
Efficient exact A* algorithm for the single plant

Hydro Unit Commitment problem

Alexandre Heintzmann∗† , Christian Artigues∗, Pascale Bendotti†, Sandra Ulrich Ngueveu∗ and Cécile Rottner†

∗LAAS-CNRS, Université de Toulouse, CNRS, INP, Toulouse, France

Email: {alexandre.heintzmann, christian.artigues, sandra.ulrich.ngueveu}@laas.fr
†EDF Lab Paris-Saclay, 7 Bd. Gaspard Monge, 91120 Palaiseau, France

Email: {alexandre.heintzmann, pascale.bendotti, cecile.rottner}@edf.fr

Abstract—The Hydro Unit Commitment problem (HUC) spe-
cific to hydroelectric plants is part of the electricity production
planning problem, called Unit Commitment Problem (UCP).
More specifically, the studied case is that of the HUC with
a single plant, denoted 1-HUC. The plant is located between
two reservoirs. The horizon is discretized in time periods. The
plant operates at a finite number of points defined as pairs of
the generated power and the corresponding water flow. Several
constraints are considered. Each reservoir has an initial volume,
as well as window resource constraints, defined by a minimum
and maximum volume per time period. At each time period, there
is an additional positive, negative or zero intake of water in the
reservoirs. The case of a price-taker revenue maximization prob-
lem is considered. An efficient exact A* variant, so called HA*, is
proposed to solve the 1-HUC accounting for window constraints,
with a reduced search space and a dedicated optimistic heuristic.
This variant is compared to a classical Resource Constrained
Shortest Path Problem (RCSPP) algorithm and a Mixed Integer
Linear Programming formulation solved with CPLEX. Results
show that the proposed algorithm outperforms both concurrent
alternatives in terms of computational time in average on a set
of realistic instances, meaning that HA* exhibits a more stable
behavior with a larger number of instances solved.

I. INTRODUCTION

A
N ELECTRICITY producer aims at meeting the de-

mand at any time. This is because electricity can hardly

be stored, meaning that any excess is lost. Scheduling the

short-term production in order to meet the demand defines

the Unit Commitment Problem (UCP), which is solved for

the day ahead. At Electricité de France (EDF), large-scale

UCP instances are solved by Lagrangian decomposition [1],

yielding subproblems of the same nature (thermal, hydraulic,

solar,...). As each subproblem has different constraints, specific

approaches are developed for each of them. Among these sub-

problems, the Hydro Unit Commitment (HUC) has received a

lot of attention, due to the large size of its instances. Indeed,

instances of the HUC involve valleys, which can be constituted

of up to twenty plants, linked with reservoirs.

At EDF, the HUC is modeled as a Mixed Integer Linear

Program (MILP) and solved with CPLEX [2]. This MILP

considers operating points, which are pairs (water flow, cor-

responding generated power). In practice, the HUC is not

solved to optimality within the time limit set, as such a

representation induces an exponential number of solutions

and large computational times. More recent work [3] have

pointed out the interest of solving the HUC using a Lagrangian

relaxation algorithm, where subproblems are single plant HUC

(1-HUC). The main benefit of this relaxation is that the 1-

HUC can be solved with dynamic programming, while the

master problem handles the coupling constraints. It is shown

that such a relaxation can lead to overall better results than

solving the HUC as an MILP, which emphasizes the relevance

of an efficient algorithm to solve the 1-HUC.

In this paper, we consider the 1-HUC with a single plant

located between two reservoirs. A diagram, taken from [4]

and shown in Figure 1, is sketching the 1-HUC. The principle

of hydroelectric production is the following: the water from

the upstream reservoir flows into the downstream reservoir

through the units of the plant, thus driving the turbines of the

units, which in turn power the generator to produce electricity.

When operating in reverse, the pumps of the units can move

the water from the downstream reservoir to the upstream

reservoir, which consumes electricity. The plant operates on

M turbining points, N pumping points and an idle operating

point. With I = {−N, . . . , 0, . . . ,M}, each operating point

i ∈ I is defined as a pair formed by a water flow Di and

a generated power Pi. Both Di and Pi are positive (resp.

negative) for turbining (resp. pumping) operating points, i.e.,

with i > 0 (resp. i < 0), and are 0 for the idle operating

point i = 0. The operating points are defined in a cumulative

fashion meaning that if a plant is at turbining (resp. pumping)

operating point i, then order constraints apply, involving all

points 1 ≤ j < i (resp. −1 ≥ j > i) to also be operated.

At each time period, the plant cannot turbine and pump

simultaneously. The time horizon is discretized into T time

periods. At each time period t, the plant turbines (resp. pumps)

a water flow and produces (consumes) an amount of energy

that is considered to be constant for the duration of the time

period. Resource window constraints state that the volume of

each reservoir n ∈ {1, 2} lies between a lower bound V n
t and

an upper bound V
n

t that are time-dependent. At each time

period, the reservoir n receives an additional intake of water

An
t . The additional intake can be positive to represent rain,

melting snow etc., or negative to represent the use of water

for local agriculture etc.

The revenues take into account the unit value Φn of the

water in each reservoir n at the end of the time horizon, and the

value of the energy produced or consumed at a time-dependent

unit value Λt. The problem is to maximize the total revenue,

Proceedings of the 18th Conference on Computer

Science and Intelligence Systems pp. 533–543

DOI: 10.15439/2023F5158

ISSN 2300-5963 ACSIS, Vol. 35

IEEE Catalog Number: CFP2385N-ART ©2023, PTI 533 Thematic track: Computational Optimization

Upstream reservoir

Downstream reservoir

Unit

Di

Pi

V
1

t

V
2

t

Fig. 1: Diagram of the 1-HUC

while satisfying the reservoir capacities at each time period.

In practice, water management policies require that reser-

voirs should meet target volumes (V n
t = V

n

t − ϵ) at the end

of the time horizon. Due to these target volumes and the finite

set of operating points, the 1-HUC may not have any feasible

solution. However, it is possible to adjust [5] or relax [6] the

target volumes in order to obtain feasible instances. Hence, we

consider in this paper only 1-HUC instances admitting feasible

solutions.

In this paper the aim is to propose a dynamic programming

algorithm dedicated to the 1-HUC, modeled as a Resource

Constrained Shortest Path Problem (RCSPP) with resource

window constraints. The algorithm we propose is an exact

variant of the A* algorithm [7] used to compute the shortest

path in a graph. To obtain an efficient algorithm, the bounds of

the windows are first tightened by propagating them from any

time period to another, and a dedicated heuristic is developed.

As we propose an exact algorithm, we compare it with two

other exact methods, namely an MILP solved by default

CPLEX as currently done at EDF and a classical RCSPP

algorithm. The corresponding evaluation of performance is

done on various realistic instances. The numerical results show

that our algorithm yields smaller computational time variations

compared to both the MILP formulation solved by CPLEX and

the RCSPP algorithm.

The remainder of the paper is organized as follows. In Sec-

tion II, a literature review of dynamic programming algorithms

for related problems is reported. In Section III, a formulation

of the 1-HUC is proposed. In Section IV, graph representations

of the 1-HUC are provided. In Section V, the bound tightening

procedure and the exact A* variant are described. In Section

VI, numerical results are presented. In Section VII, concluding

remarks and perspectives for further research are drawn.

