
Performance Analysis of a 3D Elliptic Solver on
Intel Xeon Computer System

Ivan Lirkov
0000-0002-5870-2588

Institute of Information and Communication Technologies

Bulgarian Academy of Sciences

Acad. G. Bonchev, bl. 25A

1113 Sofia, Bulgaria

ivan.lirkov@iict.bas.bg

http://parallel.bas.bg/~ivan/

Marcin Paprzycki, Maria Ganzha
0000-0002-8069-2152, 0000-0001-7714-4844

Systems Research Institute

Polish Academy of Sciences

ul. Newelska 6

01-447 Warsaw, Poland,

paprzyck@ibspan.waw.pl, maria.ganzha@ibspan.waw.pl

http://www.ibspan.waw.pl/~paprzyck/,

http://pages.mini.pw.edu.pl/~ganzham/www/

Abstract—It was shown that block-circulant preconditioners,
applied to a conjugate gradient method, used to solve structured
sparse linear systems, arising from 2D or 3D elliptic problems,
have very good numerical properties and a potential for good
parallel efficiency. In this contribution, hybrid parallelization
based on MPI and OpenMP standards is experimentally inves-
tigated. Specifically, the aim of this work is to analyze parallel
performance of the implemented algorithms on a supercomputer
consisting of Intel Xeon processors and Intel Xeon Phi coproces-
sors. While obtained results confirm the positive outlook of the
proposed approach, important open issues are also identified.

I. INTRODUCTION

I
N THIS contribution, we are concerned with the numerical

solution of linear boundary value problems of an elliptic

type. After discretization, such problems are reduced to finding

the solution of a linear systems in the form Ax = b. In

what follows, symmetric and positive definite problems are

considered. Moreover, it is assumed that A is a large matrix.

Obviously, the term “large” is relative, as what was large in

the past, is no longer large. Therefore, it is assumed that the

size of the linear system (matrix) is defined as large, in the

context of capabilities of currently existing computers.
In practice, large problems of this class are often solved by

iterative methods, such as the conjugate gradient (CG) method.

At each step of such methods, a single product of A with a

given vector v is needed. Therefore, to minimize number of

arithmetic operations, the sparsity of the matrix A should be

explored. On the other hand, exploration of sparsity may be

in conflict with parallelization (for large number of processors

and cores) of the iterative process.
Typically, the rate of convergence of CG methods depends

on the condition number κ(A) of the coefficient matrix A.

Specifically, the smaller κ(A) is, the faster the convergence.

Unfortunately, for elliptic problems of second order, usually,

κ(A) = O(n2), where n is the number of mesh points in each

coordinate direction. Hence, conditioning of the matrix grows

rapidly (gets worse) with n. To accelerate the convergence of

the iterative process, a preconditioner M is applied within the

CG algorithm. The theory of the Preconditioned CG (PCG)

methods says that M is a good preconditioner if it significantly

reduces the condition number κ(M−1A) and, at the same time,

if it allows one to efficiently compute the product M−1
v,

for a given vector v. The third important aspect should be

considered, namely, the need for efficient implementation of

the PCG algorithm on modern parallel computer systems, see

e.g. [1], [2]. Here, again, the question can be raised, what

does it mean “modern” as the practical meaning of this term

evolves. Establishing how the problem should be approached

on a computer current to the time of conducted research is

one of the issues that inspired this work.

II. THE 3D ELLIPTIC PROBLEM

Let us now consider the following 3D elliptic problem:

− ∂

∂x1

(

k1
∂u

∂x1

)

− ∂

∂x2

(

k2
∂u

∂x2

)

− ∂

∂x3

(

k3
∂u

∂x3

)

=

f(x1, x2, x3), ∀(x1, x2, x3) ∈ Ω,
(1)

0 < σmin ≤ k1(x1, x2, x3), k2(x1, x2, x3),

k3(x1, x2, x3) ≤ σmax,

u(x1, x2, x3) = 0, ∀(x1, x2, x3) ∈ Γ = ∂Ω,

to be solved on the unit cube [0, 1]3. Let the domain be

discretized by a uniform grid with n grid points in each

coordinate direction.

