMap’s behaviour if we

update the list of recommendations provided in real-time; that

is, the cases where a new set of mapping recommendations

are provided each time an architect gives feedback for a

singular recommendation.

Our contribution through this paper is evidence that an

architect giving partial or incomplete feedback for the

mapping recommendations produced by InMap does not

harm the recall and precision of the technique’s

recommendations. InMap, in this modified form, retained

recall values similar to its original complete-feedback form

for all six systems under test. Additionally, we found that the

precision of the partial-feedback approach is, on average, +/-

2% compared to the complete-feedback approach. We also

show that updating InMap’s mapping recommendations in

real-time, as an architect provides feedback, gives a net

increase of 5% for the systems tested. This entails that in

addition to InMap’s original complete feedback approach, the

two new approaches of collecting feedback introduced in this

paper, i.e. partial batch and real-time, provide flexibility in

how SACC tool developers may choose to collect mapping

feedback from an architect when using human-in-the-loop

mapping techniques. We also show that our InMap mapping

technique offers flexibility in how architects may opt to

provide feedback with no harm to the recall and precision of

the results.

Section II highlights related works. Section III gives an

overview of InMap. In Sec IV, we discuss our new

approaches to collecting feedback in-depth. Section V

explains our experimental setup. The results of the

experiments are presented in Section VI and discussed in

Section VII. The paper is concluded in Section VIII.

II. RELATED WORK

A few techniques exist that attempt to (auto)-map source

code to software architecture in SACC methods like Reflex-

ion Modelling. We broadly classify these into two categories

with regard to how they collect feedback from an architect.

We classify, as collaborative mapping or just-in-time feed-

back, techniques involving the architect as the mapping oc-

curs. These techniques are incremental and involve a human-

in-the-loop. They get feedback from the architect as the map-

ping progresses on the premise that the architect’s knowledge

of the software system can help ‘steer’ the mapping in the

right direction [19, 20]. We classify, as non-collaborative

mapping or feedback after-the-fact, those techniques that at-

tempt to entirely automate the mapping process without in-

volving the architect during the mapping process. An architect

only reviews the final results of these techniques after they

complete their mapping process, implying the architect is not

directly involved in the mapping [7].

A. Collaborative Mapping / Just-In-Time Feedback

Christl et al. propose HuGME, a mapping recommenda-

tion technique that analyses source code elements' dependen-

cies. HuGME clusters source code elements using an archi-

tect’s knowledge about its intended architecture [4, 5]. A de-

pendency-based attraction function, which minimises cou-

pling and maximises cohesion, is used, which yields a matrix

of attraction scores for unmapped entities [23]. All unmapped

entities that result in only one candidate having a score higher

than the mean of all scores result in a sole recommendation.

All unmapped entities with two or more mapping candidates

are presented to the architect in descending order as recom-

mendations. HuGME presents the recommendations to the ar-

chitect to let cluster decisions be made entirely by the archi-

tect. HuGME does not attempt to map all source code entities

in one complete step; instead, it maps a subset at a time, get-

ting feedback from the architect until no more mapping is pos-

sible. This classifies it as a collaborative mapping technique.

HuGME needs about 20% of a system’s codebase to be man-

ually pre-mapped by an architect before proceeding with au-

tomated mapping and thus suffers from pre-mapping draw-

backs [18, 19].

Bittencourt et al. have a mapping recommendation tech-

nique that uses information retrieval (IR). It has a similar au-

tomated mapping approach to HuGME, except that they use

dependency-based attraction functions with an IR-based sim-

ilarity function [3]. They compute the similarity of an un-

mapped entity to an architectural module by searching for

specified terms within the source of an unmapped entity. They

search for an architectural module’s name and the names of

its mapped entities/classes, class methods and fields. Their

technique requires manual pre-mapping before it can auto-

mate mapping; hence it suffers from pre-mapping drawbacks

similar to HuGME [18, 19]. The results of Bittencourt et al.’s

technique show that when there was a smaller p re-mapped

code base, there was a decrease in the f1-score of their tech-

nique [3].

Naim et al. propose a technique that uses dependency anal-

ysis and information retrieval methods, called Coordinated

Clustering of Heterogeneous Datasets (CCHD), to compute

a similarity score for source entities [11]. CCHD profits from

an architect’s feedback on a recovered architecture to itera-

tively adjust the results until there are no more recommenda-

tions for change. These modified results train a classifier that

automatically places new code in the “right” architectural

module. However, the technique is not necessarily meant for

750 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

automated mapping in software architecture consistency

checking, but rather, it was designed for software architecture

recovery tasks.