II. STATE OF THE ART

In this section, we first present a literature review of

dynamic programming algorithms developed for the UCP and

for the HUC. As the HUC can be represented as an RCSPP, we

also include in this review dynamic programming algorithms

for the RCSPP.

A. Dynamic programming for the Unit Commitment Problem

A dynamic programming algorithm for a single Unit Com-

mitment (1-UC) with ramp and min up/down constraints is

presented in [8]. The algorithm is based on a graph with a

source vertex and several groups of T vertices. For each even

(resp. odd) group, vertex t indicates that the unit is turned off

(resp. on) at time period t. The arcs connect the vertices of a

group to the next groups, from a time period t to a time period

t′ > t. Finding a path in this graph allows one to find an on-

off schedule for the unit. The difference between the 1-UC

and the 1-HUC is that there is no resource in the 1-UC, while

in the 1-HUC, the presence of reservoirs with minimum and

maximum volumes requires to account for the water resource.

B. Dynamic programming for the Hydro Unit Commitment

In this part we focus on dynamic programming algorithms

for the HUC, most of them being cited in the survey [9].

In [1] the author presents a two phase approach to solve

the HUC, solving an LP for the first phase and using a

dynamic programming algorithm for the second phase. More

precisely, the second phase consists of solving the 1-HUC for

each plant of the valley with dynamic programming, aiming

to get the closest solution to the LP solution while taking

into account constraints omitted in the LP. For this phase,

the considered underlying graph is as follows. The reservoir

volume is discretized, yielding hundreds of possible volume

values for a reservoir. Then, a vertex is defined for each

volume value and each time period, thus leading to hundreds

of vertices per time period. A Bellman-Ford algorithm [10]

is used to find a path in this graph. Such a discretization

discards a lot of realistic states. In this paper, we consider

all possible states with respect to the operating points, which

can be exponential for instances with a large number of time

periods. With an exponential number of states, the Bellman-

Ford algorithm becomes far less efficient.

In [6] a method for solving a non-linear 1-HUC with a

target volume is described. To solve this problem with dynamic

programming, a state diagram is constructed. In a similar

fashion as in [1], evenly discretized volumes are considered,

yielding a limited number of states per time periods. In order

to have feasible solutions, the target volume is relaxed to

match this discretization. The state diagram is constructed by

generating the possibilities to reach the target volume from

the initial volume, satisfying the upper and lower bounds on

the volume at each time period. Starting from the state at the

end of the time horizon, the dynamic programming algorithm

maximizes the value of the generated power. As we consider 1-

HUC instances with and without target volumes, a backward

algorithm may not be practical with large volumes and no

target volume.

In [3], a decomposition method for solving the HUC with

shortest paths is described. The considered HUC is a valley

where each plant has a finite number of operating points.

The topology of the valley is not restricted to a chain, as

each plant (resp. reservoir) can have a set of upstream and

downstream reservoirs (resp. plants). There are additional

534 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

ramping constraints, namely the flow variation is limited from

one time period to another. This HUC also takes into account

a target volume for each reservoir, at the last time period. Note

that the latter target volume is a minimal bound, meaning there

is no equality constraint. The solution approach decomposes

this HUC into multiple 1-HUC. Some 1-HUC without resource

constraints are solved by a shortest path algorithm, while

others with resource constraints are solved by a labeling

algorithm defined in [11]. The latter algorithm is adapted

from a classical RCSPP algorithm [12] to take into account

a minimum bound for the resource. It is mentioned that this

labeling algorithm loses its dominance properties between two

labels if one of them does not verify the minimum bound on

the resource. Such a case is more frequent when the target

volume is considered with equality constraints, making this

algorithm less efficient.

There are also other problems solved by dynamic program-

ming, related to the 1-HUC. In [13] a dynamic programming

approach is described to solve an HUC on instances of the

Itaipù plant (Brazil, Paraguay). This problem differs from ours

as the only constraint is to satisfy the minimum and maximum

number of turbines running at each time period. No volume is

considered, therefore there are neither bounds on the volume,

nor a target volume. In [14] the Hydro Unit Load Dispatch

problem (HULD) is presented. This problem differs from the

HUC, as the water flow is known, and solving the HULD is to

provide the most economic distribution of the water through

the different turbines, while verifying the flow capacity of the

turbines at each time period.

C. Shortest path with resource constraints

As the HUC can be seen as a shortest path problem with a

water resource bounded both from below and above, we are

interested in the solution methods for the RCSPP (Resource

Constrained Shortest Path Problem).

There are works on the RCSPP to solve the thermal problem

on EDF instances [15]. In that paper it is indicated that the

resource has an upper bound but no lower bound. However,

as specified in [3], the difficulty of the HUC comes from

the lower bound on the volume, which prevents the use of

dominance rules.

In the survey [16], a state of the art review of different

shortest path variants is described. More specifically, it is

indicated that there is little work on the RCSPP with equality

constraints, or window constraints (such as in the HUC). Three

papers are cited, namely [17] describing a heuristic, [18] pre-

senting an integer formulation and [19] proposing a dynamic

programming algorithm. As we look for an exact algorithm,

we will focus on the three-phase algorithm described in [19].

The presented algorithm solves the RCSPP with window

constraints on acyclic graphs. The main idea, further detailed

in [20], is to extend the graph, such that if multiple paths lead

to the same vertex from the source, a new vertex is created

for each of these paths. Once the graph has been extended in

this way, the problem is solved with a pseudo-polynomial time

algorithm. Such a graph extension seems difficult to apply to

the 1-HUC. Indeed, graph representations of the 1-HUC (see

Section IV) solely have arcs from time period t to time period

t + 1. Hence, the extension can lead up to MT vertices at

time period T . Even a pseudo-polynomial algorithm on the

extended graph could be impractical in the case of the 1-HUC.

III. INTEGER LINEAR PROGRAMMING

With xt,i the binary variable indicating whether the plant

is at least at operating point i ∈ I at time period t ≤ T , we

obtain the following formulation:

max

T
∑

t=1

∑

i∈I

ΛtPixt,i +Φ1

(

T
∑

t=1

(A1
t −

∑

i∈I

Dixt,i)
)

+Φ2

(

T
∑

t=1

(A2
t +

∑

i∈I

Dixt,i)
)

s.c. V 1
0 +

t′
∑

t=1

(A1
t −

∑

i∈I

Dixt,i) ≤ V
1

t′ , ∀t′ ≤ T (a1)

V 1
0 +

t′
∑

t=1

(A1
t −

∑

i∈I

Dixt,i) ≥ V 1
t′ , ∀t′ ≤ T (b1)

V 2
0 +

t′
∑

t=1

(A2
t +

∑

i∈I

Dixt,i) ≤ V
2

t′ , ∀t′ ≤ T (a2)

V 2
0 +

t′
∑

t=1

(A2
t +

∑

i∈I

Dixt,i) ≥ V 2
t′ , ∀t′ ≤ T (b2)

xt,i ≥ xt,i+1, ∀t ≤ T, ∀i ∈ {1, . . . ,M − 1} (c)

xt,i ≥ xt,i−1, ∀t ≤ T, ∀i ∈ {−1, . . . ,−N + 1} (d)

xt,1 + xt,−1 ≤ 1, ∀t ≤ T (e)

xt,i ∈ {0, 1}, ∀t ≤ T, ∀i ∈ I (f)

In this formulation, the objective function maximizes the

total revenue. Constraints (a1) to (b2) ensure that the mini-

mum/maximum bounds on the volume are verified for both

the upstream and downstream reservoirs at each time period.

