
On the Applicability of the Pareto Principle to

Source-Code Growth in Open Source Projects

Korneliusz Szymański

Email: korneliusz.szymanski@gmail.com

Mirosław Ochodek

0000-0002-9103-717X

Poznan University of Technology,

ul. Piotrowo 2, 60-695 Poznan, Poland

Email: miroslaw.ochodek@put.poznan.pl

Abstract—Context: research on understanding the laws related
to software- project evolution can indirectly impact the way we
design software development processes, e.g., knowing the nature
of the code-repository content growth could help us improve
the ways we monitor the progress of OSS software development
projects and predict their future development Goal: our aim is
to empirically verify a hypothesis that the OSS code repositories
grow in size according to the Pareto principle. Method: we
collected and curated a sample of 31,343 OSS code repositories
hosted on GitHub and analyzed their content growth over time
to verify whether it follows the Pareto principle. Results: we
observed that, on average, monotonically growing OSS reposito-
ries reach 75% of their final content size within the first 25%
revisions. Conclusions: the content size of monotonically growing
OSS repositories seems to grow in size according to the Pareto
principle with the 75/25 ratio.

I. INTRODUCTION

T
HE 80/20 rule is often referred to as a means of quantita-

tively modeling cause-effect relationships between real-

world variables. A generalization of this rule is a well-known

Pareto principle. The principle states that roughly 80% of

outcomes come from 20% of causes. This phenomenon has

been also studied in the context of Open Source Software

(OSS) development. Most of the studies investigated the

principle by studying the patterns in the OSS community ways

of working—i.e., commits [1], communication [2], [3], issue

trackers, while others focused on the modeling the distribution

of code smells, architecture, data, and software defects [4], [5].

This research focuses on studying the applicability of the

Pareto principle to code repository content growth over the

lifespan of OSS projects. In particular, our goal is to empir-

ically verify a hypothesis stating that monotonically growing

OSS code repositories increase their content size over time

according to the Pareto principle, which means that, on

average, an OSS code repository reaches 80% of its final

content size in the first quantile of the project’s lifespan. We

narrow our study to projects that have a natural monotonic

tendency to grow in size over time (e.g., they are not subjected

to significant code removal activities).

Research on understanding the laws related to software-

project evolution can indirectly impact the way we design

software development processes. For instance, knowing the

This work was supported by the Poznan University of Technology within
the project 0311/SBAD/0738.

nature of the OSS code-repository contents growth could help

us improve the ways we monitor the progress of OSS software

development projects and predict their future development.

This paper is organized as follows. Section II provides more

details on the Pareto principle and discussed selected studies

on the Pareto principle in Software Engineering. Section III

presents the design of our research method to study the

applicability of the Pareto principle to the code-repository

growth in OSS. Section IV presents and discusses the results

and main threats to the validity of our study. The main findings

are summarized in Section V.

II. BACKGROUND AND RELATED WORK

A. The Pareto principle

The Pareto principle, also known as the 80/20 or 80 by 20

principle, was formulated in the early 1950s by Joseph Juran

[6], but it was based on a relationship that Vilfredo Pareto

had noted before—namely that 80% of the world’s wealth

is owned by 20% of humanity. Since then, numerous studies

have shown that this principle holds also for other variables.

However, this is not always an exact 80/20 ratio, the values are

rather illustrative and will not apply to every situation, but in

many cases, the Pareto principle works perfectly. The Pareto

principle not only works in many fields, such as resource man-

agement, people management, and time management, but also

in scientific fields, such as economics, accounting, medical

sciences, or computer science.

The Pareto principle is also a generalization for the Pareto

distribution presented in Figure 1. This principle is also char-

acterized by the Pareto index, denoted as the alpha coefficient

in the figure, which is an indicator of the Pareto principle

strength.

B. The Pareto principle in Software Engineering

A large number of OSS projects available on platforms

such as GitHub or SourceForge created an opportunity for

researchers to study a massive corpus of software projects.

