
Time-series Anomaly Detection and Classification

with Long Short-Term Memory Network on

Industrial Manufacturing Systems

Tijana Markovic §

School of Innovation,

Design and Engineering

Malardalen University

72123, Vasteras, Sweden

ti jana.markovic@mdu.se

Alireza Dehlaghi-Ghadim §

Research Institute of Sweden (RISE)

School of Innovation, Design and

Engineering, Malardalen University

72164, Vasteras, Sweden

alireza.dehlaghi.ghadim@ri.se,mdu.se

Miguel Leon §

School of Innovation,

Design and Engineering

Malardalen University

72123, Vasteras, Sweden

miguel.leonortiz@mdu.se

Ali Balador

School of Innovation,

Design and Engineering

Malardalen University

72123, Vasteras, Sweden

ali.balador@mdu.se

Sasikumar Punnekkat

School of Innovation,

Design and Engineering

Malardalen University

72123, Vasteras, Sweden

sasikumar.punnekkat@mdu.se

Abstract—Modern manufacturing systems collect a huge
amount of data which gives an opportunity to apply various
Machine Learning (ML) techniques. The focus of this paper is on
the detection of anomalous behavior in industrial manufacturing
systems by considering the temporal nature of the manufacturing
process. Long Short-Term Memory (LSTM) networks are applied
on a publicly available dataset called Modular Ice-cream factory
Dataset on Anomalies in Sensors (MIDAS), which is created
using a simulation of a modular manufacturing system for
ice cream production. Two different problems are addressed:
anomaly detection and anomaly classification. LSTM perfor-
mance is analysed in terms of accuracy, execution time, and
memory consumption and compared with non-time-series ML
algorithms including Logistic Regression, Decision Tree, Random
Forest, and Multi-Layer Perceptron. The experiments demon-
strate the importance of considering the temporal nature of
the manufacturing process in detecting anomalous behavior and
the superiority in accuracy of LSTM over non-time-series ML
algorithms. Additionally, runtime adaptation of the predictions
produced by LSTM is proposed to enhance its applicability in a
real system.

Index Terms—anomaly detection, anomaly classification, ma-
chine learning, deep learning, LSTM, sensor data, manufacturing
systems

I. INTRODUCTION

MODERN manufacturing systems have hundreds of sen-

sors that record a huge amount of data, which provides

an opportunity to use data science to improve the performance

of manufacturing processes [1]. Valuable information and

knowledge can be extracted from these data using different

techniques, such as machine learning algorithms, statistical

analysis methods, data visualization techniques, etc. [2]. One

§Equal contribution

very important aspect that can be addressed is the detection of

anomalous behavior in the manufacturing system. Abnormal

process behavior is a major problem that can cause a decrease

in the quality of a product or a complete process failure that

results in the direct loss of a huge amount of money and

raw material. The process may fail due to malfunctioning

equipment, poor maintenance, external hacker attack, etc. All

components and sensors in the system must be continuously

monitored, and prompt actions should be provided if any

deviations from normal behavior are identified.

This paper aims to detect anomalous behavior in industrial

manufacturing systems by considering the temporal nature

of the manufacturing process. This temporal nature can be

presented by time-series data, which can be easily obtained

from any manufacturing system. The time-series is a collection

of observations made chronologically, characterized by large

data size and high dimensionality [3]. In this paper, the time-

series Machine Learning (ML) algorithm, more specifically,

Long Short-Term Memory (LSTM) network, is applied on

a synthetically generated dataset called Modular Ice-cream

factory Dataset on Anomalies in Sensors (MIDAS) [4], which

was created using a simulation of a modular manufacturing

system for ice cream production. Two different problems are

addressed: Anomaly Detection (AD) and Anomaly Classifica-

tion (AC).

The main contributions of the paper can be summarized as

follows:

• an analysis of the LSTM performance (in terms of

accuracy, execution time, and memory consumption) in

a new data set on manufacturing systems for AD and

AC,

Proceedings of the 18
th Conference on Computer

Science and Intelligence Systems pp. 171–181

DOI: 10.15439/2023F5263

ISSN 2300-5963 ACSIS, Vol. 35

IEEE Catalog Number: CFP2385N-ART ©2023, PTI 171 Topical area: Advanced Artificial

Intelligence in Applications



• a comparison in performance between LSTM perfor-

mance and non-time-series ML algorithms,

• runtime adaptation of the predictions produced by LSTM

to enhance its applicability in a real system.

The rest of the paper has been divided into the following

sections. Section II provides a description of related research.

A background on deep learning and more specifically on

LSTM is provided in Section III. The experimental setup, and

the results and discussion for the conducted experiments are

given in Sections IV and V, respectively. The conclusion and

the future work wrap up the paper in Section VI.

II. RELATED WORK

Detecting anomalies in time-series data using ML tech-

niques has recently piqued the interest of many researchers

and has been the subject of several studies. Time-series data

can be found in various application domains such as smart

manufacturing, health monitoring, cyber security, and smart

energy management [5]. The data source and its application

can have a significant impact on the efficacy of different

AD approaches. Moreover, to select an appropriate approach,

data characteristics should be also considered, such as label

availability and data volume. Several surveys exist that study

techniques for AD with respect to different application do-

mains [6], [7], [8]. The focus of the work presented in this

paper is to detect anomalies in industrial systems through the

analysis of data from multiple sensors.

