
Genetic Algorithm for Planning and Scheduling

Problem – StarCraft II Build Order case study

Konrad Gmyrek, Michał Antkiewicz, Paweł B. Myszkowski

Wrocław University of Science and Technology

Faculty of Information and Communication Technology

ul.I.Łukasiewicza 5, 50-371 Wrocław, Poland

Email: {konrad.gmyrek, michal.antkiewicz, pawel.myszkowski}@pwr.edu.pl

Abstract—The Planning and Scheduling (PS) problem plays
a vital role in several domains, such as economics, military,
management, finance, and games, where finding the optimal plan
and schedule to achieve specific goals is essential. In this article,
we present a Genetic Algorithm for the Planning and Scheduling
(GAPS) problem in the StarCraft II Build Order Optimization
problem (SC2 BO) context – as it signifies that modern strategy
games present a more challenging environment than classical
planning problems. We evaluate the performance of GAPS and
compare it with state-of-the-art methods. Experimental results
provide valuable insight into the effectiveness of GA in the context
of the PS Problem under various configurations, notably in the
context of Lamarckianism and the Baldwin Effect. Ultimately,
this research enhances the understanding of GA application
for the PS problem, offering notable insights regarding GA
performance and potential for future work.

I. INTRODUCTION

A
PLANNING problem involves creating a series of strate-

gic steps to achieve a specific goal. It often encap-

sulates order and conditions under which various actions

must be performed while simultaneously factoring uncertainty,

resources, and goals of a given problem instance. Scheduling

is a decision-making process that manages the allocation

of resources over time. Its primary objective is to optimize

specific performance metrics, typically total completion time,

often called makespan. Therefore, planning and scheduling

problems could be described as determining the optimal se-

quence of actions to achieve specific goals in the most time and

resource-efficient manner. Despite a long history of research

into these problems, the need for solutions persists due to the

consistent emergence of new challenges and their increasing

complexity. Planning and scheduling apply to diverse real-

world applications, including manufacturing, pathfinding, lo-

gistics, management, space exploration, telecommunications,

economics and games (i.e. economic or computer ones).

This article aims to solve the planning and scheduling

problem in the context of the economic development aspect

in the StarCraft II (SC2) strategy game, in this area known as

Build Order Planing.

In the following sections, we will provide the state-of-

the-art analysis (Sec.II), define the exact problem (Sec.III),

and present the proposed approach (Sec.III) and experimen-

tal results (Sec.IV) that describe the application of Genetic

Algorithm (GA) to Build Order Planing. The last sections

of the paper consist of conclusions (Sec.V) and future works

(Sec.VI).

II. RELATED WORK

A. Build Order-Planning

As described in the [5], Build Order Planning or Build

Order (BO) optimization is a class of Automated Planning

problems that arise in a video game genre called real-time-

strategy (RTS). It is a process of finding the sequence (order)

of actions to be made by the player to achieve a specific goal

in the shortest makespan. This goal depends on the exact

scenario and larger strategy, but it can be associated with

creating a certain number of military units or gathering the

precise amount of resources. Individual RTS games differ, but

the basics are mostly similar. The player performs a series

of actions like collecting resources, developing a base, and

training military units, all in order to gain an advantage over

the opponent and finally defeat him. Mentioned actions can

be divided into two groups: strategical level actions (macro)

and tactical level actions (micro). In this paper, we discuss a

sequence of the macro actions only - called Build Order.

In the context of the SC2 game, simple build-order solu-

tions, such as a quick attack with a small number of military

units, may be countered easily by building defensive structures

whose overall cost is lower compared to the cost of the

attack. Therefore, engagement benefits the defending side. On

the other hand, a defensive stance is disadvantageous against

economic development, as it will overtake the defending player

in the long term. Finally, development focus can be easily

countered by an aggressive strategy (known as ’early rush’),

which closes the cycle. Based on this stone-paper-scissors-like

dynamic, both players can change their focus during a game

to gain an advantage against the opponent. Selecting goals and

switching them in-game time is a separate subject that can be

described by a high-level strategy Artificial Intelligence (AI)

system as described in [1]. We can imagine it as a sort of

manager that dictates the overall strategy goal, however, the

problem of determining the plan for achieving this goal in the

most efficient manner is the subject of the presented research.