Free access to code repositories based on version control

systems (VCS) makes it possible to study the evolution of

projects over time. This includes numerous studies on the ap-

plicability of the Pareto principle to different areas covered by

Software Engineering. Most of them focused on studying the

applicability of the Pareto principle to model the distribution

Proceedings of the 18
th Conference on Computer

Science and Intelligence Systems pp. 781–789

DOI: 10.15439/2023F5221

ISSN 2300-5963 ACSIS, Vol. 35

IEEE Catalog Number: CFP2385N-ART ©2023, PTI 781 Thematic track: Practical Aspects of and

Solutions for Software Engineering



0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

Pr
(X

x)

Cumulative distribution function
=1
=2
=3
=

Fig. 1: Examples of cumulative density distribution functions

for the Pareto distribution.

of defects, activity, or collaborators in software projects. Here,

we briefly summarize the most relevant papers in this area:

• Architecture smells and Pareto principle: A preliminary

empirical exploration [7] investigated to what extent

architecture smell occurrences adhere to the Pareto prin-

ciple. The authors analyzed 750 Java and 361 C# repos-

itories and detected seven types of architecture smells.

They reported that ca. 45% of the Java repositories and

66% of C# repositories followed the Pareto principle in

this aspect. This study investigates the Pareto principle

in open source, however, its focus is on architectural

smells, while our study focuses on the size growth of

OSS projects.

• Long-term evaluation of technical debt in open-source

software [8] studied the evolution and characteristics of

technical debt in OSS. In particular, the authors investi-

gated the evolution of three large OSS Java applications

(110 releases) with the use of the SonarQube technical

debt detector. They reported that the Pareto principle was

satisfied for the studied applications, as 20% of issue

types generated around 80% of total technical debt. The

focus of the study is different that ours, however, the main

similarity is that both studies investigate release histories.

• Towards a theoretical model for software growth [9]

studied 700,000 C source-code files of the FreeBSD op-

erating system to compare different complexity measures

in the context of measuring software growth. One of their

observations was that all the measures followed a double

Pareto distribution. This observation is convergent with

the outcomes of our study, however, the original study did

not consider the time-related aspect of code evolution.

• Evidence for the Pareto principle in open source software

activity [3] focuses on analyzing the activity of users in

mailing lists on a sample of three OSS software projects.

This study is loosely related to our work since the studied

object differs from ours.

• On the central role of mailing lists in open source

projects: an exploratory study [2] regards communication

in OSS projects and focuses on communication with the

OSS projects’ mailing lists. In particular, they empirically

verified a hypothesis stating that a few key discussion

participants are responsible for most of the messages

posted on the mailing list. However, the study did not

provide strong evidence confirming the applicability of

the Pareto principle to this case.

• Evaluation and application of bounded generalized

Pareto analysis to fault distributions in open source

software [5] aimed at investigating distributions of faults

in OSS software projects to see if it follows the Pareto

distribution. Therefore, since the object of the study

differs from ours, we consider it to be loosely related

to our study.

• Revisiting the applicability of the Pareto principle to core

development teams in open source software projects [1]

studies the ratio of produced code size to developers’

activity on a sample of 2,496 GitHub projects. This work

is not directly related to our research since it focuses on

the Pareto principle of code size in ratio to developers’

activity and not code size growth over the project lifespan.

• Empirical study of software quality evolution in open

source projects using agile practices [4] studies the

evolution of software quality in two open source projects

(Eclipse and Netbeans). They investigated the relationship

between Object-Oriented metrics and defect proneness.

They observed that a small percentage of compilation

units hold most of the reported issues—i.e., it follows

the Pareto principle.

As it follows from our literature analysis, most of the papers

focus on studying the existence of the Pareto principle in

different areas of software development, however, not in the

context of repository content increments. Also, most of the

studies focus on small samples of OSS projects and often have

a form of case studies. On the contrary, our study is based on

a massive dataset of OSS projects.

III. RESEARCH METHODOLOGY

A. Research goal, questions, and metrics

The goal of our study is to investigate a hypothesis that

monotonically growing OSS code repositories increase their

content size over time according to the Pareto principle. Since

we aim to verify the hypothesis based on empirical evidence,

we frame the problem using the Goal-Question-Metric frame-

work [10]. Our goal (G) is to examine the applicability of the

Pareto principle to OSS repository content size growth over

the project lifespan. From the goal follows a research question

(Q): What is the average repository content size growth

over time in OSS projects?