Identifying patterns or deviations in industrial sensors can

be done using various techniques such as statistical analysis,

simple ML algorithms, and deep learning. Simple ML methods

often utilize classical techniques to model the distribution of

time-series data. The authors in [9] used One-Class Support

Vector Machine (OC-SVM) and extended Kalman filter for

real-time sensor AD in connected automated vehicle sensors.

Their proposed method combines model-based signal filtering

and ML technique to detect anomalous sensor readings and/or

malicious cyber attacks. In [10], the authors used multivari-

ate linear regression and Gaussian mixture models to detect

anomalies in the reading sensor values from engine-based

machines. They create a model from the correct behavior of

the system based on sensor values such as fuel usage, engine

load, and oil pressure to gauge and identify specific failures in

the machine by comparing the received data with the normal

model.

In recent years, deep learning models have shown promising

results in time-series modeling [11]. The deep learning ability

to automatically learn complex patterns from huge amounts of

data makes it suitable for time-series AD. In the application

of deep learning on time-series data, there are three clear

approaches that can be seen in the literature.

The first approach is to use LSTM. In [12], an automated

approach to detecting anomalies using a supervised LSTM and

statistical analysis is introduced. This study uses an LSTM

neural network to predict non-robust statistical properties and

robust ones. This model identifies anomalies in time-series

data by combining statistical analysis with a supervised LSTM

neural network. In [13], a supervised LSTM-based model is

introduced to detect abnormal data generated by mechanical

equipment. The model extracts spatial features from the visual

representation of the signal’s frequency spectrum over time

using a convolutional model and detects anomalies using a

residual LSTM. In [14], authors introduced an LSTM-based

real-time AD algorithm for time-series that can tolerate minor

pattern changes. This algorithm automatically calculates the

detection threshold based on changes in the data pattern. They

employed two LSTM models, each with a distinct threshold.

The first threshold is derived by taking into account all data

points, whereas the second threshold is determined by taking

into account those data points that are considered normal. Two

LSTM models work in parallel, where one LSTM model finds

single-point anomalies, while the other detects anomalous

based on the long-term threshold.

The second approach combines an autoencoder with LSTM

for unsupervised/semi-supervised problem-solving. In [15], an

LSTM-based scheme is proposed for multi-sensor AD. It

uses normal data to train an encoder-decoder model, which

reconstructs normal data with minimal error. Anomalies are

detected by measuring reconstruction error and likelihood. In

[16], a model using autoencoders and residual error detects

anomalies in sound sensor data for complex machines, aiding

early maintenance planning. [14] introduces an LSTM-based

real-time AD algorithm for time-series, adjusting the detection

threshold based on pattern changes. Two LSTM models work

together for single-point and long-term AD. In [17], a stacked

autoencoder connects gated neural networks and LSTMs for

short-term and long-term AD in discrete manufacturing. Au-

thors in [18] characterized multi-sensor time series with a

deep convolutional autoencoder model. They used a non-

linear bidirectional LSTM and linear auto-regressive model

for prediction. Multi-Scale Convolutional Recurrent Encoder-

Decoder (MSCRED) framework proposed in [19], where they

used convolutional recurrent encoder-decoder for detection and

diagnosis in multivariate time series data. In this framework,

the spatial information is encoded into signature matrices

using a convolutional encoder, while the temporal information

is modeled using an attention-based ConvLSTM. In [20],

the authors proposed the Multivariate Time-series Anomaly

Detection via Graph Attention Network (MTAD-GAT) frame-

work, which treats each univariate time series as an individual

feature and includes a feature-oriented graph attention layer

and a time-oriented graph attention layer to detect the complex

dependencies of multivariate time series. Furthermore, to find

anomalies, it computes the inference score of forecasting-

based model prediction reconstruction-based model predic-

tions. Variational Autoencoder Generation Adversarial Net-

works (LSTM-based VAE-GAN) method proposed in [21]

which uses Generative Adversarial Networks (GAN) for time

series AD to monitor the equipment sates. This method trains

the encoder, the generator and the discriminator with LSTM

models and detects anomalies based on reconstruction error

and discrimination results. Corizzo et al. [22] presented an

AD model that leverages spatial awareness through a stacked

172 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



autoencoder architecture. The proposed method utilizes spatial

autocorrelation patterns generated by the autoencoder during

the distinctive encoding phase to detect anomalies based on

distance measures. The authors evaluated the effectiveness

of their algorithm using geo-distributed data collected from

renewable energy plants.

The final approach is to use a Convolutional Neural Network

(CNN). In [23] a fault detection and diagnosis model using

a CNN in semiconductor manufacturing is proposed. The

authors applied windowing techniques to deal with variable-

length multiple time-series data and trained CNNs to detect

anomalies in the quality of electric wafers. This model is

equipped with a mechanism to identify the contribution of

each sensor on anomalies to provide traceable information

for fault diagnosis. The work presented in [24] proposes a

new deep learning architecture for supervised AD on multi-

sensor data using a combination of CNN and Recurrent

Neural Networks (RNN). This architecture is proposed to

detect anomalies in elevators with different sensors in terms

of type and count. They used individual CNN networks for

each sensor as a first layer to extract features. This layer

eliminates the need for preprocessing and provides architecture

design flexibility for the next layers. The next layer of this

architecture aggregates these features using LSTM or RNN

networks using the windowing technique, where each window

can model part of the time-series. The work presented in [25]

proposed an algorithm based on CNN and Spectral Residual

(SR) to improve the performance of AD on public datasets and

Microsoft production data. They converted time series data

with the SR model and then used visual saliency detection for

AD in time series.