A. Finite Difference Method

Let us consider the usual seven-point centered difference

approximation for problem (1). This discretization leads to a

system of linear algebraic equations

Ax = b

where the vector of unknowns x has size n3. If the grid points

are ordered along the x3 and x2 directions first, the resulting

matrix A admits a standard block-tridiagonal structure. Here,

the diagonal blocks are block-tridiagonal matrices, while the

Proceedings of the 18th Conference on Computer

Science and Intelligence Systems pp. 1053–1058

DOI: 10.15439/2023F5683

ISSN 2300-5963 ACSIS, Vol. 35

IEEE Catalog Number: CFP2385N-ART ©2023, PTI 1053 Thematic track: Computer Aspects of

Numerical Algorithms

off-diagonal blocks are diagonal matrices. Overall, the matrix

A can be written in the following form

A = tridiag(Ai,i−1, Ai,i, Ai,i+1) i = 1, 2, . . . , n,

where Ai,i are block-tridiagonal matrices which corresponds

to one x1-plane. For details see [3], [4], [5], [6].

III. CIRCULANT BLOCK-FACTORIZATION

PRECONDITIONING

Let us recall that a circulant matrix C has the form (Ck,j) =
(

c(j−k) mod m

)

, where m is the size of C. Moreover, for any

given coefficients (c0, c1, . . ., cm−1), let us denote by C =
(c0, c1, . . . , cm−1) the circulant matrix

c0 c1 c2 . . . cm−1

cm−1 c0 c1 . . . cm−2

...
...

...
...

c1 c2 . . . cm−1 c0

.

Any circulant matrix can be factorized as

C = FΛF ∗,

where Λ is a diagonal matrix containing the eigenvalues of C,

F is the Fourier matrix

F =
1√
m

{

e2π
jk

m
i

}

0≤j,k≤m−1

and F ∗ = F
T

denotes adjoint matrix of F . Here, i stands for

the imaginary unit.

Let us now denote the general form of the CBF precondi-

tioning matrix M , for the matrix A, by

MCBF = tridiag(Ci,i−1, Ci,i, Ci,i+1) i = 1, 2, . . . n

Here, Ci,j = Block − Circulant(Ai,j) is block-circulant

approximation of the corresponding block Ai,j [3], [4]. Note

that the approach to defining block-circulant approximations

can be interpreted as simultaneous averaging of the matrix

coefficients, and changing the Dirichlet boundary conditions

to the periodic ones.

Each PCG iteration consists of one solution of the linear

system with the preconditioner. The CBF preconditioner can

be written in the form

MCBF = (I ⊗ F ⊗ F)(Λ⊗ I ⊗ I)(I ⊗ F ∗ ⊗ F ∗)

and the solution of the linear system with MCBF requires one

forward 2D Discrete Fourier Transform (DFT), solution of the

tridiagonal linear systems, and one backward 2D DFT.

The details of the sequential and parallel realizations, of the

CBF preconditioner, have been described in [5], [6], which

should be consulted for the remaining details.

IV. NUMERICAL TESTS – EXPERIMENTAL SETUP

Conducted experiments have been selected to illustrate the

convergence rate, as well as the parallel performance of the de-

veloped algorithms for the 3D elliptic problems. Specifically,

test problems, with variable coefficients in the form

∂

∂x1

[

(

1 +
ϵ

2
sin (2π (x1 + x3))

) ∂u

∂x1

]

+ (2)

∂

∂x2

[

(

1 +
ϵ

2
sin (2π (x1 + x2))

) ∂u

∂x2

]

+

∂

∂x3

[

(

1 + ϵex1+x2+x3

) ∂u

∂x3

]

= f (x1, x2, x3)

where ϵ ∈ [0, 1] is a parameter have been considered. It is

well known that the circulant preconditioners are competitive

with the incomplete LU factorization for moderately varying

coefficients. This reflects the averaging of the coefficients, used

in the block-circulant approximations.

The right hand side f , is chosen in such a way that the

problem (2) has solution

u (x1, x2, x3) = sin 2πx1 sin 2πx2 sin 2πx3.

All computations are done in double precision. The stan-

dard iteration stopping criterion is ||rNit ||M−1/||r0||M−1 <
10−6, where r

j stands for the residual at the jth itera-

tion step of the preconditioned conjugate gradient method.