Finally, we use the following metrics (M) as the basis for

answering the research question:

• M1: Repository contents size at a given point in time

— this metric presents repository contents size which

782 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



is expressed by the total lines count of all files in the

repository in the given revision. There is no distinction

between the types of data that the files contain. Source

code files, resources files, comments files, etc. are treated

as contents files. We use the wc tool [11] to count the

number of lines in the files. A point in time is determined

based on the resolution defined as the M2 metric.

• M2: Lifespan unit defines a resolution unit of the

project’s lifespan. It is logically expressed as a % value

but technically converted to a float in the range between 0

to 1. The lower the metric value, the higher the resolution.

The base form of the Pareto principle is the 80/20 ratio.

Therefore, it requires a maximum lifespan unit to be at

the quintile level (20%). Based on the selected Lifespan

unit, the project is sampled at unit-sized points in time,

and the number of lines of code is calculated (M1).

• M3: Repository final size is the final size of the repos-

itory expressed in bytes. A too-small repository may not

have visible differences in content growth. Conversely,

a repository that is too large may indicate that it is a

fixed-size dataset that does not change over time.

• M4: Repository lifespan is expressed as the number of

commits. Repository lifespan could have a visible impact

on the content growth analysis. A repository that has

a too short commit history may bias the results since

we analyze the distribution of the M1 measure in time.

Unfortunately, in practice, some repositories may contain

only a single commit. Also, this metric is related to

the M2 metric. For instance, when M2 is set to 20%,

the minimal repository lifespan (M4) is required to have

minimum of 5 commits (1/0.2 = 5).

B. Study design

Answering the research question requires a multi-stage

procedure, starting from collecting a large corpus of OSS

project repositories, analyzing how the code changes over

time in these repositories, and drawing conclusions about the

applicability of the Pareto principle to the distribution of code

increments.

1) Data acquisition and filtering: In the first step, we

collect a dataset of projects hosted on GitHub.1 In particular,

we use GitHub API to fetch the data from the projects. The

service allows the database to be filtered for repositories that

match the expected criteria, but the response output is limited

to 1,000 rows. The sample of repositories could be too small

for our use case. Also, the quality of projects hosted on

GitHub could vary visibly, starting from what we would call

“engineered” projects to some toy examples, code snippets, or

even repositories that do not contain any code.

Our workaround to these issues is to use a curated list of

1,857,423 GitHub repositories created by Munaiah et al. [12]

(RepoReapers2) and further curated by Pickerill et al. [13]. The

filtered list contains GitHub repositories belonging to so-called

1GitHub https://github.com
2https://reporeapers.github.io/

“engineered” projects. Munaiah et al. define an engineered

project as “a software project that leverages sound software

engineering practices in one or more of its dimensions such

as documentation, testing, and project management.” Selecting

such projects allow us to narrow the search and increase the

relevancy of the obtained sample of OSS projects.

In the following step, we further filter the list of repositories

based on the M2, M3, and M4 metrics to select only relevant

code repositories. We do not pre-set any filtering thresholds

for these measures, but instead, we determine them empirically

by observing how making these criteria stricter influences the

dataset properties.

Finally, we take into account projects whose content growth

is incremental. Therefore, we use linear regression as a tool

to identify projects with anomalies related to how their size

grows over time. The linear regression is expressed as:

y = ax+ b

where a is a slope and b is an intercept. The slope can be

used to evaluate the repository-growth tendency. We are going

to determine the a threshold empirically by observing how it

affects the presence/absence of outliers in our dataset. We use

the PostgreSQL function regr_slope3 to calculate the slope.
2) Data analysis: The analysis procedure is based on the

Git version control tools. Git tools allow comparing changed,

added, or deleted lines of code. An atomic set of changes

recorded by Git is called a commit or revision. Git repositories

consist of a tree of commits. Using the git-ls-tree command,

the structure of the commit tree and its metadata can be

obtained. The metadata contains information about changes

to the file’s lines. Using the wc [11] tool, it is possible to

count the total amount of code at a specific point in time at

which a commit was created.

The data is further normalized and aggregated to obtain the

distribution of repository content growth. Each repository has

a different project beginning and ending date. The duration of

projects has to be expressed as normalized time. Let’s define

project duration normalized time as NT . NT is a discrete

variable with a distribution of every threshold s (M2) which

is expressed as a value from 0 which is the beginning date of

a project and 1 which is the end date of a project.

NT = 0, s, 2s, 3s, ..., 1

Each project has a different content size at the end. This

means a repository’s content size also has to be expressed as

a normalized value to a repository’s final content size (M1).