The main difference between this paper and all the above

mentioned papers is that this paper focuses on the application

of basic LSTM approach to detect and classify anomalies in

analog sensors data from a manufacturing environment and

compares that approach with different non-time-series ML

algorithms.

III. LONG SHORT-TERM MEMORY RECURRENT NEURAL

NETWORK

A. Artificial Neural Network

Artificial Neural Network (ANN) [26], [11] is an ML

algorithm inspired by the human brain. Artificial neurons are

organized into layers (input layer, one or more hidden layers,

and output layer), where the output of one layer is used as

input to the next layer. An example of ANN architecture can be

seen in Fig. 1. The layers are interconnected with connections

that have parameters called weights. The output of each layer

is calculated as follows

Olayeri
= activation((Wlayeri

)T ×Olayeri−1
+Blayeri

) (1)

where Olayeri−1
is the output of the previous layer (if i is

the first layer, then Olayeri−1
is equal to the input values

X), (Wlayeri
)T is the transpose of the weights that connect

layer i and layer (i − 1) and Blayeri
are random weights

that are not multiplied by any input. Finally, an activation

Fig. 1: Artificial Neural Network

function transforms the output into a different range. There

are different activation functions as sigmoid, tanh, softmax,

ReLU, LeakyReLU, etc. [26]. Three activation functions that

are used in the paper are: sigmoid (Eq. (2)), tanh (Eq. (3)) and

softmax (Eq. (4)). The sigmoid activation function transforms

the data into (0,1) interval, while tanh transforms it to (−1,1).
The softmax activation function is only used for the output

layer and it does not normalize the output where the values

are in the (0,1) range and the summation of all values is equal

to 1.

sigmoid(x) = σ(x) =
1

1+ e−x
(2)

tanh(x) =
ex − e−x

ex + e−x
(3)

so f tmax(x) j =
ex j

∑
K
k=1 exk

(4)

The goal of the ANN training process is to adjust its weights

(black connections in Fig. 1) to fit the objectives. This is

done using the backpropagation algorithm [27], [11]. Once

the weights are trained, the ANN is ready to be used.

B. Recurrent Neural Network

Recurrent Neural Networks (RNN) is a type of Artificial

Neural Network that takes into consideration time-series data.

In order to compute the output at time t, the calculations made

in t−1 are used. Fig. 2 shows an example of RNN, and how it

uses the different time steps. To be more specific, the equations

that compute the output for time step t (Y (t)) are as follows

Y (t) = activation((Wy)
T ×S(t)) (5)

S(t) = activation((Wx)
T ×X(t)+(Ws)

T ×S(t −1)) (6)

where Wy, Ws, Wx are weight matrices for the connection

between the hidden layer and the output layer, the hidden layer

connected to itself, and the connection between the input layer

and the hidden layer, respectively. Additionally, X and S are

vectors that represent the input and the output of the hidden

layer, respectively.

Unfortunately, RNN has a problem, called grading vanishing

problem, when training with backpropagation algorithm [26].

For this reason, a more advanced type of network is needed.

TIJANA MARKOVIC ET AL.: TIME-SERIES ANOMALY DETECTION AND CLASSIFICATION WITH LONG SHORT-TERM MEMORY NETWORK 173



Fig. 2: Recurrent Neural Network in its fold and unfolded version.

C. Long-Short Term Memory Neural Network

Long-short Term Memory (LSTM) neurons are presented

to solve the grading vanishing problem. Each of this units is

composed of:

• Two memories:

– Long-term memory (LT M) which passes the infor-

mation that has been used for a long period of time

to the current time step. Additionally, thanks to this

memory, the gradient vanishing problem is solved.

– Short-term memory (ST M) which saves the infor-

mation that has been used in the previous time step.

• Four different areas (gates):

– Forget gate which finds information that can be

discarded. It is calculated as follows:

F(t) = σ((Wf )
T × [X(t),ST M(t −1)]+B f ) (7)

where Wf represents the weights of the forget gate, X

the input information, ST M the short-term memory,

t the time step and [a,b] the concatenation of the

vector a with the vector b.

– Input gate which finds information that is relevant

(R(t)) and needs to be modified into the LTM, and

weights the values based on their importance (I(t))
into the [-1,1] range. The calculations are as follows:

R(t) = σ((Wr)
T × [X(t),ST M(t −1)]+Br) (8)

I(t) = tanh((Wi)
T × [X(t),ST M(t −1)]+Bi) (9)

where Wr and Wi are the weights used to calculate

the relevance and the importance, respectively. In the

same way, Br and Bi represent the biases used to cal-

culate the relevance and the importance, respectively.

– Update gate which modifies LTM by adding the

information found in the input gate. Additionally,

LTM needs to be modified by F calculated in Eq.

(7). The LTM vector (LT M) for the current time step

t is calculated as follows:

LT M(t) = LT M(t −1)×F(t)+R(t)× I(t) (10)

Fig. 3: Long-Short term memory unit. STM and LTM stand

for Short-Term Memory and Long-Term Memory, respectively,

where t indicates the time step.

– Output gate which calculates the final output that

depends on the input information, the output used in

the previous time step and the LTM that is previously

modified. It is calculated as follows:

Y (t) = ST M(t) = σ((Wy)
T × [X(t),ST M(t −1)]+By)

× tanh(LST M(t))
(11)

where Wy is the weight matrix used in the use gate,

while By is the bias used on the same gate.

The complex units explained above are used to replace the

simple units in the hidden layer of RNN (blue circles in Fig.

2). An overview of the entire LSTM unit is given in Fig. 3.