None of the above-discussed collaborative mapping ap-

proaches directly addresses the different ways an architect can

provide feedback as the mapping progresses, namely com-

plete, partial or real-time. They all make use of a complete-

batch feedback approach for the recommendations they pro-

vide.

B. Non-Collaborative Mapping / Feedback After-the-Fact

Olsson et al. use information retrieval and dependency

analysis in their automated mapping technique called Naive

Bayes Classification (NBC) [12]. They use Bayes’ theorem

to build a probabilistic model of classifications using words

taken from the source entities of a software system. The

model provides the probability of words (or tokens) being part

of a source entity. This is then enriched with syntactical infor-

mation on a source entity's incoming and outgoing dependen-

cies, a method called Concrete Dependency Abstraction [12].

NBC needs a pre-mapped set to return fruitful results and in-

advertently suffers from the downsides that come with the

need to pre-map. In recent studies, Olsson et al. refined their

technique to create a pre-mapped set using an approach simi-

lar to InMap [13]. However, the technique uses a feedback

after-the-fact approach, implying the architect checks

whether the mapping is correct at the end of the process.

C. Manual Methods Supported by Tools

Naming patterns (or regular expressions) are commonly

used in SACC industry tools. Expressions such as **/cli/** or

.cli. or net.commons.cli.* can be used to map source enti-

ties (whether classes or packages) to an architecture module

named CLI. This approach is used in popular SACC tools

such as Sonargraph Architect and Structure101 Studio.

These tools also provide drag & drop functionality. However,

the limitation of using naming patterns or drag & drop func-

tionality is that they do not solve the problem of reducing the

monotony of the mapping process because they are both man-

ual tasks. In large systems with complex mapping configura-

tions, this is a demanding task.

In summary, there exist techniques that attempt to get feed-

back as the mapping progresses, like HuGME [4, 5] and In-

Map [19, 21, 22] and others that get feedback from the archi-

tect once the mapping task is complete, like NBC [12, 13]. Of

those that collect feedback as the mapping progresses, none

directly address the alternative ways architects may provide

feedback, for example, as a complete batch, as a partial batch

or as a single recommendation at a time.

III. INMAP INTERACTIVE MAPPING

In [18, 19], we propose a collaborative mapping technique

known as InMap. Using natural language descriptions of a

system’s architecture modules, InMap can automate mapping

a completely unmapped system with no loss in the recall and

precision of the recommendations produced [19]. It iteratively

and interactively provides mapping recommendations that an

architect can review, a batch/set at a time. It uses the archi-

tect’s feedback in one iteration to guide the recommendations

provided in a subsequent iteration. This process continues un-

til the entire system is mapped or no more recommendations

can be produced. In our prior studies, InMap automated the

mapping of completely unmapped systems with an average

recall and precision of 0.97 and 0.82, respectively, for the sys-

tems tested. However, InMap does not cater for the fact that

an architect may not have full knowledge of the set of recom-

mendations provided and may instead opt to provide partial

feedback on the recommendations given. Instead, it assumes

or requires that the architect provides feedback for all recom-

mendations produced in a given iteration/batch before a new

set of recommendations can be provided in the following it-

eration.

A. The Algorithm

The InMap mapping technique is comprised of seven steps

[19, 21] summarised as follows:

1. A software system’s source files are filtered to

omit third-party package libraries or system pack-

ages/classes that the architect does not want to be

part of the mapping exercise.

2. The contents of the filtered source files are

stripped of any special characters and program-

ming language-specific keywords.

3. The pre-processed source files are indexed as an

inverted index.

4. InMap constructs a query for each architectural

module.