RTS games are interesting application domains for AI

researchers because of the huge state spaces and concurrent

actions. The most common instance of BO application in

games is StarCraft (published by Blizzard Entertainment), a

Proceedings of the 18
th Conference on Computer

Science and Intelligence Systems pp. 131–140

DOI: 10.15439/2023F6015

ISSN 2300-5963 ACSIS, Vol. 35

IEEE Catalog Number: CFP2385N-ART ©2023, PTI 131 Topical area: Advanced Artificial

Intelligence in Applications



popular RTS game with over 10 million copies sold. StarCraft

has received over 50 industry awards, including over 20 "Game

of the Year" awards. It is considered the so-called e-sports

game, as each player has the same chances at the beginning,

does not contain random elements, and the result depends

solely on the player’s skill. As StarCraft (and its sequel -

StartCraft II) is the most commonly used case, multiple other

RTS games are known for the importance of early game build

order. Such games as Age of Empires or Company of Heroes

are worth mentioning. For the all mentioned real-time games,

an important factor is the speed of action execution and fast

reaction time. However, this is not an essential aspect of

defining the BO problem. Turn-based games also make a good

example.

BO-solving methods can be used to support players or

design demanding opponents for games. It can also help with

game balancing and exploit detection. For instance, when

there are several civilizations (or races) to choose from, they

should compete on a similar level. The existence of a specific

action sequence that makes a civilization significantly stronger

than the others is considered a product defect. The ability to

simulate and detect it at an early stage of development is a

significant improvement compared to the process of lengthy

manual tests common in the game-development industry.

Authors of the [6] suggest that historically studied economic

games such as Prisoner’s Dilemma (where tit-for-tat derives)

or Cournot Production games are far more streamlined in

comparison to modern RTS games. In a broader look at this

application, simulations of systems implemented in games

refer to economic mechanisms known from the real world.

An exemplary generalization can be interpreted as the op-

timization of the company’s development strategy or even

the investment strategy, where subsequent decisions depend

on the results of previously taken steps. To support this

assumption, Cobb-Douglas (CD) model presented in [14], has

been applied by Webel et al. in [6] to the modern RTS game

StarCraft: Brood War, where worker units gather resources,

build infrastructure, and eventually lead to the construction of

combat units. The winner of the game is the last one with a

standing structure.

As suggested in [1], BO is an instance of a temporal

planning problem. Temporal planning recognizes that actions

take a certain amount of time to execute and acknowledges

that multiple actions can occur concurrently under specific

circumstances. For example, certain actions may have specific

temporal requirements, such as waiting for a resource to

become available or ensuring that one action finishes before

another can start. By treating BO as a temporal planning

problem, the planning process becomes more realistic and

aligned with real-world scenarios than in the classical planning

approach, which is streamlined, instantaneous, and does not

consider actions interacting with each other.

To further emphasize treating planning in RTS games as

a formal problem, Buro et al. in [1] present a study on the

optimization of build order strategies in real-time strategy

(RTS) games, highlighting the potential of using the Planning

Domain Definition Language (PDDL) for modeling these

problems. PDDL presented in [8] is a language utilized in

automated planning competitions to standardize the descrip-

tion of planning domains and problems, enabling diverse

planners to compete against each other. The authors of [1] also

discuss the issue of concurrent execution and propose efficient

mechanisms for ordering actions within the build order domain

of RTS games. However, it is worth noting that even the

most recent version of PDDL does not support object creation

or deletion, which is essential in RTS games where object

creation plays a vital role. While it is possible to simulate

them implicitly within the language, it signifies that modern

strategy games present a more challenging environment than

classical planning problems.

Wei et al. in [3] were the first to address the BO problem

as Planning and Scheduling problem with Producer/Consumer

constraints. This attempt to mathematically model and approx-

imate the BO problem is further supported by Blackford et al.

article [5] about build order optimization in a multi-objective

approach.