IV. EXPERIMENTS

A. Dataset Description

The experiments presented in this paper are conducted on

a publicly available dataset called MIDAS1, which is created

using a modular manufacturing simulation environment, where

an ice cream making process is simulated [4]. The simulated

system is composed of 6 interconnected modules, and each

module has various analog and digital sensors [28], [29]. To

1https://github.com/vujicictijana/MIDAS/

174 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



create MIDAS dataset, three different types of anomalies in

analog sensors were injected during the simulation process,

and each of them represents modifying the value in a different

way: freeze value, step change and ramp change. From the

moment of anomaly injection, the actual sensor value was

replaced by a modified value until the end of the current

run, which means that the simulation behavior was changed

from that point since the controllers have access to the wrong

values. In this way, different scenarios were simulated, from

malfunctioning sensors to external intrusions. The anomalies

were injected into the 8 different analog sensors, one sensor

at a time.

One run of the system represents a full ice cream making

process according to the given recipe, from mixing all the

ingredients to producing the ice cream cones as the final

product. All runs in the dataset are generated using the same

recipe and they are completely independent of each other.

The dataset contains a separate csv file for each of 1000

runs, where 258 runs represent normal behavior and 742

runs contains anomalies. There are three different types of

anomalies: Freeze value (24.9% of total runs), Step change

(24.% of total runs) and Ramp change (24.6% of total runs).

The dataset is divided into 500 run for training, 100 for

validation and 400 runs for testing data.

Each run has around 36000 instances and one instance

represents system state at a certain time point, which results

in 36,124,859 instances in the entire dataset. Each instance

has 60 columns, including ordinal number of instance within

one run, all sensor readings for all modules, and information

about anomaly injection. If the instance contains an anomaly

the anomaly type, sensor where the anomaly was injected, and

actual sensor value are provided. The dataset is well balanced

since the percentage of anomalous instances is 50.33%, and

approximately one third of anomalous instances belongs to

each type of anomaly.

B. Dataset preprocessing

During the dataset preprocessing phase, the following steps

were conducted:

• Output variable was defined - The “Anomaly” column

is used as the output variable. This column contains

4 different values (- for no anomaly, Step, Ramp, and

Freeze) that were encoded to numbers from 0 to 3, in the

given order.

• Input variables were defined - All sensor readings for all

modules were used as input variables, except the ones that

have the same value in the entire dataset, which resulted

in 38 input variables.

• Input variables were normalized - All input variables are

binary values or real numbers. Binary values remained

unchanged and real numbers were normalized in the range

[0, 1] using the Min-Max normalization technique.

• Numeric values were transformed to float32 - By default,

the columns in the dataset have float64 as a data type. To

prevent memory overflow, the data type of the normalized

numbers was changed from float64 to float32, with a

negligible effect on the results of the LSTM.

• Sliding window approach was applied - In order to

generate time-series data for LSTM a sliding window

approach was applied. The experiments were conducted

with different window sizes and the windows were gen-

erated only within a run. Additionally, only the output in

the last time step was consider as an output for AD/AC.

C. Experimental settings

Two different problems were addressed: Anomaly Detection

(AD) and Anomaly Classification (AC) of abnormal time

points on multivariate temporal data using supervised ML

algorithms.

All experiments were performed in a MacBook Pro 2019

2.6GHz, Intel Core i7, 16 GB RAM. Python programming

language and Tensorflow2 [30] ML library were used to

implement the experiments. The experiments were performed

with 500-100-400 runs for training, validation and testing,

respectively.

All experiments were conducted with all input variables

that were selected during the preprocessing phase (full data),

but also with the reduced number of input variables (reduced

data). For the experiments with the reduced number of input

variables only variables that contain sensor readings for sen-

sors in which the anomalies were injected are considered (8

variables). During all experiments the time and memory con-

sumption was recorded with a goal to analyse how demanding

the resulting LSTM is. Each experiment was repeated 5 times

and the average results are presented.

Four different experiments have been carried out:

1) Study of hyper-parameters in LSTM for AD and AC -

The validation set was used to find the best combina-

tion of hyper-parameters in LSTM: number of hidden

neurons and number of epochs. Values 1, 2, 5, 10 and

20 were tested for both parameters, for both AD and

AC. Additionally, two different activation functions were

tested for AD (Sigmoid and Softmax), while Softmax

activation function was used for AC.

2) Study of window sizes in LSTM for AD and AC - The

validation set was used to find the best window size with

the best combination of hyper-parameters from the first

experiment. The window sizes that were tested include

1, 2, 5, 10, and 20 for both AD and AC. The maximal

number was selected to cover all time steps within half

of a second.

3) LSTM performance for AD and AC - LSTM was trained

with the best combination of the hyper-parameters from

the first experiment and the best window size from the

second experiment and tested with the testing data.

4) Runtime adaptation of LSTM prediction - Since the

resulting LSTM will be applied in a simulator of a

modular manufacturing system, it is needed to prevent

false negative and false positive alarms as much as

2https://www.tensorflow.org/

TIJANA MARKOVIC ET AL.: TIME-SERIES ANOMALY DETECTION AND CLASSIFICATION WITH LONG SHORT-TERM MEMORY NETWORK 175



possible. After it is certain that an anomaly has occurred,

the alarm should be on until the run ends or until

someone checks the systems. This means that all the

remaining time points until the end of that run should

be considered as anomalous. To achieve this, runtime

adaption of current prediction (yi) was implemented

by checking the previous predictions and changing it

according to Eq. 12. Different amount of past time

points that are considered (t ∈ {10,20,30 . . .3000}) and

different rates of points that have to be predicted as

anomalies (r ∈ {1,2, . . .9}) were tested on validation

set. Before the moment when certainty is achieved,

predictions will be considered false positive if less than

10% of predictions in the previous period are predicted

as anomalies, so the final prediction will be normal

behaviour. All adaptions are made considering only data

from the specific run.

yi =











1 if ∃k≤i ∑
k
j=k−t−1 y j =

t
r

0 otherwise, if ∑
i
j=i−t−1 y j <

t
10

yi otherwise

(12)

V. RESULTS AND DISCUSSION

A. Study of hyper-parameters in LSTM for AD and AC

The performance of LSTM with different combinations of

hyper-parameters on the validation set is presented in Fig.