5. InMap uses the queries from Step 4 to search the

indexed source files for the similarity of every un-

mapped class to each architectural module. The

query for each architectural module is a combina-

tion of (i) its name; (ii) its natural language archi-

tectural description; (iii) the names of classes

mapped to the module; and (iv) the names of

methods contained within classes mapped to the

module. In InMap’s first iteration, when there are

no mapped classes, it uses only information from

items (i) and (ii) to construct the query. However,

once the first set of classes is mapped, InMap adds

items (iii) and (iv) to the query. These last two

items ‘enrich’ the query, as it were, to search for

the similarity of any unmapped class to the archi-

tectural module in question. Consequently, after

each iteration of newly mapped classes, the query

to produce the next set of recommendations is dif-

ferent. The queries are used to search the index,

resulting in a set of scores for every class-module

pair. The scores are based on the similarity infor-

mation retrieval function, tf-idf. The tf-idf scores

ZIPANI TOM SINKALA, SEBASTIAN HEROLD: INVESTIGATING THE EFFECT OF PARTIAL AND REAL-TIME FEEDBACK IN INMAP 751

are called class-to-module similarity scores

(끫뢌끫뢌끫뢠끫뢠), where c and m are a class-module pair in

the system under review. Step 5 results in a matrix

of class-to-module similarity scores (끫뢌끫뢌끫뢠끫뢠) for

every class against every module. We extended

InMap to include hierarchical information con-

tained in a system’s codebase, i.e., packages [20,

21], to condense the number of recommendations

made to complete the mapping process in SACC

techniques. This version of the technique in step

five produces a matrix of package-to-module sim-

ilarity scores 끫뢌끫뢌끫뢺끫뢠 derived from class-to-module

similarity scores (끫뢌끫뢌끫뢠끫뢠).

6. InMap uses the matrix of entity-to-module scores

to produce an ordered list of the best-scoring enti-

ties for the given architectural modules in terms of

similarity. In this case, an entity is either a class or

a package. InMap also uses page size to trim the

ordered list to the most likely correct recommen-

dations.

7. The architect reviews the recommendations pro-

duced, giving feedback by accepting or rejecting

them. After this step, InMap returns to Step 4 and

iterates Step 4 through 7 until no more recommen-

dations can be produced.

At the time of our study, InMap existed in two versions, a

class-based version and a package-based (or hierarchical) ver-

sion. More detailed descriptions of both mapping algorithms

and how their similarity score calculations are derived can be

found in [19] and [21], respectively.

B. Research Questions

For our study, we hypothesise that there is more than one

way a software architect may choose to provide feedback

about code-to-architecture mapping recommendations pro-

duced by interactive techniques like InMap. They may do it

as a complete batch which is how InMap works in its original

form [19, 21, 22], but they may also do it as a partial batch.

For example, if presented with a page of recommendations,

the architect might be unsure about a few of them and would

opt to postpone making a decision about them. This leads to

asking,

RQ1: What is the effect, in terms of recall and

precision, of an architect giving partial batch-

feedback in InMap compared to complete

batch-feedback?

Another interesting scenario to investigate is the implica-

tion of InMap collecting and updating its list of recommenda-

tions in real-time. Rather than waiting for an architect to give

feedback for all recommendations provided on a page before

presenting a new set of recommendations (what we would de-

scribe as an interactive batch update process), what would be

the behaviour of InMap, in terms of recall and precision if it

updated its list of recommendations immediately an architect

gives feedback on an individual recommendation (what we

would describe as an interactive real-time update process)?

In other words,

RQ2: What is the effect, in InMap in terms of

recall and precision, to consider feedback

from the architect as soon as we receive it

(real-time feedback), and how does it compare

with batch feedback?

IV. METHOD

To properly investigate our research questions, we describe

and formally define all three highlighted approaches to col-

lecting feedback from an architect, the prior existing com-

plete-batch feedback approach, as well as the two new ap-

proaches introduced in this study, namely partial-batch feed-

back and real-time feedback. We also illustrate how InMap

was modified to accommodate the two new feedback ap-

proaches.

A. Complete-Batch Feedback

Complete-batch feedback is used by most interactive map-

ping techniques [3, 5, 19, 20]. The algorithm gets complete

feedback from the architect for all mapping recommendations

on a page – see Fig. 1 for an illustration. The mapping algo-

rithm only generates a new set/page of mapping recommen-

dations in a subsequent iteration once feedback is given for

all entities in the given set of the current iteration. This im-

plies:

of required recommendations in

feedback = # of recommendations on page

How Complete-Batch Mapping Recommendations in

InMap Works: Recall that in step six, InMap derives the

highest scoring class-to-module pairs, from the class-to-mod-

ule similarity scores (끫뢌끫뢌끫뢠끫뢠) matrix, or package-to-module

pairs, from the package-to-module similarity scores (끫뢌끫뢌끫뢺끫뢠)

and gives them as class/package-to-module mapping recom-

mendations. InMap presents, as recommendations, either the

class/package-module pairs above the arithmetic mean of the

highest similarity scores obtained for a pair; or the best 30

recommendations (if those above the mean are greater than

30). Thirty gave the most optimal results based on the systems

tested. In step seven, this final filtered list is presented to the

architect to review the recommendations given. An architect

gives feedback on the page (batch of 30) recommendations

produced. In its original form, the architect’s feedback pro-

vided to InMap must be complete. The architect is expected

to provide feedback (an accept/reject) for every recommenda-

tion listed on the page.