Let L(p,NT ) represents repository content size as a count of

lines, where p is the repository. The ending time then is equal

to 1 (NT = 1).

Lfinal(p) = L(p, 1)

Having the final repository content size, the normalized repos-

itory content size at a given normalized point in time can be

calculated:

NL(p,NT ) =
L(p,NT )

Lfinal(p)

3https://www.postgresql.org/docs/9.0/functions-aggregate.html

KORNELIUSZ SZYMAŃSKI, MIROSŁAW OCHODEK: ON THE APPLICABILITY OF THE PARETO PRINCIPLE TO SOURCE-CODE GROWTH 783



Having projects lifespan as normalized points in time and

normalized repositories content size makes it possible to

calculate the distribution of repository content growth:

NL(P,NT ) =
1

n

n∑

i=1

NL(Pi, NT ))

where P is set of repositories.

In order to ascertain the completeness of the Pareto principle

in our study, the distribution of code increments should be

close to the theoretical Pareto distribution. The relevant point

of the distribution is the point of the searched 80/20 ratio.

As a result of the study, the resulting graph may intersect

the vicinity of the point, but the whole distribution may not

converge to the Pareto distribution. The expected graph should

be incremental with a significant increase in the first 20-30%

and then a gentle increase up to 100%.

IV. RESULTS AND DISCUSSION

A. Data fetching

We fetched code repositories from GitHub using the curated

list of links to repositories belonging to so-called “engineered

projects” [12], [13]. For each repository, we first downloaded

the repository metadata from GitHub API. Next, each reposi-

tory was downloaded and analyzed. We used the GitStats tool

[14] to analyze the tree structure of Git commits. As a result,

we collected data from 35,890 OSS software repositories.

The distribution of programming languages of projects is

presented in Table I. This classification of projects is based

on the GitHub metadata. The table presents the data for

the programming languages used in over 100 projects. The

distribution of the repository size for the code repositories in

our sample is summarized in Table II. The average size of

code repository is around 3,343 KB with a standard deviation

of ca. 213 KB. The average size is influenced by very large

repositories (see Figure 2), thus, the median size is visibly

smaller and equal to ca. 180 KB.

TABLE I: The distribution of programming languages of

projects

Language Projects count

Java 8886

Python 5756

Ruby 4188

PHP 3313

C++ 3134

C# 2196

C 2153

JavaScript 633

HTML 380

CSS 188

Objective-C 124

TABLE II: A summary of code repository sizes (measured in

KB).

Average Median Standard deviation

3,343.31KB 180KB 212.95KB

B. Calculating the measures

We used the GitStats and wc tools to analyze the repositories

and calculate measures M1, M2, M3, and M4. An example

of the output generated by the toolset for the Spring Boot

repository4 is as follows:

Project name

spring-boot

Generated

2022-08-13 00:02:29 (in 344 seconds)

Generator

GitStats (version 55c5c28),

git version 2.25.1, gnuplot 5.2

patchlevel 8

Report Period

2012-10-21 19:53:52 to 2022-08-12 17:47:38

Age

3583 days, 3032 active days (84.62%)

Total Files

8748

Total Lines of Code

727599 (1726809 added, 999210 removed)

Total Commits

39150 (average 12.9 commits per active day,

10.9 per all days)

Authors

1113 (average 35.2 commits per author)

In addition to the report, the toolset allowed us to col-

lect information about the growth of the code repository in

time. Figure 3 presents the growth of the Spring framework

repository (M1) over time. As we can see, the size (M1) of

this repository increases monotonically over time, therefore, it

belongs to the population of the projects in the scope of our

analysis.

C. Applying filtering criteria

We decided to set the project lifespan unit (M2) to s =
0.05, which allowed us to analyze the appearance of the Pareto

principle with a minimum resolution of 5%. As it was stated

in Section III-A, the maximum lifespan unit for studying the

Pareto principle shall not exceed 20% (s = 0.2). We set the

threshold to 0.05 to increase the resolution since it is rather

unlikely to observe the exact 80/20 ratio in a sample of real-

life data, but rather some minor variation of that ratio, e.g.,

75/25, 70/30, or similar ratios.