4 for AD and in Fig. 5 for AC. It can be noticed that the

accuracy of LSTM is higher as the number of epochs increases,

for both AD and AC, which is expected because the longer

training process enables LSTM to fit better to the data. The

same happens if the number of hidden neurons is increased,

which means that the LSTM can better generalize the model.

However, increasing from 10 to 20, for both epochs and hidden

neurons, does not bring a big improvement.

With respect to the activation function in the output layer for

AD, it can seen how the use of softmax gives improvements

in all cases except when there is one neuron in the hidden

layer. This is normal since having two neurons in the output

layer helps generalize better than having only a single unit.

Finally, if considering using all the input variables or

only the variables where anomalies were injected, it can be

noticed that using all available information gives benefits to

the proposed model, which means that other variables in the

process are also affected by the anomalies.

Taking into consideration all of the above statements it was

decided to use softmax as an activation function for the output

layer for AD, and 10 as the number of hidden neurons and the

number of epochs for all problems. The selected combination

did not have the absolute highest accuracy, however, the results

are very similar with the best combination. This option is

selected because it makes the model more efficient in terms of

time and memory. Although the results using the full data are

better, the experiments in the following sections are conducted

using both options.

TABLE I: Accuracy of LSTM on validation set for different

window sizes for AD and AC with all and reduced input

variables

Window

Problem AD AC

full reduced full reduced

1 84.01 82.72 68.81 68.29

2 86.75 85.21 69.58 69.51

5 87.45 86.73 69.74 69.89

10 88.06 86.07 71.27 69.01

20 88.51 86.92 71.52 70.55

B. Study of window sizes in LSTM for AD and AC

The best combination from the previous section is used

to train LSTM with different window sizes and the results

are presented in Table I. As expected, as the window size

increases the accuracy of LSTM is higher, since the model

considers more time steps back in time. It can be observed

that the improvement is around 1 percentage point in almost

all cases for full data in AD for window sizes 1, 2 and 5. The

differences from window size 5 to 10 and 10 to 20 are around

0.5 percentage points. On the other hand, on full data for AC,

the improvement is only big when comparing window size 1

to window size 2 (around 3 percentage points). Then, for the

rest of the window sizes the accuracy remains stable. If the

reduced data are considered, a similar behavior can be noticed

for both AD and AC.

If the results between window size 1 (which considers only

a single time step) and window size 20 (which considers half

a second of the manufacturing process) are considered, the

improvement can be noticed in all cases varying from 2.2

to 4.5 percentage points. This clearly shows the benefit of

considering time-series when making a predictions.

C. LSTM performance for AD and AC

The window size that achieved the best performance on

the validation set (Table I) was used to measure the LSTM

performance on the test set. The accuracy of LSTM and the

comparison with non-time-series ML algorithms is presented

in Table II, for both AD and AC. The non-time-series ML

algorithms that were considered include: Logistic Regression

(LR), Decision Tree (DT), Random Forest (RF), and Multi-

Layer Perceptron (MLP). The parameters used for these algo-

rithms can be found in paper [4].

It can be observed that LSTM has the highest accuracy,

obtaining a better performance than the best non-time-series

algorithm (MLP) by 2.7 and 0.12 percentage points for AD and

AC, respectively. This again proves that considering the pre-

vious data can help detect anomalous behavior. Additionally,

it can be noticed that LSTM that uses reduced data also has

higher accuracy than all non-time-series algorithms for AD,

while it is better than all of them and almost equal to MLP

for AC. This means that historical information can bring more

benefits than using data from all sensors without considering

the temporal nature of the process.