Constraints (c) and (d) correspond to the order of the operating

points. Constraints (e) prevent the plant from turbining and

pumping simultaneously. Lastly, constraints (f) indicate that

all variables xt,i are binary.

A. Shifting all operating points

In the following, it will be convenient to only have operating

points with non-negative power and flow. In [3] a modification

on the flows and the volume bounds is considered to only have

such operating points. First, each turbining operating point i,
for i ∈ {1, ..,M} is renumbered i + N , yielding operating

point (D′

i+N , P ′

i+N) with D′

i+N = Di and P ′

i+N = PN . For

each pumping operating point i ∈ {−N, . . . ,−1}, a turbining

operating point numbered N + i + 1 is created, yielding

operating point (D′

N+i+1, P ′

N+i+1) with D′

N+i+1 = |Di| and

P ′

N+i+1 = |PN |. Operating point 0 remains unchanged. As

such, all the operating points have non-negative cumulated

flows. For a given t ≤ T , the bounds on the volume V
1

t

ALEXANDRE HEINTZMANN ET AL.: EFFICIENT EXACT A* ALGORITHM FOR THE SINGLE UNIT HYDRO UNIT COMMITMENT PROBLEM 535

and V 1
t (resp. V

2

t and V 2
t) are shifted in order to keep

the same feasible solutions: V ′
1

t = V
1

t − t
∑

−N

i=−1
|Di| and

V ′1

t = V 1
t − t

∑

−N

i=−1
|Di| (resp. V ′

2

t = V
2

t + t
∑

−N

i=−1
|Di|

and V ′2

t = V 2
t + t

∑

−N

i=−1
|Di|).

Example 1. Consider an instance of the 1-HUC with M = 3
turbining operating points (D1 = 3, P1 = 3), (D2 = 4, P2 =
3), (D3 = 2, P3 = 2) and N = 2 pumping operating points

(D−1 = −3, P−1 = −5), (D−2 = −2, P−2 = −4). The

initial volumes are V 1
0 = 50, V 2

0 = 30. With T = 3, upstream

reservoir bounds are V
1
= [100, 100, 20] and V 1 = [0, 0, 20],

and downstream reservoir bounds are V
2
= [60, 60, 60] and

V 2 = [0, 0, 0].

The renumbering is such that the 3 turbining operating

points, of index 1 to 3 are now of index 1+N to 3+N , i.e.,

(D′

3 = 3, P ′

3 = 3), (D′

4 = 4, P ′

4 = 3) and (D′

5 = 2, P ′

5 = 2)
From pumping operating point −1 a turbining operating point

N − 1 + 1 = 2 is created, and similarly from the pumping

operating point −2 operating point N − 2 + 1 = 1 is created,

i.e., (D′

1 = 2, P ′

1 = 4) and (D′

2 = 3, P ′

2 = 5).

The upstream reservoir upper bounds are modified as fol-

lows V ′
1

1 = V
1

1−1 ·(2+3) = 95, V ′
1

2 = V
1

2−2 ·(2+3) = 90,

V ′
1

3 = V
1

3−3 · (2+3) = 5. Similarly, we obtain the following

upstream reservoir lower bounds V ′1 = [−5,−10, 5]. The

shift is done in the opposite way for the downstream reservoir,

V ′
2
= [65, 70, 75] and V ′2 = [5, 10, 15].

In the following, we only refer to the 1-HUC with op-

erating points of non-negative flow and power, i.e., with

I = {0, . . . ,M}. In this case, only constraints (a1) to (b2), (c)

and (f) are necessary to model the constraints of the 1-HUC,

and no renumbering is required.

B. Rewriting the formulation

The formulation defined previously is a classical MILP

model for the 1-HUC. We rewrite the formulation in order

for the window constraints to appear more clearly. Constraints

(a1), (a2), (b1) and (b2) can be rewritten as follows, consid-

ering V ′1

t V ′
1

t , V ′2

t and V ′
2

t :

t′
∑

t=1

M
∑

i=1

Dixt,i ≥ V 1
0 +

t′
∑

t=1

A1
t − V ′

1

t′ , ∀t′ ≤ T (a1’)

t′
∑

t=1

M
∑

i=1

Dixt,i ≤ V 1
0 +

t′
∑

t=1

A1
t − V ′1

t′ , ∀t′ ≤ T (b1’)

t′
∑

t=1

M
∑

i=1

Dixt,i ≤ V ′
2

t′ − V 2
0 −

t′
∑

t=1

A2
t , ∀t′ ≤ T (a2’)

t′
∑

t=1

M
∑

i=1

Dixt,i ≥ V ′2

t′ − V 2
0 −

t′
∑

t=1

A2
t , ∀t′ ≤ T (b2’)

There are redundancies between (a1’) and (b2’), and be-

tween (a2’) and (b1’). Let us introduce bounds βt′ and αt′ in

the following way with t′ ≤ T :

βt′ = max(V 1
0 +

t′
∑

t=1

A1
t − V ′

1

t′ , V
′2

t′ − V 2
0 −

t′
∑

t=1

A2
t)

αt′ = min(V 1
0 +

t′
∑

t=1

A1
t − V ′1

t′ , V
′
2

t′ − V 2
0 −

t′
∑

t=1

A2
t)

By using βt′ and αt′ , and rewriting the objective function,

we obtain the formulation F1HUC defined as follows:

max

T
∑

t=1

M
∑

i=1

(ΛtPi − Φ1Di +Φ2Di)xt,i

+Φ1

T
∑

t=1

A1
t +Φ2

T
∑

t=1

A2
t

s.c.

t′
∑

t=1

M
∑

i=1

Dixt,i ≥ βt′ ∀t′ ≤ T (a)

t′
∑

t=1

M
∑

i=1

Dixt,i ≤ αt′ ∀t′ ≤ T (b)

xt,i ≥ xt,i+1 ∀t ≤ T, ∀i ≤M − 1 (c)

xt,i ∈ {0, 1} ∀t ≤ T, ∀i ≤M (f)

With this formulation, the objective function is to maximize

the value of each active operating point, plus a constant. Also,

one can see (a) and (b) as resource window constraints, or (a)

as nested cover constraints and (b) as nested knapsack con-

straints. This formulation can also be improved by tightening

the window constraints, as shown at the end of Section V-A.

IV. GRAPH REPRESENTATION

The 1-HUC can be represented graphically in two ways,

namely in a fashion similar either to the knapsack problem,

or to the RCSPP. In the following we describe both repre-

sentations and their dominance rules. We first introduce the

cumulated flows between two time periods.

Definition 1 (Cumulated flow Dt′,t). The cumulated flow Dt′,t

is the sum of the flows from time periods t′ to t:

Dt′,t =

t
∑

t′′=t′

M
∑

i=1

Dixt′′,i

A. Representation as a knapsack problem

Let GKP = (VKP , AKP) defined as follows. Each vertex

u ∈ VKP is defined as a pair u = (t, d) with t the time period,

and d the cumulated flow D1,t with variables x associated to

a path that reaches u. Without loss of generality, u = (t, d) is

considered only if d ∈ [βt;αt]. The source vertex s is defined

as s = (0, 0). For each vertex u = (t, d) and v = (t+ 1, d+
∑i

j=0
Dj) with t < T and i ∈ {0, . . . ,M} there is an arc

(u, v) ∈ AKP , of value
∑i

j=0
ΛtPj − Φ1Dj +Φ2Dj .