B. Methods

Several approaches to solving planning and scheduling

problems exist in the literature, such as Ant Colony Opti-

mization [13], Graph Search [5, 2], Stochastic Search [11],

Evolutionary Algorithm [4, 2] and Machine Learning [9, 3].

Churchill et al. in [5] introduced a depth-first branch-and-

bound algorithm (BnB) to address initial build orders in

StarCraft. The authors implemented a tree search, with the

root representing the initial game state, and conducted a depth-

first exploration to identify an optimal solution. This solution

aims to meet the goal within the shortest possible makespan.

While it is possible to validate found build orders in the game

environment, this approach is time- and resource-intensive.

To address this challenge, the authors suggested developing

a StarCraft economic simulator to measure the value of build

orders effectively.

El-Nabarawy et al. in [11] implemented a Monte Carlo

Tree Search (MCTS) based on a StarCraft mini-game called

BuildMarines the goal is to find build orders that can provide

players with a larger amount of Marines military units in a

fixed amount of time. Both methods have significantly lower

action space, and although they may be effectively applied to

smaller problems, they differ from the efficiency and speed

of evolutionary algorithms and machine learning techniques.

The comparison of these methods has been described in the

experiments section to support this claim further.

In the context of Evolutionary Algorithms (EA), Justesen et

al. in [2] has successfully implemented the evolutionary-based

method of Continual Online Evolutionary Planning (COEP)

for build order optimization. The goal was to create a game

agent that can, in-game time, find build orders that counter

opponents’ movements, also utilizing the BO simulator for

evaluation. The fitness function is based on a heuristic that

can describe how desirable founded BO is. Heuristic values

short-term rewards higher than long-term rewards, which are

132 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



very important in game planning agents because long-term

build orders can provide the agents with optimal strategy and

powerful armies, which are easier to counter by opponents.

Blackford et al. implement a multi-objective evolutionary

algorithm (MOEA) detailed in their work [4] for the To-

tal Annihilation RTS game. The multi-objective approach is

advantageous because solutions evolve to satisfy different

goals, and the algorithm does not find just one solution but a

set of different solutions, each potentially providing different

strategic advantages.

Another significant implementation of a machine learning-

based game agent was achieved in the form of AlphaStar [9]

for StarCraft II. This sophisticated AI has the capability to

generate valid build orders dynamically during gameplay.

Liu et al. in their work [10] used a reinforcement learning

technique to create a low-cost StarCraft II agent and

suggested that on a larger scale, this technique could create

a better agent using fewer resources. Although machine

learning-based methods show immense potential in solving

BO problems, they require considerable resources and time

to develop a functioning model and, once created based on a

problem, cannot be easily applied to another similar problem.

Conversely, Genetic Algorithms (GA) only necessitate game

data and a build order evaluation method to produce valid

build orders. It makes GA a more universally applicable

solution for these types of problems. GA can also be deployed

within build orders for game balancing, which is a complex

problem.

For the above reasons, we implement the Genetic Algorithm

in our research. As for reference methods, we propose those

mentioned earlier, specifically the ones proposed by Justesen

et al. as cited in [2], the COEP method configuration (COEPc),

and the method proposed by Blackford et al. in [4], MOEA

method configuration (MOEAc). In addition, we will present

an application of the Genetic Algorithm in comparison to

approaches based on Branch and bound (BnB) and Monte

Carlo Tree Search (MCTS) methods, as cited in [5, 11].

III. PROBLEM DEFINITION AND PROPOSED METHOD

A. Planning and Scheduling Problem Definition

We generalize the SC2 BO problem using Planning and

Scheduling (PS) problem with Producer/Consumer constraints

based on [4] work.

The planning aspect of the problem involves determining

which actions need to be performed to achieve a certain goal

G. The scheduling aspect, on the other hand, describes the

timing of action execution with consideration to available

resources R and minimizing the overall completion time of

all actions a ∈ A, called makespan. Solution s ∈ SP where

SP is a solution space could be described by a vector of

actions a as follows:

s = [a0, a1, ..., an−1] (1)

where n is the solution size. The solution s changes the initial

game state Sa into desired state of Sx (see Eq.2).

