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Abstract—Complex networks attract attention in various sci-
entific fields due to their ability to model real world phenomena
and potential for problem-solving. It is essential to evaluate
these networks to simulate and solve various issues. Evaluating
social networks is challenging due to the unequal status of nodes
and their unknown impact on everall characteristics. Existing
measures of centrality often need to consider the global structure
of the network, which requires the involvement of experts and
creates space for multi-criteria decision-making methods usage.
Unfortunately, more access to established decision-making models
is often needed for various reasons. In this article, we propose
an innovative approach called Dynamic Stochastic IdenTifiCation
Of Models (Dynamic SITCOM), which considers the preferences
of characteristic objects and the characteristic values of criteria,
enabling the re-identification of multi-criteria decision models.
The approach evaluates nodes in Facebook’s complex social net-
work, focusing on prediction accuracy using similarity measures
and Mean Absolute Error. The study shows that a stable decision
model can be created and applied to evaluate nodes in complex
networks.

I. INTRODUCTION

C
OMPLEX networks have attracted the interest of re-

searchers from various scientific fields, such as biology,

sociology, physics, and computer science [1]. Their occurrence

in a wide variety of fields makes evaluating and analyz-

ing these networks of great importance. Evaluating complex

networks is essential in many fields because it allows for

simulating and solving various problems [2].

For example, assessing the importance of nodes in the

context of power networks makes it possible to identify critical

points whose failure could lead to network shutdown. In the

case of communication networks, assessing the importance

of nodes makes it possible to optimally maintain connections

and prevent disruptions in the flow of information. Complex

networks also have applications in preventing the spread of

rumors or diseases [2]. By identifying and assessing the

importance of crucial nodes, it is possible to influence the

control and limit the propagation of such phenomena. In

addition, complex networks are widely present in the social

domain, where assessing the importance of nodes is crucial for

identifying opinion leaders, influential individuals, or experts

in a community.

Due to the growing popularity of social media, it has

become one of the most effective marketing tools. Using visual

content on platforms such as Twitter, Facebook, and Instagram

can help companies build their image and increase the reach of

their brand. Social media allows companies to connect directly

with customers and monitor product and service feedback [3].

However, one of the main problems with social networks

is viral marketing, which involves using social networks to

spread information about a product or service through users

who pass the information on to their friends.

In addition, companies promoting themselves on social

media have begun using virtual influencers to advertise prod-

ucts and services. Through them, companies can reach new

audiences and increase the reach of their brand. However, the

use of virtual influencers is controversial among consumers,

who believe it is a scam and lacks authenticity.

Therefore, evaluating social networks is particularly impor-

tant to identify critical nodes that play a crucial role in the

network. This, in turn, allows us to control and limit the

spread of rumors or use them for marketing purposes [4].

By identifying key nodes, we can also increase the reach of

positive information and make positive community changes.

Due to the statuses of nodes found in complex networks,

which are unequal and different, a problem arises in evaluating

them. The main methods used are methods of evaluating

nodes based on measures of node centrality. The most popular

centrality measures used to evaluate complex networks are

degree centrality, inter-node centrality, proximity centrality,

PageRank centrality [5], Katz centrality [6], and k-shell [7].

Unfortunately, although centrality criteria are widely used,

they have some shortcomings and deficiencies [2]. Measures

of node centrality, such as degree centrality, do not always

consider the global structure of the network [8], [9]. Therefore,

it is common to use the knowledge of domain experts to

evaluate key nodes based on the information gathered by

selected centrality metrics. Multi-criteria decision analysis

methods are also used, using some aggregation of centrality

metrics to determine network node ratings [10].

Therefore, this article proposes a new Dynamic SITCOM

approach to re-identify the decision model based on the

evaluated decision variants. The main novelty of the Dynamic
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SITCOM approach is the two-stage optimization. In the case of

the baseline Stochastic IdenTifiCation Of Models (SITCOM)

approach, optimization is based only on the preferences of

characteristic objects that reflect the decision maker’s pref-

erences [11], [12]. In contrast, the proposed approach also

optimizes the characteristic values responsible for the position

of characteristic objects in the decision grid. This leads to the

possibility of considering more non-linear problems.

The proposed approach will be applied to the problem of

evaluating Facebook nodes in a complex network. For this

problem, the expert evaluates nodes with a specific model

based on four criteria reflected in the form of centrality

metrics. This model is unavailable, so the Dynamic SITCOM

approach used is to re-identify it. The study focuses on

the accuracy of this approach using similarity measures of

rankings and Mean Absolute Error (MAE).