The downside of such a graph is its exponential number

of vertices. However, by tightening the bounds as shown in

Section V-A, it is possible to drastically reduce the number of

536 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

vertices in GKP . Furthermore, we can use classical dominance

rules for the longest path:

Definition 2 (Dominance rule 1). Let p and q be two paths

from s to a vertex u. By induction the path with the lowest

value is dominated, as it cannot lead to an optimal solution.

Definition 3 (Dominance rule 2). Let p be a path from s to

u going through a vertex v, and q be a path from s to v. Let

ps,v be the subpath of p, from s to v and pv,u the subpath of

p from v to u. If the value of ps,v is larger than that of q, then

q is dominated. If the value of q is larger than that of ps,v ,

then p is dominated by the path concatenating q and pv,u.

Example 2. Consider an instance of the 1-HUC with T = 3,

M = 3. The operating points are (4, 4), (6, 5) and (8, 6). The

bounds are β=[0, 0, 5] and α=[12, 12, 10]. Fig. 2a represents

the graph GKP associated to this instance.

B. Representation as an RCSPP

Let GR = (VR, AR) be defined as follows. Each vertex

u ∈ VR is defined as a pair u = (t, i), with t the time period

and i the operating point. The source s is defined as s = (0, 0).
From each vertex u = (t, i), with t < T , and v = (t + 1, i′)
with i′ ∈ {0, . . . ,M} there is an arc (u, v) ∈ AR. Arc a

towards v has value
∑i′

j=0
ΛtPj−Φ

1Dj+Φ2Dj and consumes
∑i′

j=0
Dj amount of the resource.

The downside of GR, is that there are paths in this graph

which do not verify the resource constraints, hence one needs

to verify the resource constraints for each path. Note that

the resource in this case is D1,t for variables x associated

to the path. On the positive side, the number of vertices is

polynomial, and it is possible to use a classical dominance

rule for the RCSPP as defined in [3]:

Definition 4 (Dominance rule 3). If there are two partial paths

from s to the same vertex u, by induction if a path has a lower

value and uses more resource than another one, then this path

is dominated provided both partial paths use sufficient resource

to verify all lower bounds on the resource.

Note that the condition on the resource usage to ensure

that the lower bounding constraints (a) are satisfied seriously

weakens the dominance rules when these constraints are active.

Example 3. Consider the instance of Example 2. Fig. 2b

represents the graph GR associated to this instance.

There are two other graph representations for the 1-HUC

described in the literature. In [20], the original graph defined

for the RCSPP is similar to the one depicted in Fig. 2b.

However, as mentioned in Section II-C, this graph is extended

such that if multiple paths exist from vertex s to a vertex

u, then u is duplicated such that only a single path leads to

each vertex. The extended graph would be larger than the one

depicted in Fig. 2a, as even with an exponential number of

vertices, there are still multiple paths between s and most of

the vertices. In [6], as described in Section II-B, the volume

is evenly discretized. The resulting graph has similar vertices

(0,0) (1,0)

(1,4)

(1,6)

(1,8)

(2,0)

(2,4)

(2,6)

(2,8)

(2,10)

(2,12)

(3,6)

(3,8)

(3,10)

βt

αt

(a) Graph representation as a knapsack problem

(0, 0) (1, 0)

(1, 1)

(1, 2)

(1, 3)

(2, 0)

(2, 1)

(2, 2)

(2, 3)

(3, 0)

(3, 1)

(3, 2)

(3, 3)

(b) Graph representation as an RCSPP

Fig. 2: Graph representations of the 1-HUC

as in Fig. 2a, but at each time period, vertices only exist

for volumes within the set of discretized volumes. In the

experimental results of [6], it is stated that the discretization

is ranging from 0.3% to 0.5% of the difference between

the minimum and maximum volume of the reservoir, which

represents about 300 vertices at each time period. Such a graph

heavily differs from the graph we consider, as there can be a

very large number of vertices at each time period.

V. EXACT A* VARIANT FOR THE 1-HUC

In this section, we describe the new algorithm proposed to

solve the 1-HUC. The aim of this algorithm is to find the

longest path in graph GKP as described in Section IV-A. A

difficulty of this graph is the exponential number of vertices,

which is why we resort to a variant of the A* algorithm [7].

The A* algorithm is particularly efficient when the number

of vertices is large as it involves an optimistic heuristic to

guide the search, and to discard sub-optimal partial solutions.

We denote the proposed exact variant of the A* algorithm

for the 1-HUC by HA*. This algorithm involves a dedicated

optimistic heuristic for the 1-HUC. To further improve the per-

formance of this algorithm, we also present a pre-processing

bound tightening procedure in order to reduce the number of

vertices in GKP .

ALEXANDRE HEINTZMANN ET AL.: EFFICIENT EXACT A* ALGORITHM FOR THE SINGLE UNIT HYDRO UNIT COMMITMENT PROBLEM 537

In the following, we first present the bound tightening

procedure, then the optimistic heuristic, i.e., an upper bound

on the optimal value and finally the HA* algorithm.

A. Tightening the bounds

The bounds αt and βt from inequalities (a) and (b) can

directly be used to prune infeasible vertices. Thus, tightening

these bounds may lead to a smaller number of vertices, thus

reducing the search space.

In order to tighten the bounds, we use the cumulated flow

Dt′,t as previously defined. At each time period, the flow is

between 0 and
∑M

i=1
Di. For any pair of time periods (t′, t),

t′ < t, the lower bound Dt′,t = 0 and the upper bound

Dt′,t = (t − t′ + 1)
∑M

i=1
Di will never be violated by a

feasible solution. Note that αt and βt are not bounds on the

flow at time period t, but rather bounds on D1,t. If the gap

between βt and αt is large, then one may develop a large

number of vertices, sometimes leading to intractable instances.

For example, in the case of the HUC, it is very common to

have upper bounds αt very large compared to the flows, and

negative lower bounds βt. We can therefore introduce bounds

α̂t and β̂t in the following way:

α̂t = min(αt,D1,t)

β̂t = max(βt,D1,t)

By using bounds α̂t and β̂t, we can drastically reduce the

number of vertices. However, it is still possible to further

reduce it. Suppose that at time period t the bounds are such

that β̂t > β̂t+1. As the water flows are all non-negative, any

vertex u = (t + 1, d) with d < β̂t + Dt+1,t+1 cannot be part

of a feasible solution. Similarly, if β̂t−1 < β̂t, any vertex

u = (t − 1, d) with d < β̂t − Dt,t cannot be part of a

feasible solution. Extending this logic to the upper bounds

on d, we can tighten the bounds of any time period from the

bounds of any other time period, following the rules below.

Let a pair of time periods (t′, t) with t′ < t. Then, D1,t

must stay in [β̂t′ + Dt′+1,t; α̂t′ + Dt′+1,t] and D1,t′ lies in

[β̂t −Dt′+1,t; α̂t −Dt′+1,t].