752 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

Fig 1. Illustration of complete-batch feedback. For this approach of collecting feedback, an architect must provide feedback for each mapping recom-

mendation produced.

Fig 2. Illustration of partial-batch feedback. For this approach of collecting feedback, an architect can choose which mapping recommendations they

want to provide feedback for and can opt to delay or defer deciding on some.

Fig 3. Illustration of real-time feedback. For this approach of collecting feedback, an architect provides feedback for a single mapping recommendation,

following which a new set of recommendations is instantly produced and presented.

ZIPANI TOM SINKALA, SEBASTIAN HEROLD: INVESTIGATING THE EFFECT OF PARTIAL AND REAL-TIME FEEDBACK IN INMAP 753

B. Partial-Batch Feedback

Partial-batch feedback is an alternative approach to collect-

ing feedback about code-to-architecture mapping recommen-

dations. In this form, an architect provides feedback for a sub-

set of the recommendations provided on a given page. This

could be because the architect needs to gain sufficient

knowledge about some of the code entities (classes/packages)

listed in the recommendations provided and would prefer to

delay/defer decisions about those entities. The mapping algo-

rithm would use the partial feedback to provide a new

set/page of mapping recommendations that may or may not

include the entities the architect did not decide on in prior it-

erations. Fig. 2 illustrates this. This implies:

1 < # of required recommendations in

feedback < # of recommendations on page

How Partial-Batch Mapping Recommendations in In-

Map Works: In step seven of InMap’s algorithm, an architect

is presented with 30 mapping recommendations to review.

The architect does not have to give feedback for all 30 recom-

mendations produced and may opt to skip some, essentially

delaying or deferring a decision about them. We say delay or

defer as these recommendations could reappear, given that

they were not outrightly rejected. However, it is also possible

that they may not reappear, given that InMap uses the archi-

tect’s feedback provided to decide the next set of mapping

recommendations to produce.

C. Real-Time Feedback

Real-time feedback is another alternative approach to col-

lecting feedback from the software architect about code-to-

architecture mapping recommendations. In this form, the

mapping algorithm would produce a new set/page of recom-

mendations immediately after an architect provides feedback

on any of the recommendations on the page. Fig. 3 illustrates

this. This implies:

of required recommendations in

feedback = 1

How Real-Time Mapping Recommendations in InMap

Works: In this case, despite InMap providing 30 mapping

recommendations, the list of recommendations provided gets

updated immediately after the architect provides feedback on

a single code entity, i.e. in real-time. Note that it would be

ideal to implement this in a way that the position in the or-

dered set did not matter, implying an architect can give feed-

back on any individual code entity from anywhere in the list,

and the mapping algorithm refreshes the recommendations in-

stantaneously. However, it is important to acknowledge that

recommendation results are always presented with the best

candidate at the top or beginning of the list and the worst at

the bottom or end of the list. Therefore, in both the partial-

batch and real-time feedback approaches, we consider the

rank of the recommendation.

V. EVALUATION

A. Experimentation

To test the effect of our two proposed alternatives to col-

lecting feedback, we ran experiments on InMap in its original

form, i.e. complete-batch feedback as our control. We then ran

the same set of tests on our partial-batch feedback approach

and our real-time feedback approach. We extended the InMap

evaluator tool developed in prior studies of InMap [18, 19, 20,

21, 22] to accommodate the evaluation of our two proposed

feedback approaches. The evaluation tool simulates a “human

architect” accepting and rejecting the recommendations pro-

duced. It uses the oracle class/package mappings provided by

knowledge experts of each system, as reported in prior studies

of InMap [19, 21, 22]. We used the optimal parameter settings

for both InMap’s class-based version [18, 19] and InMap’s

hierarchical package-based version [20, 21], observing what

effect both partial-batch and real-time feedback have on both

the class-based and package-based versions of InMap. A

batch size of 30 was used for the control experiment, i.e. the

complete-batch feedback. However, for the partial-batch

feedback, we tested a range of batch sizes, in addition to a

batch size of 30, to observe if different batch sizes affect the

results.

For every experiment, we collected the recall, precision

and f1-scores (as a harmonic mean between recall and preci-

sion) of the recommendations produced. InMap produces

mapping recommendations in descending order of the most

likely correct recommendation based on similarity scores. We

take it as a norm that as an architect reviews a list of recom-

mendations provided, they start reviewing the list and making

decisions in sequential order from the beginning/top to the

end/bottom instead of reviewing it randomly. This approach

is similar to how most other recommendation or information

retrieval-based systems are designed. They surmise that the

best candidate in a list of results is found at the beginning/top

of the list and the worst candidate at the end/bottom of the list.