The rest of the article is organized as follows. Section II

presents the state of the art of MCDA/MCDM methods related

to the topic of node evaluation in complex networks and

a brief introduction of Stochastic IdenTifiCation Of Models

(SITCOM). Section III presents a proposal for the Dynamic

SITCOM approach. Section IV presents research related to the

accuracy of the Dynamic SITCOM approach in the problem of

evaluating the nodes of the Facebook complex network. The

V section presents conclusions and future research directions.

II. PRELIMINARIES

A. State of the art

Multi-criteria decision analysis/Multi-criteria decision-

making (MCDA/MCDM) methods assess node importance in

complex networks by using centrality metrics, such as node

degree, betweenness, and closeness. These methods aggregate

multiple criteria to provide a comprehensive evaluation of node

significance, aiding in the identification of crucial nodes for

network performance. Table I presents examples of the use

of MCDA/MCDM methods for complex network evaluations.

Khaoula et al. proposed a novel seed-centered approach based

on TOPSIS and the k-means algorithm to find communities

in a social network [13]. Zhang and Ng proposed a ranking

method based on entropy weights and the TOPSIS approach,

named EWM-TOPSIS, to evaluate the criticality of nodes

considering various node characteristics in complex public

transportation networks (PTNs) [14]. Lu used the TOPSIS

method to evaluate and compare the ARPA network and the

standard IEEE 39 bus system [15]. Meng et al. used the

WTOPSIS approach to evaluate complex networks in urban

rail transit (URT) [16]. Mi et al. used the VIKOR approach to

evaluate a road network with 28 intersections in Shenzhen

[17]. Kharanagh et al. proposed using SAW, TOPSIS, and

ELECTRE I approaches to analyze social networks in water

resources management [18]. Lin et al. used the CRITIC

approach to assess the importance of nodes in reconfiguring

the electricity grid backbone network [19].

B. Stochastic IdenTifiCation Of Models (SITCOM)

Stochastic IdenTifiCation Of Models (SITCOM) is a new

approach to re-identify a decision model based on evaluated

decision variants [11], [12]. This approach’s operation mecha-

nism is based on the logic of the selected stochastic optimiza-

tion algorithm and Characteristic Object METhod (COMET).

The stochastic algorithm determines the preferences of the

Characteristic Objects (CO), which in the case of the COMET

method, represents the preferences of the decision maker.

Then, when selecting appropriate values of characteristic ob-

ject preferences is over, it is possible to evaluate new decision

variants. A full description of the algorithm can be found in

the initial papers [11], [12].

III. DYNAMIC SITCOM

In this article, we propose to extend the above SITCOM ap-

proach with additional optimization. Since the base SITCOM

approach only uses characteristic object preference values for

optimization, the model may not consider some non-linearity

occurring in expert knowledge. Therefore, the present propo-

sition is based on the characteristic objects building factor,

i.e., the characteristic values of the criteria. The characteristic

values are mainly responsible for the model’s grid and irreg-

ularity. In addition, the starting and ending values included in

the vector of characteristic values of the COMET method are

responsible for the boundaries of the model. Therefore, in the

proposed approach, in addition to optimizing the preference of

characteristic objects, we will focus on optimizing the middle

characteristic values of the model.

The proposed method is based on a two-stage optimization.

The first optimization, as in the case of the original SITCOM,

will be based on the search for the best possible preferences of

characteristic objects. The second optimization, on the other

hand, will focus on the search for the best possible middle

values for the characteristic values of the considered criteria.

Due to the grid change, a loop was applied to query the

optimized models to change the preferences of the charac-

teristic objects with the newly found middle values for the

characteristic values and vice versa.

IV. STUDY CASE

In this paper, we will focus on investigating the accuracy

of the Dynamic SITCOM approach based on the problem of

evaluating nodes of complex networks. First, it will get the

selected dataset presented, and the study will be conducted in

the next section.

A. Dataset description

The selected dataset concerns a complex network, which

consists of nodes that are Facebook profiles. This dataset

is anonymized and derived from the paper [20]. It consists

of 4039 nodes and 88234 edges that connect the selected

nodes. The network and the degree of the given nodes can

be represented by Fig. 1.
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TABLE I
EXAMPLES OF THE USE OF MCDA/MCDM METHODS IN EVALUATING NODES OF COMPLEX NETWORKS.