We set the following thresholds values of the M3 and M4

measures to initially filter the code repositories:

1) M3: Repository total size of up to 100 MB — we limited

the size of the repository to exclude outliers (see Figure

2) and reduce the processing time of a single repository.

4Spring Boot – https://spring.io/projects/spring-boot

784 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



(a) All projects in the sample (b) Projects with code repositories of up to 1,000KB

Fig. 2: The distribution of the sizes of the code repositories (KB).

Fig. 3: An example of the repository growth plot for the Spring framework.

2) M4: Repository lifespan — we constraint the minimum

repository lifespan to at least 20 commits, which follows

from the selected lifespan unit (M2). A lifespan unit of

5% determines the minimum number of commits to 20.

In the following step, we used our toolset to calculate the

count of lines (M1) over time (L). The results were stored in

a PostgreSQL database. Next, we calculated the normalized

repository content size (NL) and normalized project lifespan

(NT ). Finally, we used both measures to calculate the distri-

bution of repository content growth (NL).

Figure 4 shows NL for the sample of projects filtered

based on the M3 and M4 measure thresholds. As the content

growth is measured with respect to the final content size of the

repository, the 100% content size is achieved at the last point

in time. However, we can see that the average normalized size

reaches up to 722% of the final size. The reason for that is the

presence of outlier projects with visibly non-monotonic, non-

incremental growth over time. An example of such a project

could be Unity3d-Async-Task5:

Project name

Unity3d-Async-Task

Generated

2022-08-23 19:22:00 (in 0 seconds)

5Unity3d-Async – https://github.com/NVentimiglia/Unity3d-Async-Task

Generator

GitStats (version 55c5c28),

git version 2.25.1, gnuplot 5.2

patchlevel 8

Report Period

2015-03-07 19:24:45 to 2015-10-01 17:45:15

Age

209 days, 21 active days (10.05%)

Total Files

1

Total Lines of Code

3 (48396 added, 48393 removed)

Total Commits

58 (average 2.8 commits per active day,

0.3 per all days)

Authors

4 (average 14.5 commits per author)

As it is visible in Figure 5, the content of this repository was

drastically reduced at a single point in time. As it stands from

the README.md file, the source code from this repository

was moved to another location. Such projects bias the general

view of how the content of OSS code repositories grows

over time and thus should be removed from the analysis.

Unfortunately, manual filtering of such repositories was not

feasible due to the size of the sample. Therefore, we decided

to use linear regression (as we stated in Section III-B) to

identify and remove outlying projects with respect to their

KORNELIUSZ SZYMAŃSKI, MIROSŁAW OCHODEK: ON THE APPLICABILITY OF THE PARETO PRINCIPLE TO SOURCE-CODE GROWTH 785



Fig. 4: Aggregated normalized lines count per normalized time expressed in percentage before filtering out the repositories

with non-monotonic size growth over time.

Fig. 5: Content growth in lines of code for Unity3d-Async-Task.

content growth. After applying linear regression and analyzing

the slope of the regression functions, we accepted projects for

which the slope was between 0 and 5. This allowed us to filter

out projects with both suspiciously massive size reductions and

suspicious bulk code addition operations in single commits.

The results of applying the filtering criteria are presented in

Figure 4. The intensity of line-count growth became growing

monotonically. Interestingly, as we can see in the figure (see

NT = 0%), projects, on average, are uploaded to GitHub when

they contain 30% of their target size. After that, their content

growth increases significantly, up to 20% of their lifespans

when they reach 90% of their final size, and later, the growth

rate flattens out. Unfortunately, we can also see a suspicious

drop in size within the last 5% of the projects’ lifespan,

with a drop of 15% of their content (the pick point for a

project content size is ca. 120% of its final size instead of

the expected 100%). After investigation, it turned out to be,

once again, the effect of outliers in the sample (e.g., moving

repositories) that affected the overall picture. Therefore, we

decided to introduce one more filtering criterion to identify

projects with extensive code removal operations at the end of

their lifespans and remove them from the sample. We applied

linear regression to the last 10% of the projects’ lifespans.

Figure 7 shows the results of filtering the sample based on

the slope of the regression function (RE). We decided to set

the filtering threshold for the slope to RE = −0.5, however,

as follows from the figure, the results were similar for all

considered RE values. The final sample included 31,343 out

of the 35,890 initially fetched repositories.