Sa a0−→ Sb a1−→ ...
an−1

−−−→ Sx (2)

Every considered action ax has a set of certain prerequisite

conditions of execution. These prerequisites are described by

resources r ∈ R. Wei et al. in [3] for the PS problem,

distinguish two categories: Consumable, Renewable; and four

types of resources: Consume, Produce, Borrow, and Require.

• Consumable

– Consume - action can consume a specific amount of

resources, for example, the cost of creating a wall

(structure) in SC2 is: 100 gold, and 50 wood, so the

action of making a wall would consume 100 gold

and 50 wood.

– Produce - action usually after completion provides a

game environment with some kind of good (produces

it). This good can be a soldier, building, research,

or any other environmental element that changes the

game state, but generally, we can define it as some

kind of resource.

• Renewable

– Borrow - action can borrow certain resources during

execution time, for example in SC2 game, the action

of creating a Zealot army unit needs to use Gateway

building, Gateway can produce only one unit at a

time, so it is borrowed by action to create Zealot

action.

– Require - a type of resource that multiple actions

at the same time might require. For example, action

mine coal borrows one miner and requires the mine

to execute. However, in mine multiple miners can

work so the resource is shared and now borrowed.

Note that given resources can belong to two or more types.

For example, the SC2 Gateway building can be borrowed

and produced. The list of resources associated with an action

can be defined as aR. For instance, in the action of creating

a military unit a, aR consists of consuming 100 gold and

borrowing barracks for the production of the unit as follows:

aR = {100 gold, barracks, null,military unit}

B. Constraints

To consider the build order a feasible solution, it is impera-

tive that the set of constraints C is satisfied, which also limits

SP .

Cumulative Producer/Consumer constraint refers to Con-

sumable resources. It requires that when two actions are

planned to occur simultaneously, the combined resources

they need should not exceed the available quantity of those

resources. For example, creating two Zealots (units) at the

same time requires 200 crystals, 2 Gateways, and 4 supply

consumption. Constraint can be expressed as:

∀a∈s atR ≤ T t (3)

where s is solution, atR are resources required by the a
action in time t and T is the total amount of resources available

in time t.

KONRAD GMYREK ET AL: GENETIC ALGORITHM FOR PLANNING AND SCHEDULING PROBLEM – STARCRAFT II BUILD ORDER CASE STUDY 133



Disjunctive constraint refers to borrowed resources, it states

that for a pair of actions competing for execution at the same

time. The constraint is satisfied when these actions do not

overlap, and thereby the integrity of the system process is

maintained. Constraint can be expressed as:

∀(i,j)∈s2,i ̸=j (iend ≤ jstart) ∨ (jend ≤ istart) (4)

where pair (i, j) ∈ s2 is every pair of two different actions

that can be extracted from s. As astart and aend, we describe

the start and end time of executing action a, respectively.

Exist constraint refers to Required resources. It states that

certain resources must exist in order for action to execute. An

example of an existing constraint in the context of SC2 could

be Stalker army unit which we can not build until we build

Cybernetics Core building. Constraint can be expressed as:

∀a∈s∀r∈exist(aR) astart ≤ t ≤ aend ∧ r ∈ T t (5)

where exist(aR) is a subset of action a resource set aR
that contains only resources which must exist in order to

execute action a. Resource r is not consumed.

According to the above definition, the problem could be

defined as:

Given: < G,R,C,A, Sa >,

interpreted as follows. To find: Solution s that fulfills goal G
in the shortest possible makespan, starting from state Sa, using

resources R, considering only actions present in A, satisfying

all constraints C.

C. SC2 BO problem as PS problem

SC2 is a strategic game that allows players to embody one

of three distinct races, each differing in units, structures, and

strategies. For our research purposes, we have selected the

Protoss race, an advanced, alien-like race within the game.

We denote the initial state Sa as a typical SC2 start state for

the Protoss race, which includes the following resources: 50

crystals, 1 Nexus, 12 Probes, and a supply capacity of 15.