The code has been implemented in C. For the implemen-

tation of the preconditioning, Fast Fourier Transform (FFT)

was used, and functions fftw_init_threads, fftw_plan_with_

nthreads, fftw_plan_many_dft, and fftw_execute from the

FFTW (the Fastest Fourier Transform in the West) library were

used. A hybrid parallel code, based on joint application of MPI

and OpenMP-based parallelizations has been developed [7],

[8], [9], [10], [11].

In this contribution, the parallel code has been tested on

cluster computer system Avitohol, at the Advanced Computing

and Data Centre of the Institute of Information and Commu-

nication Technologies of the Bulgarian Academy of Sciences.

The Avitohol consists of HP Cluster Platform SL250S GEN8.

It has 150 servers, and two 8-core Intel Xeon E5-2650 v2 8C

processors and two Intel Xeon Phi 7120P coprocessors per

node. Each processor runs at 2.6 GHz. Processors within each

node share 64 GB of memory. Each Intel Xeon Phi has 61

cores, runs at 1.238 GHz, and has 16 GB of memory. Nodes

are interconnected with a high-speed InfiniBand FDR network

(see, also http://www.hpc.acad.bg/).

For the experiments, Intel C compiler has been

used and the code was compiled using the following

options: “-O3 -qopenmp -L$(MKLROOT)/lib/intel64

-lmkl_intel_lp64 -lmkl_intel_thread -lmkl_core -lpthread

-lmkl_rt -lm” for the processors, and “-O3 -qopenmp -mmic

-L$(MKLROOT)/lib/mic -lmkl_intel_lp64 -lmkl_intel_thread

-lmkl_core -lpthread -lmkl_rt -lm” for the coprocessors. Intel

MPI was used to execute the code on the Avitohol computer

system.

1054 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

TABLE I
USED MEMORY, NUMBER OF ITERATIONS AND TIME (IN SECONDS) FOR THE EXECUTION OF THE PARALLEL ALGORITHM ON ONE NODE USING ONE MPI

PROCESS AND VARYING THE NUMBER OF THREADS.

n memory Nit Error threads
1 2 4 8 16 32

120 707 Mb 57 7.7 E-3 8.53 7.68 4.80 4.13 3.81 7.42
240 3325 Mb 96 3.8 E-3 160.32 141.73 88.64 58.88 46.68 84.79
360 6631 Mb 132 2.6 E-3 771.61 732.17 423.83 276.96 218.15 372.30
480 15629 Mb 166 1.9 E-3 2425.11 2307.68 1302.72 832.37 671.93 1070.61
600 30458 Mb 200 1.5 E-3 6403.09 6336.52 3533.77 2155.12 1566.76 2598.90
720 52542 Mb 231 1.3 E-3 14192.50 13565.10 7753.98 4656.22 3346.86 5197.23

V. EXPERIMENTAL RESULTS AND ANALYSIS

The first series of experiments established the “baseline”

performance. In Tables I and II results obtained using pro-

cessors of a single node of Avitohol are presented. Table I

shows the used memory, the number of iterations, the maximal

error of the obtained solution, and the total execution time.

The results have been obtained using only shared memory

parallelism: i.e. there was one MPI process and up to 32

OpenMP threads.

The first observation concerns memory use. For n increasing

from 120 to 720, memory consumption grows from 707 Mb

to 52542 Mb. This means that the limit of size of the problem

that can be solved on a single node has been reached. This

was checked experimentally, and increasing n to 840 resulted

in an “out of memory” error.

Second, let us note that for n = 120 there is no performance

gain with the number of used threads. Clearly, problem is too

small. However, for n = 720 speedup of order of 5 has been

reached for 16 threads. This was also the “best result”. Moving

to 32 threads resulted in speedup decreasing to approximately

3. Interestingly, almost no performance improvement was

observed when moving form 1 to 2 threads.

Approaching the performance from the“completely oppo-

site” perspective, Table II shows the execution time when

using only distributed memory parallelism; i.e. one OpenMP

thread and up to 32 MPI processes. It should be noted that

in the current (prototype) implementation, the algorithm works

correctly only if the number of mesh points in each coordinate

direction (n) is divisible by the number of processes. In the

Table, the best execution time, for each size of the problem,

is marked in bold.