D. The Pareto principle

The analysis of the repository content growth for the curated

sample of projects (see Figure 7) shows that, on average,

monotonically growing OSS projects are uploaded to GitHub

with 28.8% of their final content size. Later, their content

786 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



Fig. 6: Aggregated normalized lines count per normalized time expressed in percentage after filtering out the repositories with

non-monotonic size growth over time.

size increases dynamically until it reaches ca. 60% of the

final content size and over the remaining project lifespan, the

repository content increases steadily.

The goal of our study was to investigate a hypothesis that

repository content growth for monotonically growing OSS

projects is subjected to the Pareto principle. If it is true,

we would expect to observe that at the first quintile of the

normalized project lifespan, the normalized content size of

repositories should be around 80%. The ratio observed in the

analyzed sample of projects is 75/25 (on average, 75% of

the final repository content size was delivered within the first

25% of normalized project lifespan). Could we accept this

observation as a manifestation of the Pareto principle?

As the literature on the Pareto principle suggests, the

principle is not strictly bound to the 80/20 proportion. For

instance, Dunford, Su, and Tamang [15] state that “the Pareto

Principle is a simplified version of the mathematics behind

the Pareto distribution” and “the numbers 20 and 80 are not

mathematically fixed, but are used as a rule of thumb”; Boboia

and Polinicencu [16] state that “The 80/20 Rule is not a strict

formula. Sometimes the cause-effect relation is closer to the

70/30 ratio than to the 80/20 ratio, but very rarely 50% of

the causes lead to 50% of the results.” Therefore, taking into

account the results of our study and literature regarding the

Pareto principle, we conclude that the observed 75/25 ratio

fits the definition of the Pareto principle and allow us to

accept the hypothesis that the content growth over time

in monotonically growing OSS repositories is subjected to

that principle.

E. Threats to validity

We identified several threats to validity of our study. The

internal validity threats relate to the contents of repositories

in the collected sample and their potential impact on the

calculated measures, in particular:

• Extreme sizes of repositories — our sample may contain

repositories that are too small or too large. The size of

the repository may indicate inappropriate project content

and purpose for our research. To reject such repositories,

we used the filtering criteria M3 and M4.

• Irrelevant repository content — many of the repositories

available on GitHub are toy examples, code snippets,

or do not contain any source code. To mitigate the

influence of such repositories, we used the curated list

of GitHub repositories that are likely to contain “engi-

neered” projects.

• Non-monotonically growing repositories — the content

of repositories may not be incremental. We used linear

regression models to automatically filter out projects

with visible deviations in content growth from what

we understand to be a monotonically growing project.

However, since we were not able to manually inspect

each and every project, we should accept the fact that

some such projects could be still present in the curated

sample.

The external validity regards the possibility of generalizing

the results of our study to the whole considered population.

First of all, we narrowed the population to monotonically

growing OSS projects which gave us better control over the

KORNELIUSZ SZYMAŃSKI, MIROSŁAW OCHODEK: ON THE APPLICABILITY OF THE PARETO PRINCIPLE TO SOURCE-CODE GROWTH 787



Fig. 7: Aggregated normalized lines count per normalized time expressed in percentage after filtering out the repositories with

extensive code-removal actions at the end of their lifespans.

generalizability of our findings (but also narrows it). Secondly,

we collected and curated a very large sample of OSS code

repositories, which we believe to be a representative sample

of the population under study.

V. CONCLUSIONS

We analyzed the intensity of OSS repositories’ content

growth over time to verify a hypothesis that the number of

lines in the monotonically growing repositories increases over

the project lifespan according to the Pareto principle.

We studied a sample of 31,343 OSS repositories hosted

on GitHub and observed that, on average, 75% of the final

content size of the repositories is produced within the first

25% revisions in such repositories. Therefore, we claim that

this phenomenon is a manifestation of the Pareto principle.

We also observed that monotonically growing OSS projects

are, on average, become hosted on GitHub when they already

contain 30% of their final code size6. Therefore, in many cases,

it might be impossible to retrieve the history of code changes

for the first ca. 30% of the project’s final size. Although

studying the causes of this phenomenon was outside of the

scope of this study, we suspect that this might be caused

by either beginning work on an OSS project as a private

project/project hosted outside of the GitHub version control

system, or due to the fact that many projects are based on

framework skeletons or auto-generated stubs.