MCDA approach No. of nodes No. of criteria Problem Year Reference

TOPSIS 4039 4 Evaluation of nodes from Facebook’s network 2023 [13]

EWM–TOPSIS 95 3 Evaluation of the MTR network in Hong Kong 2021 [14]

TOPSIS 21 7 Evaluation of the ARPA network and the standard IEEE 39-bus system 2020 [15]

WTOPSIS 118, 132, 166 4 Evaluation of the Shenzhen Metro System 2020 [16]

VIKOR 28 3 Analysis of traffic safety at intersections 2020 [17]

SAW, TOPSIS,
54, 30, 32, 26 12 Social network analysis of water resources management 2019 [18]

ELECTRE I

CRITIC 66 7 Evaluation of the Guangdong power system in China 2017 [19]

Fig. 1. Facebook’s complex network of anonymized profiles [20].

Due to the problem of evaluating the nodes of the present

network, four metrics were selected to serve as criteria.

The selected network centrality metrics are degree centrality,

closeness centrality, betweenness centrality, and eigenvector

centrality.

A decision matrix incorporating criteria and preferences,

including expert ratings, will guide the re-identification of

the decision model. It utilizes min-max normalization for

all criteria, employing stochastic optimization in the training

process. Table II displays the first ten decision variants with

normalized values for criteria and preferences.

TABLE II
EXAMPLE 10 ALTERANTIVES.

Ai C1 C2 C3 C4

A1 3.044754e-01 0.331418 0.000356 0.622104

A2 5.792237e-06 0.015326 0.000006 0.295339

A3 1.580590e-07 0.008621 0.000002 0.294918

A4 3.506768e-06 0.015326 0.000007 0.295339

A5 3.829891e-07 0.008621 0.000002 0.294918

A6 4.590804e-06 0.011494 0.000012 0.295098

A7 5.106522e-08 0.004789 0.000002 0.294678

A8 3.544060e-04 0.018199 0.000269 0.342924

A9 5.744837e-07 0.006705 0.000002 0.294798

A10 3.424270e-05 0.053640 0.000023 0.297750

. . . . . . . . . . . . . . .

B. Research on the accuracy of the approach

This research case will investigate the accuracy of the

proposed Dynamic SITCOM approach. For this purpose, the

selected stochastic algorithm for re-identification of the multi-

criteria model is the genetic algorithm. For optimization

in the genetic algorithm in determining the preferences of

characteristic objects and the means of characteristic values,

50 chromosomes were selected. On the other hand, for each

criterion, the characteristic values were defined as a set of

0, 0.5, 1 because the criterion values were normalized. The

implementations used in this study are from the mealpy library

(genetic algorithm: BaseGA) [21] and the pymcdm library

(COMET method) [22]. The related study evaluates subsets

of test collections derived from tenfold cross-validation. The

entire set in this study is divided into two parts, i.e., the

training part (90 percent of the original set) and the testing

part (10 percent of the original set). This division made was

10 times, where the selection of Folds is generated using the

sklearn library. The subsets of the train and test sets are drawn

1,000 times and have 10,15,25,50,100 decision variants. These

subsets evaluated were to use the learned SITCOM model

on the selected Fold training set. Their evaluation is then

compared with a reference evaluation determined subjectively

by the expert using the MAE measure. In addition, the output

evaluation from the learned decision variant model and the

expert evaluation ranked is, and their similarity examined is

using the rw and WS measures. The training set has high

quality and was similar to the test set, so it was decided to

present only the research on the test set.

The results of the test set presented are in Tables III, IV

and V for different numbers of randomly selected alternatives:

10, 15, 25, 50, and 100. The tests repeated were 1000 times.

The Tables contain information on accuracy, expressed by the

rw, WS, and MAE metrics. Analyzing the MAE metric in

the present case, the minimum MAE was smallest for 10

alternatives and was 0.002259, while the largest minimum

error occurred for 100 alternatives and was 0.003226. The

average values of the MAE for all the numbers of alternatives

considered ranged from 0.021608 to 0.021710. As for the max-

imum values, the largest value was reached for 10 alternatives,

while the smallest value occurred for 100 alternatives. The

standard deviation indicates the spread of the results around
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the mean value of the MAE, which was approximately 0.012

for all cases.

TABLE III
MAE VALUES FOR SELECTED 1000 DRAWS OF GIVEN NUMBERS OF

ALTERNATIVES FROM THE TEST SET.