Therefore, in reviewing both partial-batch and real-time feed-

back, we consider the rank of a recommendation.

B. Systems Under Test

We evaluated our modified versions of InMap (partial-

batch and real-time feedback) against InMap in its original

form (complete-batch feedback) using six Java-based open-

source systems used in prior InMap studies. These are Ant, a

command line and API tool for automating processes; Ar-

goUML, a desktop application for modelling in UML; JabRef,

a desktop application for managing bibliographic references;

Jittac, an Eclipse IDE plugin for applying reflexion model-

ling; ProM, a desktop application for mining processes; and

TeamMates a web application for peer reviews and feedback.

These systems all have varying characteristics in terms of the

number of lines of code, number of architectural modules,

length of architectural descriptions, number of source files,

number of classes and number of packages, to name a few.

Our prior studies documented their characteristics [18, 19, 20,

21, 22].

754 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

C. Replication Package

A replication package of the evaluation tool; the six case

systems tested along with their independently produced

ground-truth mappings provided by experts knowledgeable

about the respective systems; and the complete, partial and

real-time feedback mapping approaches and results are all

available in the online open-repository at the following link

https://doi.org/10.6084/m9.figshare.13714150.

VI. RESULTS

Tables 1, 2 and 3 show the results obtained for both In-

Map’s class-based and package-based algorithms when run

using the six test-case systems. They show the recall, preci-

sion and f1-score for each version of the algorithm checked

against each feedback approach. Green denotes an increase,

whereas red denotes a decrease.

Table 1 gives the results obtained for the control experi-

ment, i.e. the complete-batch feedback approach, which is

how InMap was initially designed to collect feedback from an

architect. The average recall for the six systems tested on the

class-based version of InMap was 0.972; the average preci-

sion was 0.788, and the average f1-score of 0.870. The pack-

age-based version had an average recall of 0.865, average pre-

cision of 0.745 and an average f1-score of 0.800.

Tables 2 and 3 show the results of the two new approaches,

i.e., partial-batch and real-time feedback. The results show

that as far as the recall is concerned, these two ways of col-

lecting feedback seem not to affect the recall – both ap-

proaches maintained an average of 0.972 for the class-based

version and 0.865 for the package-based version of InMap.

With regard to the precision, we see some variances, albeit

minor. For the class-based version of InMap, ProM’s preci-

sion improved in both approaches, with the most significant

result coming from the real-time feedback approach (3% in-

crease). However, whereas partial-based feedback was the

same for Ant compared to complete-batch, it surprisingly re-

duced by 1% for the real-time-based approach. Jittac im-

proved in both approaches, with real-time feedback recording

a higher increase in precision (5%) between the two ap-

proaches. ProM also increased precision for the package-

based version using the real-time feedback approach. Ant

again recorded a slight reduction in this case. It was interest-

ing to observe that InMap’s package-based version had more

movement in precision compared to the class-based version.

The average f1-scores of all three techniques show that par-

tial feedback did not negatively affect the results compared to

complete feedback. Furthermore, the f1-scores show that real-

time feedback gave the best results for all three approaches to

collecting feedback.

VII. DISCUSSION

A. Findings

The results of our investigation show that if we update the

list of recommendations provided in real-time, the precision

of the recommendations improves on average. This is likely

because InMap uses the feedback given by an architect in de-

ciding the next set of mapping recommendations to give. In

other words, it benefits from getting information early in the

mapping process. When we have a batch size of, say, 30 for

both the batch processes, that is, complete and partial, the ar-

chitect gives feedback for a minimum of 2 and a maximum

equal to the batch/page size, in this case, 30. Now, if we con-

sider that each class/package contains a unit of information

that InMap could use to make a more accurate mapping rec-

ommendation, then in the batch process, we are delaying the

feedback loop. The larger our batch/page size, the more sig-

nificant the delay in relaying what could otherwise be helpful

information in predicting the unmapped source entities. In

other words, the results show that even though InMap uses

information from the architect’s feedback to work out the

most suitable recommendations, it does not necessarily bene-

fit from having lots of information given to it at once, say

feedback on 100 classes in one go. Instead, having smaller

units of information fed into the mapping loop early on is

more beneficial. Thus, SACC tool developers and architects

are more likely to benefit from using a real-time feedback ap-

proach. However, although real-time feedback offers the best

results, the difference between both batch processes was

shown to be minor. Therefore, if a tool developer or the users

of the tools prefer not to work in real-time but give feedback

a batch at a time, that works reasonably well too.