Let us define α̃t and β̃t as follows:

α̃t = min(min
t′<t

(α̂t′ +Dt′+1,t), min
t′>t

(α̂t′ −Dt+1,t′))

β̃t = max(max
t′<t

(β̂t′ +Dt′+1,t), max
t′>t

(β̂t′ −Dt+1,t′)

Tight bounds α∗

t and β∗

t are calculated as follows:

α∗

t = min(α̂t, α̃t)

β∗

t = max(β̂t, β̃t)

Note that computing all bounds β∗

t is of complexity T 2.

Indeed, for a given t, computing βt as well as β̃t both require

one comparison, computing β̃t needs T comparisons and

computing β∗

t requires one comparison. Hence, computing all

β∗

t is of complexity T 2. We obtain a similar complexity for

upper bounds α∗

t .

TABLE I: Reducing the search space using bounds on the

flows

(a) Table with bounds αt and βt

t -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11

0

1 X X

2 X X

3 X X X X X X X X X X X X X X

4 X X

5 X X

6 X X X X X X X X X X X X X X

(b) Table with bounds α̂t and β̂t

t -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11

0

1 X XX XX XX XX XX XX XX XX XX XX X

2 X XX XX XX XX XX XX XX XX X

3 X X X X X X X X X X X X X X

4 X XX XX XX XX X

5 X XX XX X

6 X X X X X X X X X X X X X X

(c) Table with bounds α∗

t and β∗

t

t -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11

0

1 X X X X X X X X X X X X

2 X X X XX XX X X X X X X X

3 X X X X X X X X X X X X X X

4 X X X XX XX XX XX XX XX X X X

5 X X X XX XX XX XX XX XX XX XX X

6 X X X X X X X X X X X X X X

Example 4. Let us define an instance of the 1-HUC with

T = 6. Bounds are β3 = 2, β6 = 5, α3 = 2, α6 = 5,

and βt = −2, αt = 10 for t in {1, 2, 4, 5}. The operating

points are such that at each time period, the maximum flow is

2. By applying tighter bounds we can see that we drastically

reduce the possibilities, thus the number of vertices potentially

developed by dynamic programming. In Table Ia the invalid

values for the total flow at each time period, with respect to

bounds βt, are marked with a cross. Table Ib is similar to Table

Ia with tighter bounds α̂t and β̂t, the crosses being in bold to

emphasize the tightening of the bounds. Table Ic follows the

same representation with the tightest bounds β∗

t and α∗

t .

As previously mentioned, formulation F1HUC can be im-

proved, considering bounds β∗

t and α∗

t instead of βt and αt in

constraints (a) and (b). We denote by F+

1HUC the formulation

F1HUC with the bound tightening.

In the following, we consider the graph GKP with the

tightest bounds β∗

t and α∗

t , denoted by G∗

KP
.

B. Optimistic heuristic

In the case of the 1-HUC, an optimistic heuristic over-

estimates the value of the objective function because we

are solving a maximization problem. Let p be a path from

time period 1 to t representing already taken decisions. The

heuristic aims at computing an optimistic cost from time

period t+1 to T . The idea of the proposed optimistic heuristic

538 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

is to compute an improved linear relaxation on time periods

t + 1 to T . To do so, we define quadruplets (t, i, val, f low),
with t a time period, i an operating point, val the value of any

arc
(

(t−1, d), (t, d+
∑i

j=1
Dj)

)

in G∗

KP
, and flow the value

∑i

j=1
Dj . The aim is to progressively increase the values of

variables xt,i depending on their profitability, being val/flow.

Algorithm 1 describes how to compute a linear relaxation

on time periods t+1 to T from a partial path in graph G∗

KP
,

as detailed in the following four steps.

Step 1: Initialize a fractional solution with xt′,i = 1 if the

partial solution represented by path p requires operating point

i ≤M at time period t′ ≤ t, xt′,i = 0 otherwise. This step is

represented by lines 1 to 8 of Algorithm 1

Step 2: Initialize a list with all the quadruplets at time period

t′ ∈ [t+1;T] by decreasing profitability val/flow. This step

is represented by lines 9 to 14 of Algorithm 1

Feasibility step 3: This step is repeated as long as lower

bounding constraints (a) are not verified (the while loop at

line 15 of Algorithm 1). The algorithm looks for the smallest

time period t′ such that (a) is not satisfied, and for xt′′,i with

t′′ ∈ [t+1; t′] maximizing profitability val/flow. The variable

xt′′,i is increased depending on its profitability:

• If the profitability is positive, fractionally increase xt′′,i

as much as possible provided all upper bounds α are

satisfied.

• Otherwise, fractionally increase xt′′,i as little as possible

provided all upper bounds and the lower bound βt′ are

satisfied.

All variables xt′′,i′ < xt′′,i with i′ < i must be set to the same

value as xt′′,i in order to satisfy the order constraints. Also,

for any i′ > i, quadruplets (t′′,i′,val′,flow′) are updated as

(t′′,i′,val′ − val,flow′ − flow). This is because as xt′′,i >
xt′′,i′ , one can increase xt′′,i′ without increasing xt′′,i while

still verifying order constraints. All variables that cannot be

further increased due to the upper bounds are removed from

the list.

Optimality step 4: This step is repeated as long as there is a

variable of positive profitability in the list of variables (again

the while loop at line 15 of Algorithm 1). Select the first

variable of the list, and fractionally increase its value as much

as possible provided all upper bounds are satisfied. Remove

from the list all variables that cannot be further increased due

to the upper bound.

Property 1. The fractional solution returned by Algorithm 1

verifies order constraints.

Proof. Consider two quadruplets (t,i,val,flow) and

(t,i′,val′,flow′), with t a time period considered in the

heuristic, and i′ > i. At the start of the algorithm,

xt,i = xt,i′ = 0. If xt,i′ is increased, then xt,i is increased by

the same amount, hence order constraints are verified. If xt,i

is increased, it means that val/flow > val′/flow′. Hence,

val/flow > (val′ − val)/(flow′ − flow). Consequently, the

algorithm will increase xt,i′ only if xt,i = 1, hence order

constraints are verified.

Theorem 1. Algorithm 1 defines an optimistic heuristic.

Proof. Let s be an integer solution for the 1-HUC, for which

variables xt,i verify constraints (a) (b) (c) and (f). Let ŝ be a

fractional solution for the 1-HUC obtained with Algorithm 1,

for which x̂t,i verify all constraints (a), (b) (c), and constraint

(f) only for time periods 1 to t ≤ T . Consider ŝ and s to be

identical for time periods 1 to t.
Let X (resp. Y) be the variables such that xt′,i < x̂t′,i

∀xt′,i ∈ X (resp. xt′,i > x̂t′,i ∀xt′,i ∈ Y).

Clearly, for each variable xt′,i ∈ X of positive profitability,

a fractional value for xt′,i increases the value of the objective

function compared to xt′,i = 0. Similarly, for each variable in

Y of negative profitability, a fractional value for xt′,i increases

the value of the objective function compared to xt′,i = 1.

Let X− ⊆ X and Y− ⊆ Y be the variables with negative

profitability. Suppose |X−| > 0. By construction of ŝ, the

variables of X− have value greater than 0 only in order to

yield a feasible solution, with respect to a lower bound βt′ .