176 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



1 2 5 10 20

Number of epochs

1

2

5

10

20

N
u

m
b

e
r 

o
f 

h
id

d
e

n
 n

e
u

ro
n

s

70.33

75.95

81.18

81.49

82.54

75.08

79.88

81.81

83.03

80.07

80.75

82.68

76.42

81.73

77.91

80.72

85

85.43

87.76

85.14

87.16

88.32

85.94

87.82

89.28 72

74

76

78

80

82

84

86

88

(a) Sigmoid activation function with full data

1 2 5 10 20

Number of epochs

1

2

5

10

20

N
u

m
b

e
r 

o
f 

h
id

d
e

n
 n

e
u

ro
n

s

76.1

75.46

81.14

81.86

83.6

76.93

80.3

82.02

83.54

83.92

80.8

80.66

83.06

77.48

81.88

82.83

78.85

81.89

85.52

85.89

85.65

87.13

85.04

86.89

87.57

76

78

80

82

84

86

(b) Sigmoid activation function with reduced data

1 2 5 10 20

Number of epochs

1

2

5

10

20

N
u

m
b

e
r 

o
f 

h
id

d
e

n
 n

e
u

ro
n

s

72.38

78.72

82.71

71.63

82.22

81.62

72.13

84.38

84.04

82.14

84.46

72.92

84.74

85.99

85.51

88.11

88.89

89.41

85.77

89.41

88.9

84.86

86.94

89.42

89.2

72

74

76

78

80

82

84

86

88

(c) Softmax activation function with full data

1 2 5 10 20

Number of epochs

1

2

5

10

20

N
u

m
b

e
r 

o
f 

h
id

d
e

n
 n

e
u

ro
n

s

78.1

78.54

83.49

81.21

83

80.82

81.52

83.35

84.73

81.61

82.14

82.2

82.17

82.05

82.35

85.35 87.02

85.36

86.89

86.15

86.99

87.49

86.22

86.5

87.83 79

80

81

82

83

84

85

86

87

(d) Softmax activation function with reduced data

Fig. 4: Hyper-parameters selection for LSTM network for AD - Heatmaps with accuracies of LSTM on the validation set

TABLE II: LSTM performance for AD and AC on testing set

and comparison with non-time-series ML algorithms

Algorithm
Problem

AD AC

LR 64.60 51.42

DT 69.97 56.53

RF 75.07 62.49

MLP 82.36 70.73

LSTM (full data) 85.06 70.85

LSTM (reduced data) 84.49 69.89

D. Runtime adaptation of LSTM prediction

The performance of LSTM on validation set after making

a runtime adaption of the predictions is shown in Figure 6. It

can be observed that the best results were achieved if all the

previous time points (r = 1) in the selected period are predicted

as anomalous. The best results were achieved when the amount

of previous time points was 390. This means that the system

needs around 8 seconds of continues positive predictions to

be certain that an anomaly happened. Additionally, it can be

noticed that after the selected number of time points (t) the

accuracy is stabilized. Comparing all considered combinations,

they have the same trend. However, with smaller number of

required ones, the system needs more time to be certain about

the anomaly, which results in lower overall accuracy.

After applying real-time adaption on the testing set, the

overall accuracy of the model improved in average 1.8 per-

centage points, resulting in overall average accuracy of 86.9%.

The actual performance of the runtime adaptation is showed

in Fig. 7. It can be noticed that by adding the runtime adaption

some of the wrong predictions were successfully fixed (some

of the false positive and negative alarms were prevented).

E. Time and memory consumption

An important aspect to consider is the time that LSTM

requires to create the model, as well as the time that is

needed to apply the model to detect/classify the anomalies in

a real-time environment. Firstly, a comparison between model

training and testing time depending on the window size and

TIJANA MARKOVIC ET AL.: TIME-SERIES ANOMALY DETECTION AND CLASSIFICATION WITH LONG SHORT-TERM MEMORY NETWORK 177



1 2 5 10 20

Number of epochs

1

2

5

10

20

N
u

m
b

e
r 

o
f 

h
id

d
e

n
 n

e
u

ro
n

s

53.46

63.52

59.48

64.32

61.98 62.45 60.84

68.31

69.24

69.97

68.74

70.2

69.69

67.25

69.65

70.41

69.93

67.03

70.04

69.58

69.79

67.66

70.22

70.22

70.94

54

56

58

60

62

64

66

68

70

(a) Softmax activation function with full data

1 2 5 10 20

Number of epochs

1

2

5

10

20

N
u

m
b

e
r 

o
f 

h
id

d
e

n
 n

e
u

ro
n

s

52.7

61.07

58.01

64.43

60.98 58.52 62.79

66.18

68.49

69.05

67.47

67.98

68.22

65.93

68.04

68.64

68.9

66.63

69.6

69.43

69.61

66.91

69.15

69.5

69.44
54

56

58

60

62

64

66

68

(b) Softmax activation function with reduced data

Fig. 5: Hyper-parameters selection for LSTM network for AC - Heatmaps with accuracies of LSTM on the validation set

0 500 1000 1500 2000 2500 3000

Amount of previous time points considered (t)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

A
c
c
u

ra
c
y
 i
n

 v
a

lid
a

ti
o

n

r = 1

r = 2

r = 3

r = 4

r = 5

r = 6

r = 7

r = 8

r = 9

Fig. 6: Accuracy of adapted LSTM on validation set for

different combinations of amount of previous time points

considered (t) and the rate of anomalous predictions (r)

the amount of data (full data and reduced data) is given in

Fig. 8. It can be observed how the time increases linearly for

training (Fig. 8a), except when the full data with window size

20 is used. The main reason for this increase in time is that

the RAM memory is not large enough to allocate the whole

dataset, so the computer is forced to use the hard-drive to

load the data. Secondly, if the testing time is considered (Fig.

8b), it can be noticed that all models with all window sizes

would be able to run on a real-time system. The time between

data readings within the system is equal to 25 ms, which is

much higher than the slowest LSTM model that was evaluated

(which requires less than 0.05 ms).

Additionally, the time used by LSTM and the non-time-

series ML algorithm are compared with respect to training

and testing time (Table III). Using LSTM requires more time

TABLE III: Average time of LSTM for training on entire

training set and testing of one single case and comparison

with non-time-series ML algorithms

Algorithm

Problem AD AC

Train (s) Test (ms) Train (s) Test (ms)

LR 889.06 0.00032 4520.92 0.00027

DT 415.44 0.00048 447.42 0.00063

RF 1493.27 0.00432 2197.63 0.00576

MLP 11362.16 0.00052 17925.70 0.00110

LSTM (full data) 45367.63 0.04386 61860.21 0.04328

LSTM (reduced data) 3028.62 0.04475 4702.19 0.04509

than the non-time-series ML algorithms for both training and

testing, which is expected since the LSTM uses more data

points within every example. When focusing only on the

testing time, it can seen that the LSTM is 84 times slower

than non-time-series version of ANN (MLP) for AD, while it

is 39 times slower for AC.