Probes function as worker units that accumulate crystals at

the Nexus base. These Probes have the capability to construct

buildings, such as the Pylon, which not only increases the

supply capacity but also permits the construction of more

specialized buildings within its energy field. One such building

is the Gateway, which facilitates the creation of basic military

units, like the Zealot. In this context, we categorize actions

like creating a Probe, constructing a Pylon or Gateway, or

building a Zealot as macro actions, which is typical for SC2

BO. While we take into account all possible macro actions of

Protoss race in our research, we will not delve into each one

individually due to their sheer number.

To present SC2 BO as the PS Problem, the set of metrics

m ∈M should be defined as follows:

• m0 - total completion time,

• m1 - total build cost of workers,

• m2 - total build cost of the army,

• m3 - total research cost,

• m4 - total cost of defensive buildings.

The goal G within the SC2 BO context is represented

as an objective vector O = [m1,m2,m3,m4] comprising

non-negative integer value. Assigning values on the vector

positions defines exact scenarios. Each value within this vector

can range from 0 to the maximum possible value of each

metric m. However, m0 is the total completion time of all

actions in solution s extracted after BO simulation, which will

be discussed later.

Based on each metric defined in vector O, we can divide

the action space A into four distinct subsets, each containing

actions that contribute solely to one specific objective metric

value. This arrangement allows the given method to utilize

every action in the game during the optimization process.

To address the scheduling aspect of the issue, we adopt a

model based on the rule that each action is executed as swiftly

as possible, under the condition of all prerequisites are met.

For instance, if the task involves constructing two Zealots,

this task will be executed concurrently if a sufficient amount

of resources is available. It is the responsibility of the method

to order actions in such a way that the arrangement is optimal

in the context of the addressed rule. This model is adopted

by a SC2 game simulator that conducts BO simulations. To

acknowledge the need for the delay before executing certain

actions, we propose None action, which will force a delay for

the next action execution by a fixed amount of seconds.

The given definition allows the construction of solution s ∈
SP (alternatively referred to as BO), where SP is the solution

space, described by an ordered list of integers, each of which

maps to a specific BO action in SC2 (an example presented

in Figure 1).

In this paper, we engage with the complete action space

of the Protoss race, which comprises 59 actions plus one

additional None action. Each race in the game encapsulates

actions space A of around 60 actions. In the case of the

Protoss race, which we choose as the base for our research,

the initial game state permits the execution of four possible

actions. Notably, certain actions can expand the list of potential

actions, making the explicit determination of the solution space

a considerable challenge. Nevertheless, it’s possible to estimate

the entire set of potential genotypes by utilizing the length of

the build order. This concept can be formally encapsulated in

the following equation:

x = an (6)

Here, n represents the size of the build order, a stands for

the total size of the action space, and x signifies the complete

number of genotypes – a similar representation is presented

in [12]. For a comprehensive problem definition, particularly

within the context of a BO problem, we need to define the

size of the build order solution n. We will address size n in

Sec.IV-B.

Finally, we define the evaluation function E, which value

is to be minimized by the optimization method, as a function

of end state Sx and objective vector O provided by simulator

134 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



Fig. 1. The example solution – genotype (i.e. solution) presented as list of
integer is mapped to list of SC2 actions

from all actions a in a given solution s. If the solution does

not fulfill the objective described by the objective vector, we

add a penalty for every metric m objective that is not fulfilled.

E can be presented as the formula:

E(Sx, O) = Sxm
0

+
∑

m∈M,m ̸=m0

max(0, Om − Sxm

) (7)

where m ∈ M is metric, O is objective vector and Sxm

is end game state metric m acquired by simulation. The goal

value of metric m, which is part of objective vector O can

be formulated as Om. As Sxm
0

we understand the game end

state time metric m0 value. The max(a, b) function represents

the maximum of a and b. For example, for a given objective

vector:

O = {m1 = 0, m2 = 200, m3 = 0, m4 = 0}
and end state Sx:

{m0 = 120, m1 = 800, m2 = 100, m3 = 100, m4 = 0}
is evaluated as follows:

E(Sx, O) = 120 +max(0, 0− 800) +max(0, 200− 100)

+max(0, 0− 100) +max(0, 0− 0)

= 120 + 0 + 100 + 0 + 0

= 220

The mechanism for extracting metric values from Sx is built

upon the simulation detailed in the following section.