It is easy to note that, for n = 120, 240, . . . 720 the

algorithm works much faster when using only MPI parallelism

TABLE II
EXECUTION TIME (IN SECONDS) FOR THE EXECUTION OF THE PARALLEL

ALGORITHM ON ONE NODE USING ONE OPENMP THREAD.

n processes
15 16 30 32

120 1.68 2.07
240 26.02 24.50 19.66

360 167.61 83.46

480 532.95 589.49 286.14 306.16
600 1200.36 709.44

720 2535.59 2385.89 1834.67

and utilizing multiple threads (in comparison to using OpenMP

based multi-threading). For the largest case (n = 720), the

solver that is using MPI and 30 threads is more than 2 times

faster than using OpenMP and 16 threads (the fastest result

from Table I). Overall, for the smallest problem (n = 120)

the fastest execution is obtained when using 15 MPI processes.

For bigger problems, on the other hand, the best results have

been reached when using 30 processes.

The second series of experiments concerned use of indi-

vidual processors. Specifically, Table III shows the execution

time when using only processors from multiple nodes (from

2 to 8). Here, results for 1 OpenMP thread, as well as 16

and 32 threads are reported. Note that, results for n = 960
are also reported. This was possible due to the fact that the

problem was “split” into at least two nodes and, therefore, it

“fit in” (did not generate out of memory errors). Again, the

best execution time, for each problem size, is marked in bold.

The algorithm runs the fastest when using 16 threads in just

few cases, i.e. for n = 120 on 3 and 8 nodes, for n = 240
on 5 nodes, and for n = 960 on 2 nodes. In the remaining

cases, the execution using one thread is the fastest. Considering

the largest case (n = 960), for a single OpenMP thread,

speedup of order 6 can be observed when moving from 2 to 8

nodes. Moreover, when comparing results with those reported

in Table II, for n = 720, the best result on 8 nodes is more

than 6 times faster.

In the next series of experiments, the performance of the

co-processors has been evaluated [12]. Specifically, Tables IV

and V present times collected on the Avitohol using only Intel

Xeon Phi co-processors (processors have not been used for

solving the computational problem). Here, Table IV shows

the execution time on one co-processor for n = 120, 240, 360.

Again, the best execution time is marked in bold.

Here, the positive effect of combining OpenMP and MPI

based parallelism can be observed. For the largest problem

that fit in the memory of the co-processor (n = 320), use of

4 OpenMP threads improved the performance by more than

4 times. This could be interpreted as a case of super-linear

speedup. However, delving into this point is out of scope of

this contribution.

Next, Table V presents execution times obtained when

solving the problem on co-processors (only), but using up to

8 nodes. Note that, since the code is a prototype, case of 7
nodes had to be excluded. Here, again, it was possible, for

IVAN LIRKOV ET AL.: PERFORMANCE ANALYSIS OF A 3D ELLIPTIC SOLVER ON INTEL XEON COMPUTER SYSTEM 1055

TABLE III
TIME (IN SECONDS) FOR THE EXECUTION OF THE PARALLEL ALGORITHM ON UP TO 8 NODES.

n nodes
2 3 4 5 6 8

pc time pc time pc time pc time pc time pc time
1 OpenMP thread

120 60 1.21 60 1.21 60 0.52 60 0.58 60 0.47 120 0.43

240 60 10.81 48 10.49 60 8.92 80 12.23 120 5.80 120 4.68

360 60 44.53 90 43.79 60 37.17 60 33.91 90 35.54 120 32.14

480 60 138.40 96 115.16 120 104.98 80 102.40 96 94.00 120 80.36

600 60 336.15 75 264.43 120 213.35 60 229.31 75 193.97 120 149.82

720 60 766.71 96 865.68 120 389.33 120 453.28 90 405.31 120 292.54

960 32 6552.93 96 1985.21 120 1545.64 160 1597.70 96 1490.35 96 1047.86

16 OpenMP threads
120 2 1.78 3 1.08 4 0.79 5 0.68 6 0.58 8 0.43

240 2 27.16 3 18.86 4 14.58 5 11.85 6 10.10 8 7.22
360 2 125.11 3 87.83 4 66.78 5 54.80 6 48.17 8 36.38
480 2 367.13 3 254.32 4 203.64 5 161.31 6 143.73 8 107.52
600 2 859.94 3 589.26 4 456.51 5 382.11 6 334.35 8 254.41
720 2 1643.03 3 1167.26 4 907.63 5 740.11 6 641.02 8 494.79
960 2 6299.66 3 3803.46 4 2957.54 5 7235.53 6 2081.50 8 1557.30