In such a case the total flow of ŝ from time period 1 to t′ is

exactly βt′ by construction of ŝ. As solution s also verifies

all lower bounds, we deduce |Y−| > 0. Otherwise there is

either a contradiction with the construction of ŝ, or s does not

verify all lower bounds. Hence, the total flow of s from time

period 1 to t′ is at least βt′ . By definition, s and ŝ are identical

from time period 1 to t, consequently the only difference is

on time periods t+1 to t′. By construction of ŝ the variables

of X− are the most profitable and have fractional value in ŝ.

Consequently, their weighted value in the objective function

must be higher than those of Y− in the integer solution s.

A similar proof can be made for variables in Y+ ⊆ Y and

X+ ⊆ X the variables with positive profitability.

The value of ŝ is then greater or equal to the value of s.

It is possible to tighten the fractional solution returned by

Algorithm 1 while keeping it optimistic. Clearly, an integer

solution is necessarily of a total flow which is a combination

of the flows from the operating points. Therefore the flow of

an integer solution is necessarily a multiple of the greatest

common divisor (GCD) of the operating points’ flows. When

the heuristic increases the value of a variable, we can increase

or reduce this value so that the total flow of the returned so-

lution remains a multiple of the GCD relative to the operating

points’ flows. Note that since the flows are identical from one

time period to another, we can quickly compute the GCD by

considering only the flows of a single time period.

C. HA* algorithm

For a 1-HUC with an objective function to maximize, the

principle of HA* is the following. Consider a pool of partial

solutions evaluated with the heuristic. At each iteration, the

partial solution with the highest heuristic value is considered

and removed from the pool. From the partial solution consid-

ered, we complement it by adding neighbors relative to its last

vertex. Once a solution is found, its value is used as a bound to

remove some more partial solutions from the pool. Indeed, if

the solution’s value is higher than a partial solution’s heuristic

ALEXANDRE HEINTZMANN ET AL.: EFFICIENT EXACT A* ALGORITHM FOR THE SINGLE UNIT HYDRO UNIT COMMITMENT PROBLEM 539

Algorithm 1 Algorithm OptimisticHeuristic

Require: A path p from time period 1 to t, a graph G∗

KP
,

GCD the GCD of the flow

1: Initialize a fractional solution x̂ with all variables to 0

2: for t′ ∈ [1;T] and i ∈ [1;M] do

3: if t′ ≤ t AND p requires operating point i at time period

t′ then

4: x̂t′,i = 1
5: else

6: x̂t′,i = 0
7: end if

8: end for

9: Initialize a list L = []
10: for t′ ∈ [t+ 1;T] and i ∈ [1;M] do

11: flow ←
∑i

i′=1
Di′

12: val the value of an arc towards (t′, i) in G∗

KP

13: add (t′, i, val, f low) in L, sorted by decreasing

val/flow
14: end for

15: while ∃t′ ∈ [t+ 1, T] such that x̂ does not verify βt′ OR

exists quadruplet in L with val > 0 do

16: (t′′, i, val, f low)← first in L with t′′ ≤ t′

17: if val ≤ 0 then

18: set x̂t′′,i to minimum such that βt′ verified and

xt′′,i·flow mod GCD = 0; if βt′ cannot be verified

x̂t′′,i ← 1
19: else

20: set x̂t′′,i to maximum such that all upper bounds are

verified and xt′′,i · flow%GCD = 0
21: end if

22: for i′ ∈ [1; i] do

23: x̂t′′,i′ = max(x̂t′′,i′ , x̂t′′,i)
24: end for

25: for (t′′, i′, val′, f low′) ∈ L with i′ ∈]i;M] do

26: val′ ← val′ − val
27: flow′ ← flow′ − flow
28: end for

29: for (t′′, i, val, f low) ∈ L such that x̂t′′,i cannot be

increased do

30: remove (t′′, i, val, f low) from L
31: end for

32: end while

33: return the value of x̂

value, then the partial solution can be removed from the pool.

Once the pool of partial solutions is empty, the algorithm stops

and the best solution found is the optimal solution.

We underline the need of a tight optimistic heuristic. If the

heuristic is not optimistic, or optimistic but too loose, there

are fewer cases where one can prune partial solutions while

guaranteeing optimality. Hence, more vertices are developed

which can exponentially increases the computational time.

For readability purposes, we introduce three structures:

Definition 5 (Path structure). The path structure has three

attributes: vertices the list of vertices of the path; val the

value of the path with respect to the objective function; heur
the optimistic heuristic value.

Definition 6 (Vertex structure). A vertex structure has two

attributes: t the time period and d the cumulated flow D1,t, as

defined for the vertices of G∗

KP
in Section IV.

Definition 7 (Arc structure). The arc structure has one at-

tribute: val the value as defined for the arcs of G∗

KP
in Section

IV.

Algorithm 2 presents the pseudo-code of HA*, us-

ing the three previously described structures as well as

OptimisticHeuristic. The considered graph is G∗

KP
, which

is GKP as illustrated in Fig. 2a with bounds β∗

t and α∗

t . The

dominance rules used in Algorithm 2 are the dominance rules

1 and 2.

Algorithm 2 Algorithm HA*

Require: A graph G∗

KP

Initialize a path p as follows: p.vertices = {(0, 0)},
p.val = 0.0, p.heur = OptimisticHeuristic(p)
Initialize a list of paths Lp = [p]
Initialize the value of the best solution bestV al = −∞
while Lp not empty do

p← first path in Lp

remove p from Lp

v ← last vertex of p.vertices
for arc a from v to u do

q.vertices = p.vertices ∪ u, q.val = p.val + a.val,
q.heur = OptimisticHeuristic(q)
if |q.vertices| = T + 1 then

bestV al← max(bestV al, q.val)
remove q′ ∈ Lp with q′.val + q′.heur ≤ bestV al

else

dom← FALSE
for q′ ∈ Lp do

if q′ dominates q then

dom← TRUE
end if

if q dominates q′ then

remove q′ from Lp

end if

end for

if dom = FALSE and q.val + q.heur > bestV al
then

add q in Lp by keeping Lp sorted by decreasing

q.val + q.heur
end if

end if

end for

end while

return the solution of value bestV al

540 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

VI. EXPERIMENTAL RESULTS

Results are computed on a single thread of an Intel(R)

Core(TM) i7-9850H CPU @ 2.60GHz processor, with 2 CPUs

of 8 cores, with Linux as operating system. All algorithms are

developed with C++. Version 12.8 of CPLEX with default

setting is used to solve the MILP formulation F1HUC .

A. Instances

From a large set of realistic instances derived from a real

EDF plant, a first set A of 13 instances is obtained. These 13

instances are retained as preliminary results have shown that

formulation F1HUC is not trivially solved. This emphasizes

the need of an efficient alternative in these cases. Table II

depicts for each instance the main characteristics, namely the

number of time periods, the number of operating points and the

presence of a constraining minimum (resp. maximum) bound

on the volume at the last time period. The instances cover

three cases, namely when there is only an upper bound, only

a lower bound, or a target volume with a constraining upper

and lower bound. In the case of an equality constraint, the

instance becomes infeasible, which is out of the scope of the

instances considered in this paper. Hence, the target volumes

are not equality constraints, but rather tight window constraint.

For instances with a target volume, more resource window

constraints are obtained by propagating the bounds β∗ and α∗

from the bounds at the last time period to the previous ones.

The water flows D and powers P are in the order of 103

to 104, with volumes in the order of 107. For target volumes,

the difference between the upper and lower bound is in the

order of 103, which is small enough with respect to the flows

to yield very few vertices at time period T in G∗

KP
.