The results also show that for the batch feedback mapping

approaches (i.e. complete feedback and partial feedback), on

average, if an architect opts to delay decisions about some of

the recommendations provided in a list, the recall and preci-

sion of the recommendations InMap provides are not nega-

tively affected. Meaning given a batch size of 30, whether an

architect chooses to provide feedback on all 30, i.e. complete

feedback, or whether an architect decides to provide feedback

for at minimum 2 or out of the 30 while delaying the rest,

maybe because the architect is unsure and would like to see

more/other recommendations first, this would not affect the

results negatively. On the contrary, the results showed a slight

improvement. This could be attributed to the same reasons

that real-time feedback showed the best results. When an ar-

chitect gives partial feedback, this is a smaller chunk of infor-

mation than the batch size. Moreover, since InMap has shown

that it benefits from receiving feedback as early as possible,

giving feedback, for example, for 8 out of 30 recommenda-

tions, provides a smaller chunk of information earlier in the

feedback loop than providing recommendations for all 30 at

once. However, again, in this case, it does not imply that if a

tool developer or architect opts for a complete batch feedback

approach, then the accuracy of the recommendations will re-

duce drastically. On the contrary, the results showed partial-

batch feedback recorded a slight increase over complete-batch

feedback, which already had some reasonably good results.

We must note that there is a limit to the complete-batch size

that can be or should be used. Firstly, if we set the batch size

to 50 or 100, it is not practical to make an architect provide

complete feedback for such a large quantity before providing

ZIPANI TOM SINKALA, SEBASTIAN HEROLD: INVESTIGATING THE EFFECT OF PARTIAL AND REAL-TIME FEEDBACK IN INMAP 755

a new set of recommendations of similar size. It is tedious to

do so for such a large number at a time and does not help re-

duce the effort required by an architect, which is a core moti-

vation for automating the mapping processes. Secondly, this

study and prior studies [18, 19] have shown that smaller units

of information fed back into the algorithm at a time improve

the results. So whereas the results might be similar for a batch

size of 20, 30 or 40, the same cannot be said for sizes of 50,

TABLE I.

RESULTS OF COMPLETE-BATCH FEEDBACK

System
Class

Recall

Class

Precision

Class

F1 Score

Package

Recall

Package

Precision

Package

F1 Score

AT 1.00 0.70 0.82 0.77 0.89 0.82

AU 0.99 0.75 0.85 0.78 0.56 0.65

JR 0.99 0.95 0.97 0.95 0.87 0.91

JT 0.99 0.80 0.88 0.82 0.58 0.68

PM 0.98 0.58 0.73 0.87 0.65 0.74

TM 0.88 0.95 0.91 1.00 0.92 0.96

Avg 0.972 0.788 0.870 0.865 0.745 0.800

TABLE II.

RESULTS OF PARTIAL-BATCH FEEDBACK

System
Class

Recall

Class

Precision

Class

F1 Score

Package

Recall

Package

Precision

Package

F1 Score

AT 1.00 0.70 0.82 0.77 0.89 0.82

AU 0.99 0.75 0.85 0.78 0.56 0.65

JR 0.99 0.95 0.97 0.95 0.87 0.91

JT 0.99 0.80 0.88 0.82 0.61 0.70

PM 0.98 0.59 0.74 0.87 0.65 0.74

TM 0.88 0.95 0.91 1.00 0.92 0.96

Avg 0.972 0.790 0.872 0.865 0.750 0.803

TABLE III.

RESULTS OF REAL-TIME FEEDBACK

System
Class

Recall

Class

Precision

Class

F1 Score

Package

Recall

Package

Precision

Package

F1 Score

AT 1.00 0.69 0.82 0.77 0.87 0.82

AU 0.99 0.75 0.85 0.78 0.56 0.65

JR 0.99 0.95 0.97 0.95 0.86 0.90

JT 0.99 0.80 0.88 0.82 0.63 0.71

PM 0.98 0.61 0.75 0.87 0.68 0.72

TM 0.88 0.95 0.91 1.00 0.92 0.96

Avg 0.972 0.792 0.873 0.865 0.753 0.805

756 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

100 or 150. Generally speaking, a batch size of 30 was shown

to produce the best average results in our previous studies,

and the larger the batch size is beyond 30, the less our preci-

sion becomes, on average.