32 OpenMP threads
120 2 3.54 3 1.83 4 2.31 5 1.76 6 1.95 8 1.31
240 2 50.26 3 24.03 4 32.37 5 23.75 6 21.58 8 16.99
360 2 201.49 3 96.97 4 115.48 5 96.14 6 88.27 8 69.45
480 2 579.54 3 409.70 4 318.41 5 259.65 6 225.49 8 175.30
600 2 1371.68 3 948.50 4 722.42 5 585.15 6 501.13 8 385.27
720 2 2746.62 3 1893.08 4 1461.16 5 1181.41 6 1007.01 8 784.46
960 2 9611.23 3 5979.38 4 4526.58 5 9967.10 6 3053.44 8 2298.87

TABLE IV
EXECUTION TIME (IN SECONDS) FOR SOLVING OF 3D PROBLEM USING ONLY ONE CO-PROCESSOR OF THE AVITOHOL.

using one MPI process

n threads
60 120 200 240 244

120 8.55 7.24 7.26 7.35 7.31
240 144.06 99.49 85.05 81.44 79.93
360 792.95 538.19 417.85 389.99 374.33

using pm MPI processes and
qm OpenMP threads

n pm qm time pm qm time
120 120 1 2.86 120 2 2.25

240 120 1 104.63 60 4 18.29

360 120 1 170.97 60 4 73.90

larger number of nodes, to solve the problem for n = 960. In

the Table, the best execution time is marked in bold.

It can be seen that the algorithm runs faster using 2 threads

for n = 120 and 4 threads for n = 240, 360. In this context, it

should be recalled that the memory of one co-processor is only

16 GB. This memory limit is the reason that the code could

have been run only for small size problems. In particular, for

problems with n = 480 at least 2 co-processors were needed,

while for n = 960 the code could have been executed starting

from 12 co-processors.

In the final series of experiments, processors and co-

processors have been jointly used. Specifically, Table VI shows

the best execution times collected on the Avitohol using Intel

Xeon processors working together with the Intel Xeon Phi co-

processors. Here, the code was executed using: on processors

— pc MPI processes and every process runs qc OpenMP

threads; on co-processors — pm MPI processes and every

process runs qm OpenMP threads. In each case, the optimal

combination of the number of MPI processes and the number

of threads has been used. These combinations have been

established experimentally. The memory limitation resulted in

not being able to run experiments, for n = 960, for less than

3 nodes. For the reasons explained above, there are no results

for 7 nodes.

As can be seen, due to the, above stated, memory limitations

on co-processors, the largest problem size n = 960 required

at least 3 nodes to be solved. Considering problem of size

n = 720, use of 8 nodes turned out to be ineffective, as

solution time increased, as compared to the use of 6 nodes.

For 6 nodes an almost perfect speedup (larger than 5), has

been obtained. Interestingly, for all problem sizes, use of 8
nodes resulted in performance that was inferior to 6 nodes. We

do not have an explanation of this fact, other than possibility

that in this case operations not related to the solution of the

problem had to run “somewhere” and their execution interfered

with execution of the solver. For the largest problem, when

comparing the performance obtained on 3 and on 6 nodes, a

speedup of almost 6 was recorded. This shows that if ample

resources are provided, the proposed approach behaves as

expected and parallelizes well, when applying hybrid approach

to algorithm parallelization.