TABLE II: Main characteristics of instances set A

instance T M minimum volume maximum volume

1 96 4 ✗ ✓

2 96 4 ✓ ✗

3 96 4 ✓ ✓

4 96 7 ✗ ✓

5 96 7 ✓ ✗

6 96 7 ✓ ✓

7 96 8 ✗ ✓

8 96 8 ✓ ✓

9 96 15 ✗ ✓

10 96 17 ✗ ✓

11 96 18 ✓ ✗

12 96 21 ✗ ✓

13 96 18 ✗ ✓

A second set B of 13 instances, similar to the first set, is

also constructed. The only differences are bounds βT and αT

that are shifted as follows. Let an instance with bounds βA
T

and αA
T be in set A. A random value k ∈ [−9999;−1000] ∪

[1000; 9999] is chosen. Bounds of an instance for set B are

βB
T = βA

T + k and αB
T = αA

T + k. Note that this shift is

very small for these instances. Indeed, the water flows can

be in the order of 104, there are nearly 100 time periods

and the cumulated flow D1,T is in the order of 106. The

shift k is at most 1% of D1,T . As shown in the following

results, slightly modifying an instance can drastically impact

the computational time.

B. Experimental results

In order to benchmark HA*, all instances are solved with

HA* as well as with two alternative methods. The first

alternative is a classical RCSPP algorithm [12] adapted to the

1-HUC [11]. The second alternative is to use CPLEX to solve

F1HUC described in Section III. A third alternative is solving

F+

1HUC , which is formulation F1HUC described in Section

III with tighter bounds described in Section V-A. However,

solving F+

1HUC leads to very similar results to F1HUC , hence

results for F+

1HUC are not included in the following. All

algorithms use a single thread, with a time limit of one hour.

10−1 100 101 102 103
0

2

4

6

8

10

12

Time

#
in
st
a
n
ce
s
A

so
lv
ed

F1HUC

HA∗

RCSPP

(a) Total number of instances A solved per computational time

10−1 100 101 102 103
0

2

4

6

8

10

12

Time

#
in
st
a
n
ce
s
B

so
lv
ed

F1HUC

HA∗

RCSPP

(b) Total number of instances B solved per computational time

Fig. 3: Total number of instances A and B solved per compu-

tational time

Figures 3a and 3b represent the number of instances solved

by each algorithm with respect to the computational time.

ALEXANDRE HEINTZMANN ET AL.: EFFICIENT EXACT A* ALGORITHM FOR THE SINGLE UNIT HYDRO UNIT COMMITMENT PROBLEM 541

Clearly, for instance set A, HA* is the most efficient alterna-

tive. Indeed, it solves every instance and requires less time than

the other alternatives. For instance set B, solving F1HUC is

the most efficient alternative. Note that the difference between

the solving times of F1HUC and HA* is only of a few

seconds for instance set B, as most instances are solved

in less than 10 seconds with HA*. Solving F1HUC is the

least robust alternative when it comes to computational times.

Indeed, when comparing the results between instance sets

A and B, the computational times are drastically different

with F1HUC , whereas for HA* there is a smaller difference,

and for the RCSPP algorithm the results are the same. The

RCSPP algorithm fails to solve 10 out of 13 instances, for both

instance sets A and B. This shows that the RCSPP algorithm

is inefficient at solving the 1-HUC. We further explain the

results in the following, by introducing Tables III and IV with

detailed results.

Tables III and IV give, for each instance, the value of the

objective function and the computational times obtained for

all algorithms, as well as the optimality gap and the number

of Branch & Bound nodes returned by the MILP solver. If

the MILP solver proves optimality, the gap is noted "opt".

When the time limit is reached, the time is noted "-". Results

are presented for each instance individually, as well as the

average (avg) and the standard deviation (sd) for the solved

instances. When the time limit is reached, a computational

time of 3600 seconds is accounted for in the average and

the standard deviation. The computational time of the most

efficient algorithm is emphasized in bold for each instance, as

well as the average and the standard deviation for each set of

instances.

There is a clear difference in computational time between

set A and B. Indeed, F1HUC is solved for 12 out of the 13

instances of set A, and needs between 6 and 2713 seconds,

while it is solved for all instances of set B, most of them

instantaneously. Similarly, HA* solves all instances of set A

and needs between 2 and 748 seconds, while it solves all

instances of set B in less than 156 seconds. Note however that

there is no noticeable computational time difference between

solving instance set A and B with the RCSPP algorithm.

The RCSPP algorithm is only able to solve instances 2, 5

and 11, for both sets. This is because for any other instance,

the maximum volume of the upstream reservoir is constrained

at the last time period. In this case, the value βT becomes

positive, meaning that there is a minimum bound on the

resource. As mentioned in [3], when there is a minimum

bound on the resource, the dominance properties of the RCSPP

algorithm cannot always be applied, thus leading to large

computational times. Clearly, HA* outperforms the RCSPP

algorithm. Even when there is no minimum bound on the

resource, the RCSPP algorithm yields larger computational

times for all instances of set B and instance 5 of set A.

When comparing HA* algorithm to solving F1HUC on the

most difficult instances, the former outperforms the latter in

terms of computational time and number of instances solved.

On the one hand, HA* is more stable with respect to the

computational times. Indeed, HA* only requires more than 10

minutes once (instance 12 of set A), while solving F1HUC

requires more than 10 minutes for 5 of the 26 instances

(instances 1, 3, 10, 11 and 12 of set A). Moreover, F1HUC is

not solved to optimality for instance 12 of set A, and the best

value found is not the optimal value obtained with HA*. On

the other hand, solving F1HUC appears to be more efficient

on easier instances than HA*. In this case, there are numerous

instances where the difference between the two approaches is

within a few seconds (instances 1, 2, 3, 4 and 6 of set B).

The stability with respect to the computational time is

noticeable on the average and standard deviation. Indeed, the

average time difference between set A and B is much smaller

for HA* than for the MILP solver. The standard deviation for

HA* is much smaller on set A, and slightly higher for set B

when compared to solving F1HUC . Besides, one can compute

the total average and total deviation of the resolution time for

all 26 instances. The total average time and standard deviation

are 402.1 seconds and 873.7 seconds for the MILP solver, and

80.3 seconds and 149.0 seconds for HA*.

VII. CONCLUSION

In this paper, the HA* algorithm is proposed as an exact

variant of the A* algorithm dedicated to the 1-HUC. It has

been adapted through a dedicated optimistic heuristic and a

bound tightening pre-processing, propagating lower and upper

bounds from any time period to another. On a set of realistic

instances, algorithm HA* is shown to be both more stable

and more efficient on average in terms of computational times

compared to solving F1HUC . Also, HA* outperforms the

standard labeling algorithm for the RCSPP.

A natural direction for a future work would be to extend

the proposed algorithm in order to take into account addi-

tional constraints of the 1-HUC. A promising perspective is

to include the HA* algorithm in a decomposition of a hy-

draulic valley with multiple plants. Beyond the HUC, another

interesting perspective could also be to try and generalize

such an algorithm for other problems with window resource

constraints.

REFERENCES

[1] A. Renaud, “Daily generation management at Electricité de France: from
planning towards real time,” IEEE Transactions on Automatic Control,
vol. 38, no. 7, pp. 1080–1093, 1993.