Both findings on real-time and partial-batch feedback

show that InMap allows flexibility in how a SACC tool col-

lects mapping recommendation feedback because all three ap-

proaches have, on average, f1-scores within 0.005 of each

other. Furthermore, if the developer of a SACC tool decides

to implement all three approaches, then this flexibility extends

to the architect. They can choose their preferred way of

providing feedback, i.e. complete-batch, partial-batch or

real-time. Furthermore, they can alternate among these ap-

proaches throughout the mapping process without committing

to a singular approach.

Interestingly, the package-based version of InMap showed

better improvement in the average of the f1-score for both par-

tial and real-time feedback over the class-based version,

0.005 versus 0.003, respectively. However, the class-based

version of the InMap achieved higher f1-scores for all ap-

proaches compared to the package-based version, 0.87 vs

0.80; therefore, there was less opportunity for improvement

for the class-based version compared to the package-based

version because it already had reasonably high-scoring re-

sults. That said, an approach combining both the class-based

and package-based versions of InMap, such as the one intro-

duced in [22], would likely derive improvements from both

versions.

B. Limitations & Validity

The two new feedback approaches introduced build on top

of InMap’s class and package similarity functions; therefore,

the same factors that affect the external validity of InMap’s

results are inherited by the alternative feedback approaches

presented in this paper. That is to say, aspects such as the code

commenting quality and style; the number of classes, pack-

ages and modules; and the length and quality of the architec-

ture description could likely affect the external validity of our

results. Therefore, more case systems with variable attributes

would add to the soundness of the results. Nonetheless, the

results of the six systems tested and their varying characteris-

tics provide a fair case for the two feedback approaches in-

vestigated.

VIII. CONCLUSION & FUTURE WORK

This paper presents two alternative approaches to how an

architect can provide feedback on mapping recommendations

provided, either as partial-batch or real-time feedback. They

are an alternative to InMap’s complete-batch feedback ap-

proach. Our partial-batch feedback approach showed a net in-

crease of 2% in precision for the systems tested, and our real-

time feedback approach showed a net increase of 5% in pre-

cision for the systems tested. This shows that providing par-

tial–batch feedback does not harm the precision of the recom-

mendation produced compared to when complete-batch feed-

back is provided. Furthermore, it shows that providing feed-

back in real-time improves the recommendations produced.

Moreover, because the results for complete-batch feedback

were already reasonably good, the 2-5% increase that these

two new approaches provide allows for flexibility in how

SACC tools that use human-in-the-loop approaches can col-

lect feedback; or flexibility in how architects themselves opt

to provide feedback. This implies that tools that use InMap’s

automated interactive mapping algorithm have some flexibil-

ity in how they choose to gather feedback from an architect as

mapping progresses (complete vs partial and batch vs real-

time) without suffering a loss in recall and with an insignifi-

cant difference in precision. It also offers flexibility for an ar-

chitect, assuming a SACC tool implements the different ways

mapping recommendation feedback can be collected.

In future work, we would like to do more detailed studies

with more systems to further test the soundness of the conclu-

sion of this study. We would also like to see how the two new

feedback approaches introduced in this work would fair on

the version of InMap that integrates both the class-based and

package-based versions of the algorithm into one [22]. Lastly,

we would like to carry out an exploratory study that examines

the cases that are difficult for InMap to map with either map-

ping version of InMap or either approach to collecting feed-

back.

REFERENCES

[1] N. Ali et al, “Architecture Consistency: State of the Practice, Chal-

lenges and Requirements,” in Empirical Software Engineering, 23(1),

2018, pp. 224–258, https://doi.org/10.1007/s10664-017-9542-0

[2] M. Bauer, M. Trifu, “Architecture-Aware Adaptive Clustering of OO

Systems,” Proceedings – 8th European Conference on Software

Maintenance and Reengineering, 2004, pp. 3–14, https://doi.

org/10.1109/CSMR.2004.1281401

[3] R.A. Bittencourt et al, “Improving Automated Mapping in Reflexion

Models Using Information Retrieval Techniques,” Proceedings –

Working Conference on Reverse Engineering, WCRE, 2010, pp. 63–

172, http://dx.doi.org/10.1109/WCRE.2010.26

[4] A. Christl et al, “Automated Clustering to Support the Reflexion

Method,” in Information and Software Technology, 49(3), 2007, pp.