To better visualize the relationship between execution times,

they have been visualized also in Figure 1. Here, the ex-

ecution time of the hybrid code, on up to 8 nodes for

1056 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

TABLE V
TIME (IN SECONDS) FOR THE EXECUTION OF THE PARALLEL ALGORITHM ON UP TO 8 NODES USING ONLY CO-PROCESSORS.

n nodes
1 2 3 4

pm qm time pm qm time pm qm time pm qm time
120 120 2 2.25 4 120 8.69 120 6 4.96 120 8 4.03
240 60 4 18.29 4 240 104.58 240 6 58.24 240 8 42.14
360 60 4 73.90 4 240 481.40 6 244 360.95 8 240 291.30
480 2 240 1615.20 4 240 1443.04 6 244 1077.12 8 200 870.12
600 4 200 3373.44 120 12 1809.61 120 16 1265.60
720 4 240 6746.71 120 6 3554.11 120 16 2673.83

nodes
5 6 8

pm qm time pm qm time pm qm time
120 120 10 3.44 120 24 3.78 15 120 3.96
240 240 10 37.85 240 12 31.69 240 15 27.22
360 10 200 253.00 12 240 225.09 15 200 187.94
480 10 200 741.41 12 200 659.75 16 200 524.95
600 120 10 1098.67 120 24 980.98 120 30 936.67
720 10 200 3472.91 120 24 2018.62 120 30 1694.33
960 120 24 6137.27 120 30 5234.65

TABLE VI
EXECUTION TIME (IN SECONDS) FOR SOLVING OF 3D PROBLEM USING OPTIMAL COMBINATIONS OF PROCESSORS AND CO-PROCESSORS OF THE

AVITOHOL.

n nodes
1 2 3

pc qc pm qm time pc qc pm qm time pc qc pm qm time
120 2 8 2 120 7.15 32 1 28 34 3.62 48 1 12 60 2.05
240 2 8 2 244 79.71 32 1 28 34 54.16 6 8 6 120 43.82
360 30 1 30 17 305.37 32 1 14 17 210.11 6 8 6 244 198.51
480 30 1 30 17 828.02 32 1 28 34 620.84 48 1 48 30 466.77
600 30 1 30 17 1919.31 64 1 56 17 1378.84 48 1 27 24 943.17
720 2 8 2 244 5273.09 64 1 56 17 2630.10 48 1 42 34 2110.96
960 4 4 1 244 7702.80 48 1 48 30 6662.39

4 6 8
pc qc pm qm time pc qc pm qm time pc qc pm qm time

120 8 8 7 240 2.57 96 1 24 60 1.55 64 2 56 30 3.03
240 128 1 112 8 30.49 192 1 28 30 23.40 128 1 112 17 16.36
360 8 8 7 244 171.41 12 8 12 244 115.17 15 8 15 120 95.26
480 8 8 8 244 477.08 12 8 12 244 341.25 16 8 16 240 268.53
600 64 1 56 34 810.39 96 1 54 48 525.54 15 8 15 240 648.94
720 64 1 56 34 1643.04 96 1 84 34 1193.33 16 16 16 244 1859.61
960 64 1 56 34 5230.96 96 1 96 30 3630.39 16 16 16 244 3725.99

n = 240, 480, 960, for CPU-only, co-processor only and when

both CPU and co-processor were used. For each of these cases,

results are represented using the same color and marking.
It can be seen that use of multiple nodes allows one to

solve large problems. Nevertheless, the speedup, resulting

from adding nodes is not overwhelming.

VI. CONCLUDING REMARKS

The aim of this contribution was to experimentally explore

relationship between (1) 3D elliptic solver, based on pre-

conditioned conjugate gradient, (2) its hybrid parallelization

consisting of applying shared memory OpenMP threads and

distributed memory MPI approach, and (3) complex super-

computer architecture, based on nodes, processors and co-

processors. It has been established that memory availability

is one of the key issues that strongly influences parallel

performance. In this context it is difficult to apply standard

performance measures, such as speedup, since largest prob-

lems require large number of nodes to be executed. However,

even if a code can be executed on different number of nodes,

adding more nodes may not result in performance gains. There

is a “sweet spot” where the problem is executed the fastest

and adding more resources does not help. This also means

that potential for standard speedup is somewhat limited.
All these observations can be linked to complex interplay

between hybrid parallelization and hybrid computer architec-

ture. This may be also a warning sign that potential gains

from hybrid approaches may be outweighed by losses caused

by complexity of interactions between various “components”.