No. of alts. Min Mean Max Std

10 0.002259 0.021665 0.059992 0.012677

15 0.002419 0.021710 0.057319 0.012469

25 0.002580 0.021608 0.055091 0.012236

50 0.002832 0.021657 0.050384 0.012166

100 0.003226 0.021674 0.048271 0.012082

The results of the rw ranking similarity metric for ran-

domly selected alternatives from the test set shown are in the

following table. The table contains the minimum, mean, and

maximum values of the rw metric and the standard deviation.

The table shows that the smallest minimum values of the rw

metric achieved were for 10 random alternatives, where they

amounted to 0.388430. In comparison, the most significant

minimum values occurred for 100 alternatives, where they

reached a value of 0.929653. The average values of the rw

metric for all the considered numbers of alternatives range

from 0. 985462 to 0.992024. Virtually all maximum values

obtained were equal to 1, except for 100 alternatives, where the

highest value was 0.999972. The standard deviation indicates

the spread of results around the average value of the rw metric,

which ranged approximately from 0.010770 to 0.037956 for

the different cases.

TABLE IV
rw VALUES FOR SELECTED 1000 DRAWS OF GIVEN NUMBERS OF

ALTERNATIVES FROM THE TEST SET.

No. of alts. Min Mean Max Std

10 0.388430 0.985462 1.000000 0.037956

15 0.638393 0.987587 1.000000 0.028707

25 0.656923 0.989946 1.000000 0.019518

50 0.871222 0.991282 1.000000 0.014129

100 0.929653 0.992024 0.999972 0.010770

Examining Table V, it can be seen that the minimum

values of the WS metric for the various numbers of randomly

selected alternatives range from 0.418711 to 0.888070. The

average values of the WS metric for all the numbers of

alternatives considered ranged from 0. 978925 to 0.994398.

All the obtained maximum values of the WS metric equal

1. The standard deviation shows the spread of the results

around the average value of the WS metric, which ranged

from 0.007709 to 0.048627 for the different cases.

TABLE V
WS VALUES FOR SELECTED 1000 DRAWS OF GIVEN NUMBERS OF

ALTERNATIVES FROM THE TEST SET.

No. of alts. Min Mean Max Std

10 0.418711 0.978925 1.0 0.048627

15 0.493393 0.980259 1.0 0.041311

25 0.511516 0.983272 1.0 0.032187

50 0.571031 0.988155 1.0 0.020861

100 0.888070 0.994398 1.0 0.007709

The visualizations associated with the rw, WS, and MAE

measures for randomly selected alternatives from the test set,

repeated 1,000 times, are shown in Figs. 2, 3, and 4. Analyzing

the MAE measure, the most accurate model was obtained for

Fold number 2, while the least accurate model obtained was for

Fold number 10. The smallest number of outliers was observed

for Fold number 8, while the most significant was for Fold

number 9. Turning to the similarity measure of rankings rw,

the lowest similarity of rankings occurred for Fold numbers 6

and 10, while the highest similarity of rankings observed was

for Fold number 7.

Fig. 2. Distributions of MAE values for selected 1000 draws of given
numbers of alternatives from the test set for 10-fold crosvalidation.

Fig. 3. Distributions of rw values for selected 1000 draws of given numbers
of alternatives from the test set for 10-fold crosvalidation.

V. CONCLUSIONS AND FUTURE RESEARCH

The study related to Dynamic SITCOM shows that it is

possible to create a stable decision model for complex network

nodes. Several conclusions can be taken by analyzing the

presented research results related to the proposed Dynamic

SITCOM approach. The first is that the larger the number of

randomly selected alternatives, the smaller the value of the
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Fig. 4. Distributions of WS values for selected 1000 draws of given numbers
of alternatives from the test set for 10-fold crosvalidation.

maximum MAE, suggesting that a more significant number

of alternatives leads to better prediction accuracy. However, the

average values of the MAE for all the numbers of alternatives

considered are very close, indicating the stability of the model.

A similar trend observed is for the similarity measures of

the rw and WS rankings, where a more significant number

of alternatives has larger minimum, average and maximum

values. The maximum values are close to 1 for all cases,

meaning the model represents reality well.

The conclusion is that a more significant number of ran-

domly selected nodes presented as decision alternatives lead

to better prediction accuracy and a more accurate reflection

of the decision maker’s preferences in the Dynamic SITCOM

approach. At the same time, the models achieve stable results,

as evidenced by the low variability of mean values and low

standard deviation.

Future research directions could focus on considering more

characteristic values for optimization. In addition, compromise

solutions should be considered for characteristic objects with

similar criterion values. It is also necessary to consider the

applicability of the Dynamic SITCOM approach to other

multi-criteria problems, such as selecting suppliers or creating

a stable recommendation system.
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