6Please note that we refer to the final size and not to the final content of
the repository.

The observations made in this study could help to monitor

the growth of OSS projects and help to evaluate the current

state of such projects.

For future research, we recommend studying the applica-

bility of the Pareto principle to content growth depending

on the various sub-criteria such as programming language,

community size, etc.

REFERENCES

[1] K. Yamashita, S. McIntosh, Y. Kamei, A. E. Hassan, and N. Ubayashi,
“Revisiting the applicability of the pareto principle to core development
teams in open source software projects,” in Proceedings of the 14th

international workshop on principles of software evolution, 2015, pp.
46–55.

[2] E. Shihab, N. Bettenburg, B. Adams, and A. E. Hassan, “On the central
role of mailing lists in open source projects: An exploratory study,”
in New Frontiers in Artificial Intelligence: JSAI-isAI 2009 Workshops,

LENLS, JURISIN, KCSD, LLLL, Tokyo, Japan, November 19-20, 2009,

Revised Selected Papers 1. Springer, 2009, pp. 91–103.

[3] M. Goeminne and T. Mens, “Evidence for the pareto principle in open
source software activity,” in First International Workshop on Model-

Driven Software Migration (MDSM 2011), 2011, p. 74.

[4] A. Murgia, G. Concas, S. Pinna, R. Tonelli, I. Turnu et al., “Empirical
study of software quality evolution in open source projects using agile
practices,” in Proc. of the 1st International Symposium on Emerging

Trends in Software Metrics, vol. 11, 2009.

[5] C.-Y. Huang, C.-S. Kuo, and S.-P. Luan, “Evaluation and application of
bounded generalized pareto analysis to fault distributions in open source
software,” IEEE Transactions on Reliability, vol. 63, no. 1, pp. 309–319,
2013.

[6] J. M. Juran, “Pareto, Lorenz, Cournot, Bernoulli, Juran and others,” in
Critical evaluations in business management, J. C. Wood and W. M. C.,
Eds. Routledge, 2004, ch. 1, pp. 47–49.

[7] A.-M. Chaniotaki and T. Sharma, “Architecture smells and pareto
principle: A preliminary empirical exploration,” in 2021 IEEE/ACM

18th International Conference on Mining Software Repositories (MSR).
IEEE, 2021, pp. 190–194.

788 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



[8] A.-J. Molnar and S. Motogna, “Long-term evaluation of technical debt in
open-source software,” in Proceedings of the 14th ACM/IEEE Interna-

tional Symposium on Empirical Software Engineering and Measurement

(ESEM), 2020, pp. 1–9.

[9] I. Herraiz, J. M. Gonzalez-Barahona, and G. Robles, “Towards a theo-
retical model for software growth,” in Fourth International Workshop on

Mining Software Repositories (MSR’07: ICSE Workshops 2007). IEEE,
2007, pp. 21–21.

[10] R. Van Solingen, V. Basili, G. Caldiera, and H. D. Rombach, “Goal
question metric (gqm) approach,” Encyclopedia of software engineering,
2002.

[11] D. M. Paul Rubin, “word cound,” https://linux.die.net/man/1/wc, lines
word count tool, GNU General Public License.

[12] N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan, “Reporeapers,”
https://reporeapers.github.io/results/1.html, 2017, [Online; accessed 12-

June-2022]".
[13] P. Pickerill, H. J. Jungen, M. Ochodek, M. Maćkowiak, and M. Staron,

“Phantom: Curating github for engineered software projects using time-
series clustering,” Empirical Software Engineering, vol. 25, no. 4, pp.
2897–2929, 2020.

[14] S. Byeon, “Gitstats, https://pypi.org/project/gitstats/.”
[15] R. Dunford, Q. Su, and E. Tamang, “The pareto principle,” The Plymouth

Student Scientist, vol. 7, no. 1, pp. 140–148, 2014.
[16] A. Boboia and C. Polinicencu, “Application of the pareto analysis

regarding the research on the value of preparations in community
pharmacies from cluj-napoca, romania,” Farmacia, vol. 60, no. 4, pp.
578–585, 2012.

KORNELIUSZ SZYMAŃSKI, MIROSŁAW OCHODEK: ON THE APPLICABILITY OF THE PARETO PRINCIPLE TO SOURCE-CODE GROWTH 789