ACKNOWLEDGMENTS

We acknowledge the provided access to the e-infrastructure

of the National Centre for High Performance and Distributed

Computing. This work has been accomplished with the par-

tial support by the Grant No BG05M2OP001-1.001-0003,

financed by the Science and Education for Smart Growth

Operational Program (2014-2020) and co-financed by the Eu-

ropean Union through the European structural and Investment

IVAN LIRKOV ET AL.: PERFORMANCE ANALYSIS OF A 3D ELLIPTIC SOLVER ON INTEL XEON COMPUTER SYSTEM 1057

10
0

10
1

10
2

10
3

 1 2 3 4 5 6 7 8

T
im

e

number of nodes

Execution time

CPU, n=240
CPU, n=480
CPU, n=960

Phi, n=240
Phi, n=480
Phi, n=960

CPU+Phi, n=240
CPU+Phi, n=480
CPU+Phi, n=960

Fig. 1. Execution time for n = 240, 480, 960.

funds. Work presented here is a part of the collaborative

grant between Polish Academy of Sciences and Bulgarian

Academy of Sciences, IC-PL/01/2022-2023, “Practical aspects

of scientific computing”.

REFERENCES

[1] A. Axelsson and M. Neytcheva, Supercomputers and numerical linear

algebra. Nijmegen: KUN, 1997.
[2] B. Bylina, J. Bylina, P. Stpiczyński, and D. Szałkowski, “Performance

analysis of multicore and multinodal implementation of SpMV opera-
tion,” in Proceedings of the 2014 Federated Conference on Computer

Science and Information Systems, ser. Annals of Computer Science and
Information Systems, M. Ganzha, L. Maciaszek, and M. Paprzycki, Eds.,
vol. 2. IEEE, 2014, pp. 569–576.

[3] I. Lirkov and Y. Vutov, “Parallel performance of a 3D elliptic solver,” in
Proceedings of the International Multiconference on Computer Science

and Information Technology, M. Ganzha, M. Paprzycki, J. Wachowicz,
and K. Węcel, Eds., vol. 1, 2006, pp. 579–590.

[4] ——, “The convergence rate and parallel performance of a 3D elliptic
solver,” System Science, vol. 32, no. 4, pp. 73–81, 2007.

[5] I. Lirkov and S. Margenov, “Parallel complexity of conjugate gradient
method with circulant block-factorization preconditioners for 3D elliptic
problems,” in Recent Advances in Numerical Methods and Applications,

O. Iliev, M. Kaschiev, B. Sendov, and P. Vassilevski, Eds. Singapore:
World Scientific, 1999, pp. 482–490.

[6] I. Lirkov, S. Margenov, and M. Paprzycki, “Parallel performance of
a 3d elliptic solver,” in Numerical Analysis and Its Applications II,
ser. Lecture Notes in Computer Science, L. Vulkov, J. Waśniewski, and
P. Yalamov, Eds., vol. 1988. Springer, 2001, pp. 535–543.

[7] R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan, and J. Mc-
Donald, Parallel programming in OpenMP. Morgan Kaufmann, 2000.

[8] B. Chapman, G. Jost, and R. Van Der Pas, Using OpenMP: portable

shared memory parallel programming, ser. Scientific and engineering
computation series. MIT press, 2008, vol. 10.

[9] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel

Programming with the Message-Passing Interface. The MIT Press,
2014.

[10] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra, MPI:

The Complete Reference, ser. Scientific and engineering computation
series. Cambridge, Massachusetts: The MIT Press, 1997, second
printing.

[11] D. Walker and J. Dongarra, “MPI: a standard Message Passing Inter-
face,” Supercomputer, vol. 63, pp. 56–68, 1996.

[12] F. Krużel and K. Banaś, “Finite element numerical integration on Xeon
Phi coprocessor,” in Proceedings of the 2014 Federated Conference on

Computer Science and Information Systems, ser. Annals of Computer
Science and Information Systems, M. Ganzha, L. Maciaszek, and
M. Paprzycki, Eds., vol. 2. IEEE, 2014, pp. 603–612.

1058 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