Finally, the memory used by the training data, for both full

and reduced data, is given in Fig. 9. It can be seen that the

required memory increases linearly, however, with the full data

from the window size 10, the dataset requires more memory

than the amount of memory available in the RAM. This also

proves that the limit of RAM is the reason why time increases

exponentially after window size 10 (as shown in Fig. 8a).

VI. CONCLUSIONS AND FUTURE WORK

In this paper, LSTM is applied to detect and classify

anomalies in the manufacturing system. Experiments were

conducted on the synthetically generated dataset called MI-

DAS that contains various anomalies in analog sensors data

during ice cream making process and realistically represents

a manufacturing process. The results showed that considering

time-series nature of the data is beneficial for the accuracy

of both detection and classification of anomalies. The LSTM

had better performance than all non-time-series ML algorithms

178 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



0 0.5 1 1.5 2 2.5 3 3.5 4

Time 10
4

Normal

Anomaly

Normal scenario (RunID: 992)

LSTM LSTM modified Actual

0 0.5 1 1.5 2 2.5 3 3.5

Time 10
4

Normal

Anomaly

Freeze scenario (RunID: 802)

0 0.5 1 1.5 2 2.5 3 3.5 4

Time 10
4

Normal

Anomaly

Ramp scenario (RunID: 631)

0 0.5 1 1.5 2 2.5 3

Time 10
4

Normal

Anomaly

Step scenario (RunID: 640)

Fig. 7: Predictions of LSTM and LSTM after runtime adaptation (LSTM modified) for 4 full scenarios from the testing set

for anomaly detection. Every time-point prediction is plotted.

it was compared with. On the other hand, it is more time

consuming, but it can still run on a real-time system. Fur-

thermore, the predictions generated by LSTM were adapted

during runtime, with a goal to improve its performance and

applicability in real systems.

As a future work, we plan to integrate the proposed model

in the simulation environment that is used to generate MIDAS

dataset. Additionally, we plan to develop a federated learning

approach for LSTM that will be able to distribute the AI on

different system levels.

ACKNOWLEDGMENT

This work has been partially supported by the H2020

ECSEL EU projects Intelligent Secure Trustable Things (In-

SecTT) and Distributed Artificial Intelligent System (DAIS).

InSecTT (www.insectt.eu) has received funding from the EC-

SEL Joint Undertaking (JU) under grant agreement No 876038

and DAIS (https://dais-project.eu/) has received funding from

TIJANA MARKOVIC ET AL.: TIME-SERIES ANOMALY DETECTION AND CLASSIFICATION WITH LONG SHORT-TERM MEMORY NETWORK 179



1 2 5 10 20

Window size

0

1

2

3

4

5

6

7

T
ra

in
in

g
 t

im
e

 (
s
)

10
4

LSTM on AD full data

LSTM on AD reduced data

LSTM on AC full data

LSTM on AC reduced data

(a) LSTM training time on entire training set

1 2 5 10 20

Window size

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

T
e

s
t 

ti
m

e
 o

f 
o

n
e

 c
a

s
e

 (
m

s
)

LSTM on AD full data

LSTM on AD reduced data

LSTM on AC full data

LSTM on AC reduced data

(b) LSTM testing time for one case

Fig. 8: Time comparison of LSTM during training and testing

with different window sizes.

1 2 5 10 20

Window size

0

10

20

30

40

50

60

M
e
m

o
ry

 (
G

B
)

Full data

Reduced data

Fig. 9: Memory used by the training data

the ECSEL JU under grant agreement No 101007273. The JU

receives support from the European Union’s Horizon 2020 re-

search and innovation programme and Austria, Sweden, Spain,

Italy, France, Portugal, Ireland, Finland, Slovenia, Poland,

Netherlands, Turkey.

REFERENCES

[1] B. Esmaeilian, S. Behdad, and B. Wang, “The evolution and future of
manufacturing: A review,” Journal of manufacturing systems, vol. 39,
pp. 79–100, 2016.

[2] A. K. Choudhary, J. A. Harding, and M. K. Tiwari, “Data mining in
manufacturing: a review based on the kind of knowledge,” Journal of

Intelligent Manufacturing, vol. 20, pp. 501–521, 2009.

[3] T.-c. Fu, “A review on time series data mining,” Engineering Applica-

tions of Artificial Intelligence, vol. 24, no. 1, pp. 164–181, 2011.

[4] T. Markovic, M. Leon, B. Leander, and S. Punnekkat, “A modular
ice cream factory dataset on anomalies in sensors to support machine
learning research in manufacturing systems,” IEEE Access, vol. 11, pp.
29 744–29 758, 2023.

[5] K. Choi, J. Yi, C. Park, and S. Yoon, “Deep learning for anomaly
detection in time-series data: review, analysis, and guidelines,” IEEE

Access, 2021.

[6] B. Lindemann, B. Maschler, N. Sahlab, and M. Weyrich, “A survey
on anomaly detection for technical systems using lstm networks,”
Computers in Industry, vol. 131, p. 103498, 2021.

[7] A. A. Cook, G. Mısırlı, and Z. Fan, “Anomaly detection for iot time-
series data: A survey,” IEEE Internet of Things Journal, vol. 7, no. 7,
pp. 6481–6494, 2019.