[2] G. Hechme-Doukopoulos, S. Brignol-Charousset, J. Malick, and
C. Lemaréchal, “The short-term electricity production management
problem at EDF,” Optima Newsletter, vol. 84, pp. 2–6, 2010.

[3] W. van Ackooij, C. d’Ambrosio, D. Thomopulos, and R. S. Trindade,
“Decomposition and shortest path problem formulation for solving the
hydro unit commitment and scheduling in a hydro valley,” European

Journal of Operational Research, vol. 291, no. 3, pp. 935–943, 2021.

[4] G. Ardizzon, G. Cavazzini, and G. Pavesi, “A new generation of
small hydro and pumped-hydro power plants: Advances and future
challenges,” Renewable and Sustainable Energy Reviews, vol. 31, pp.
746–761, 2014.

[5] Y. Sahraoui, P. Bendotti, and C. d’Ambrosio, “Real-world hydro-power
unit-commitment: Dealing with numerical errors and feasibility issues,”
Energy, vol. 184, pp. 91–104, 2019.

542 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

TABLE III: Performance of solving F1HUC , the RCSPP algorithm and HA* on instance set A

F1HUC RCSPP HA*
instance value #nodes gap time value time value time

1 −25 428.80 10 232 857 opt 2713.4 - - −25 428.80 2.5

2 43 010.90 2 591 995 opt 437.0 43 010.9 0.9 43 010.90 2.3

3 3556.54 5 034 351 opt 1384.8 - - 3556.54 12.0

4 2462.90 167 490 opt 44.1 - - 2462.90 11.1

5 111 115.00 101 570 opt 17.8 111 115.0 525.2 111 115.00 18.8

6 −1706.62 888 735 opt 331.4 - - −1706.62 14.9

7 5692.65 115 626 opt 6.2 - - 5692.65 120.6

8 16 581.10 487 218 opt 30.9 - - 16 581.10 126.0

9 −71 645.90 176 123 opt 21.4 - - −71 645.90 133.0

10 −525 446.00 901 533 opt 732.1 - - −525 446.00 168.4

11 44 421.20 1 535 139 opt 982.0 44 421.2 114.1 44 421.20 213.9

12 −20 329.90 1 624 614 0.58 - - - −20 324.00 748.8

13 −103 435.00 365 253 opt 80.7 - - −103 435.00 122.8

avg - 1 865 577 0.58 798.6 - 1431.0 - 130.4

sd - 2 755 062 0.0 1101.1 - 2818.4 - 191.7

TABLE IV: Performance of solving F1HUC , the RCSPP algorithm and HA* on instance set B

F1HUC RCSPP HA*
instance value #nodes gap time value time value time

1 −25 430.30 873 opt 0.2 - - −25 430.30 0.4

2 42 993.00 0 opt 0.0 42 993.00 1.0 42 993.00 0.0

3 3700.23 11 opt 0.0 - - 3700.23 0.2

4 2462.90 16 330 opt 2.1 - - 2462.90 3.7

5 111 143.00 34 982 opt 3.8 111 143.00 481.5 111 143.00 8.4

6 −1460.33 2519 opt 0.4 - - −1460.33 2.1

7 5936.31 522 284 opt 39.2 - - 5936.31 155.7

8 16 730.40 6403 opt 0.5 - - 16 730.40 8.6

9 −132 290.00 0 opt 0.0 - - −132 290.00 9.2

10 −525 246.00 46 425 opt 27.1 - - −525 246.00 37.2

11 44 646.80 0 opt 0.0 44 646.80 109.1 44 646.80 6.2

12 −20 153.10 1586 opt 0.1 - - −20 153.10 146.3

13 −103 339.00 2314 opt 0.2 - - −103 339.00 27.7

avg - 48 748 - 5.7 - 1437.1 - 31.2

sd - 137 446 - 12.0 - 2814.7 - 52.2

[6] J. I. Pérez-Díaz, J. R. Wilhelmi, and L. A. Arévalo, “Optimal short-term
operation schedule of a hydropower plant in a competitive electricity
market,” Energy Conversion and Management, vol. 51, no. 12, pp. 2955–
2966, 2010.

[7] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE transactions on Systems

Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[8] W. Fan, X. Guan, and Q. Zhai, “A new method for unit commitment
with ramping constraints,” Electric Power Systems Research, vol. 62,
no. 3, pp. 215–224, 2002.

[9] R. Taktak and C. D’Ambrosio, “An overview on mathematical pro-
gramming approaches for the deterministic unit commitment problem
in hydro valleys,” Energy Systems, vol. 8, no. 1, pp. 57–79, 2017.

[10] R. Bellman, “On a routing problem,” Quarterly of applied mathematics,
vol. 16, no. 1, pp. 87–90, 1958.

[11] W. van Ackooij, C. d’Ambrosio, L. Liberti, R. Taktak, D. Thomopu-
los, and S. Toubaline, “Shortest path problem variants for the hydro
unit commitment problem,” Electronic Notes in Discrete Mathematics,
vol. 69, pp. 309–316, 2018.

[12] C. Barrett, K. Bisset, M. Holzer, G. Konjevod, M. Marathe, and
D. Wagner, “Engineering label-constrained shortest-path algorithms,” in
Algorithmic Aspects in Information and Management: 4th International

Conference, AAIM 2008, Shanghai, China, June 23-25, 2008. Proceed-

ings 4. Springer, 2008, pp. 27–37.

[13] A. Arce, T. Ohishi, and S. Soares, “Optimal dispatch of generating units

of the Itaipú hydroelectric plant,” IEEE Transactions on power systems,
vol. 17, no. 1, pp. 154–158, 2002.

[14] C.-T. Cheng, S.-L. Liao, Z.-T. Tang, and M.-Y. Zhao, “Comparison of
particle swarm optimization and dynamic programming for large scale
hydro unit load dispatch,” Energy Conversion and Management, vol. 50,
no. 12, pp. 3007–3014, 2009.

[15] M. Kruber, A. Parmentier, and P. Benchimol, “Resource constrained
shortest path algorithm for EDF short-term thermal production planning
problem,” 2018. [Online]. Available: https://arxiv.org/abs/1809.00548

[16] L. Turner, “Variants of the shortest path problem,” Algorithmic Opera-

tions Research, vol. 6, no. 2, pp. 91–104, 2011.
[17] C. C. Ribeiro and M. Minoux, “A heuristic approach to hard constrained

shortest path problems,” Discrete Applied Mathematics, vol. 10, no. 2,
pp. 125–137, 1985.

[18] J. E. Beasley and N. Christofides, “An algorithm for the resource
constrained shortest path problem,” Networks, vol. 19, no. 4, pp. 379–
394, 1989.

[19] X. Zhu and W. E. Wilhelm, “Three-stage approaches for optimizing
some variations of the resource constrained shortest-path sub-problem in
a column generation context,” European journal of operational research,
vol. 183, no. 2, pp. 564–577, 2007.

[20] ——, “A three-stage approach for the resource-constrained shortest
path as a sub-problem in column generation,” Computers & Operations

Research, vol. 39, no. 2, pp. 164–178, 2012.

ALEXANDRE HEINTZMANN ET AL.: EFFICIENT EXACT A* ALGORITHM FOR THE SINGLE UNIT HYDRO UNIT COMMITMENT PROBLEM 543