255–274, https://doi.org/10.1016/j.infsof.2006.10.015

[5] A. Christl et al, “Equipping the Reflexion Method with Automated

Clustering,” 12th Working Conference on Reverse Engineering, 2005,

https://doi.org/10.1109/WCRE.2005.17

[6] F.A. Fontana et al, “Tool Support for Evaluating Architectural Debt

of an Existing System: An Experience Report,” Proceedings of the 31st

Annual ACM Symposium on Applied Computing, 2016, pp. 1347–1349,

http://dx.doi.org/10.1145/2851613.2851963

[7] N. Medvidovic, R.N. Taylor, “Software Architecture: Foundations,

Theory, and Practice”, ACM/IEEE 32nd International Conference on

Software Engineering, 2010, pp. 471–472, https://doi.org/10.

1145/1810295.1810435

[8] J. Knodel, “Sustainable Structures in Software Implementations by

Live Compliance Checking,” Fraunhofer-Verl, Stuttgart, 2011.

[9] J. Knodel, D. Popescu, “A Comparison of Static Architecture Compli-

ance Checking Approaches,” Proceedings of the 6th Working

IEEE/IFIP Conference on Software Architecture, 2007, https://doi.

org/10.1109/WICSA.2007.1

[10] G.C. Murphy et al, “Software Reflexion Models: Bridging the Gap

between Source and High-Level Models,” IEEE Transactions on Soft-

ware Engineering, 27(4), 2001, pp. 364–380, https://doi.org/10.

1109/32.917525

[11] S.M. Naim et al, “Reconstructing and Evolving Software Architec-

tures Using a Coordinated Clustering Framework”, in Automated Soft-

ware Engineering, 24(3), 2017, pp. 543–572, https://doi.org/10.

1007/s10515-017-0211-8

[12] T. Olsson et al, “Semi-Automatic Mapping of Source Code using Na-

ive Bayes,” Proceedings of the 13th European Conference on Software

ZIPANI TOM SINKALA, SEBASTIAN HEROLD: INVESTIGATING THE EFFECT OF PARTIAL AND REAL-TIME FEEDBACK IN INMAP 757

 Architecture ECSA, Lecture Notes in Computer Science, 13365, 2022,

pp. 65-85, https://doi.org/10.1007/978-3-031-15116-3_4

[13] L. Passos et al, “Static Architecture-Conformance Checking: An

Illustrative Overview,” in IEEE Software, 2010, 27(5), pp. 82–89,

https://doi.org/10.1109/MS.2009.117

[14] D.E. Perry, A.L. Wolf, “Foundations for the Study of Software

Architecture,” in SIGSOFT Softw. Eng. Notes. 17, 4, 1992, pp. 40–5,

https://doi.org/10.1145/141874.141884

[15] J. Rosik et al, “Assessing Architectural Drift in Commercial

Software Development: A Case Study,” in Software Practice and

Experience, 41, 2011, pp. 63–86, https://doi.org/10.1002/spe.999

[16] L. de Silva, D. Balasubramaniam, “Controlling Software

Architecture Erosion: A Survey,” in Journal of Systems and Software,

85(1), 2012, pp. 132–151, https://doi.org/10.1016/j.jss.2011.07.036

[17] Z.T. Sinkala, S. Herold, “InMap: Automated Interactive Code-to-

Architecture Mapping,” Proceedings of the ACM Symposium on

Applied Computing, 2021, pp. 1439–1442, https://doi.org/10.1145/

3412841. 3442124

[18] Z.T. Sinkala, S. Herold, “InMap: Automated Interactive Code-to-

Architecture Mapping Recommendations,” Proceedings – IEEE 18th

International Conference on Software Architecture, 2021, pp. 173–

183, https://doi.org/10.1109/ICSA51549.2021.00024

[19] Z.T. Sinkala, S. Herold, “Towards Hierarchical Code-to-

Architecture Mapping Using Information Retrieval,” Companion

Proceedings – IEEE 15th European Conference on Software

Architecture, 2021.

[20] Z.T. Sinkala, S. Herold, “Hierarchical Code-to-Architecture

Mapping,” in ECSA 2021 Tracks and Workshops – Revised Selected

Papers, 2022, https://doi.org/10.1007/978-3-031-15116-3_5

[21] Z.T. Sinkala, S. Herold, “An Integrated Approach to Package and

Class Code-to-Architecture Mapping Using InMap,” Proceedings –

IEEE 20th International Conference on Software Architecture, 2023,

https://doi.org/10.1109/ICSA56044.2023.00023

[22] T.A. Wiggerts, “Using Clustering Algorithms in Legacy Systems

Remodularization,” Proceedings of the 4th Working Conference on

Reverse Engineering, 1997, pp. 33–43, https://doi.org/10.

1109/WCRE.1997.624574

758 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