[8] S. Schmidl, P. Wenig, and T. Papenbrock, “Anomaly detection in
time series: a comprehensive evaluation,” Proceedings of the VLDB

Endowment, vol. 15, no. 9, pp. 1779–1797, 2022.

[9] Y. Wang, N. Masoud, and A. Khojandi, “Real-time sensor anomaly
detection and recovery in connected automated vehicle sensors,” IEEE

transactions on intelligent transportation systems, vol. 22, no. 3, pp.
1411–1421, 2020.

[10] G. Shah and A. Tiwari, “Anomaly detection in iiot: A case study using
machine learning,” in Proceedings of the ACM India Joint International

Conference on Data Science and Management of Data, 2018, pp. 295–
300.

[11] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[12] W. Jia, R. M. Shukla, and S. Sengupta, “Anomaly detection using
supervised learning and multiple statistical methods,” in 2019 18th

IEEE International Conference On Machine Learning and Applications

(ICMLA). IEEE, 2019, pp. 1291–1297.

[13] G. Hong and D. Suh, “Supervised-learning-based intelligent fault di-
agnosis for mechanical equipment,” IEEE Access, vol. 9, pp. 116 147–
116 162, 2021.

[14] M.-C. Lee, J.-C. Lin, and E. G. Gan, “Rere: A lightweight real-
time ready-to-go anomaly detection approach for time series,” in 2020

IEEE 44th Annual Computers, Software, and Applications Conference

(COMPSAC). IEEE, 2020, pp. 322–327.

[15] P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, and
G. Shroff, “Lstm-based encoder-decoder for multi-sensor anomaly de-
tection,” arXiv preprint arXiv:1607.00148, 2016.

[16] D. Y. Oh and I. D. Yun, “Residual error based anomaly detection using
auto-encoder in smd machine sound,” Sensors, vol. 18, no. 5: 1308,
2018.

[17] B. Lindemann, N. Jazdi, and M. Weyrich, “Anomaly detection and pre-
diction in discrete manufacturing based on cooperative lstm networks,”
in 2020 IEEE 16th International Conference on Automation Science and

Engineering (CASE), 2020, pp. 1003–1010.

[18] Y. Zhang, Y. Chen, J. Wang, and Z. Pan, “Unsupervised deep anomaly
detection for multi-sensor time-series signals,” IEEE Transactions on

Knowledge and Data Engineering, 2021.

[19] C. Zhang, D. Song, Y. Chen, X. Feng, C. Lumezanu, W. Cheng, J. Ni,
B. Zong, H. Chen, and N. V. Chawla, “A deep neural network for
unsupervised anomaly detection and diagnosis in multivariate time series
data,” in Proceedings of the AAAI conference on artificial intelligence,
vol. 33, no. 01, 2019, pp. 1409–1416.

180 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



[20] H. Zhao, Y. Wang, J. Duan, C. Huang, D. Cao, Y. Tong, B. Xu, J. Bai,
J. Tong, and Q. Zhang, “Multivariate time-series anomaly detection via
graph attention network,” in 2020 IEEE International Conference on

Data Mining (ICDM). IEEE, 2020, pp. 841–850.
[21] Z. Niu, K. Yu, and X. Wu, “Lstm-based vae-gan for time-series anomaly

detection,” Sensors, vol. 20, no. 13, pp. 3738–3750, 2020.
[22] R. Corizzo, M. Ceci, G. Pio, P. Mignone, and N. Japkowicz, “Spatially-

aware autoencoders for detecting contextual anomalies in geo-distributed
data,” in International conference on discovery science. Springer, 2021,
pp. 461–471.

[23] C.-Y. Hsu and W.-C. Liu, “Multiple time-series convolutional neural
network for fault detection and diagnosis and empirical study in semi-
conductor manufacturing,” Journal of Intelligent Manufacturing, vol. 32,
pp. 823–836, 2021.

[24] M. Canizo, I. Triguero, A. Conde, and E. Onieva, “Multi-head cnn–
rnn for multi-time series anomaly detection: An industrial case study,”
Neurocomputing, vol. 363, pp. 246–260, 2019.

[25] H. Ren, B. Xu, Y. Wang, C. Yi, C. Huang, X. Kou, T. Xing, M. Yang,
J. Tong, and Q. Zhang, “Time-series anomaly detection service at

microsoft,” in Proceedings of the 25th ACM SIGKDD international

conference on knowledge discovery & data mining, 2019, pp. 3009–
3017.

[26] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[27] B. Widrow and M. A. Lehr, “30 years of adaptive neural networks:
perceptron, madaline, and backpropagation,” Proceedings of the IEEE,
vol. 78, no. 9, pp. 1415–1442, 1990.

[28] B. Leander, T. Marković, A. Čaušević, T. Lindström, H. Hansson, and
S. Punnekkat, “Simulation environment for modular automation sys-
tems,” in IECON 2022–48th Annual Conference of the IEEE Industrial

Electronics Society. IEEE, 2022, pp. 1–6.
[29] B. Leander, T. Markovic, and M. Leon, “Enhanced simulation envi-

ronment to support research in modular manufacturing systems,” in
IECON 2023–49th Annual Conference of the IEEE Industrial Electronics

Society. IEEE, 2023, pp. 1–6.
[30] M. A. et al., “TensorFlow: Large-scale machine learning on

heterogeneous systems,” 2015, software available from tensorflow.org.
[Online]. Available: https://www.tensorflow.org/

TIJANA MARKOVIC ET AL.: TIME-SERIES ANOMALY DETECTION AND CLASSIFICATION WITH LONG SHORT-TERM MEMORY NETWORK 181