D. Build Order Simulator

The BO simulator is a program inspired by previous state-

of-the-art implementations. It takes input parameters such

as the input game state Sa, action space A, build order s,

and provides the Genetic Algorithm (GA) with the output

game state Sx. The output is described by solutions s in-

game execution time and end state metrics SxM

values. The

simulator focuses only on the BO aspect of the SC2 game and

does not simulate enemy players.

The program simulates every second of the game in a loop

until every action in the build order is completed or timeout

is reached. During the simulation, we execute actions, often

concurrently. Once an action is executed, we add the provided

resource to the game state. We extract metrics from the

provided game state Sn for the E function when the simulation

ends. The simulator loops through BO and tries to execute the

current action in each time frame. If it cannot, it just skips to

another time frame, so during the evolution process, we have

to ensure that every build order in the population is valid.

The simulation ends with a timeout if the build order is

invalid, meaning it is impossible to execute based on game

rules. However, in the proposed implementation, timeout never

occurs, and the simulator validates correct solutions.

Build order completion is not a deterministic process, but

it can be approximated by one. For instance, the time to

build a Pylon can vary based on the place we want to build

it. Nevertheless, this time is often similar, so it could be

approximated by a fixed amount of time. For every action

that needs to significantly change the location of execution,

such as creating a new Nexus base, additional time is needed

for travel.

E. Genetic Algorithm for Planning and Scheduling (GAPS)

We attempt to solve Planning and Scheduling (PS) problem

on the example of the StarCraft II Build Order Optimization

(SC2 BO) problem using a Genetic Algorithm (see Algorithm

1). GA is advantageous for exploring expansive solution

spaces and strategy games encapsulating complex, determin-

istic environments, providing an ideal ground for conducting

research in this field. Therefore we name our method Genetic

Algorithm for Planning and Scheduling (GAPS). We propose

a straightforward solution generation method that creates valid

length solutions n based on an action tree. In this tree, state

Sa is the root. From there, one action is selected randomly

from the list of possible options, which transitions the system

to the next state. This process is repeated, updating the list

of possible actions based on the actual state until the size of

the created solution equals n. After initialization, each created

solution is evaluated and sorted based on fitness. To evaluate

build order, we employ function E as previously described. We

search for optimal configuration of the rest of the operators

like selection, crossover, mutation, and repair in experiments

(Sec.IV).

In the context of GA, Lamarckianism gives that an individ-

ual can modify their genotype in response to their environment

and subsequently pass this change on to their offspring.

In contrast, the Baldwin Effect posits that individuals can

make non-genetic (phenotypic) changes over their lifetime in

response to their environment. Those that successfully adapt

in this way are more likely to survive and reproduce. Over

time, genetic changes supporting these phenotypic adaptations

could become more prevalent in the population, leading to the

genetic assimilation of learned traits. Applying Lamarckianism

to a fixed-length Build Order (BO) is challenging, requiring

solutions to be repaired without altering its length. We provide

the pseudocode of our base repair function, which eliminates

actions that cannot be executed (see Algorithm 2). We then

incorporate the Lamarckian approach by filling in missing

actions with a ’None’ action and overriding the genotype.

We implement the Baldwin Effect by repairing and evalu-

ating a copy of the genotype, leaving the original genotype

unchanged in the population.

KONRAD GMYREK ET AL: GENETIC ALGORITHM FOR PLANNING AND SCHEDULING PROBLEM – STARCRAFT II BUILD ORDER CASE STUDY 135



Algorithm 1 GAPS

Require: gameState, actionSpace, solution,

populationSize, generations, solutionSize,

crossoverRate, mutationProb
1: Initialize population← generatePopulation(...)
2: for i = 0 to generations− 1 do

3: sort(population)
4: best = population[0]
5: Initialize children as an empty list

6: children.append(best)
7: for i = 0 to populationSize− 1 do

8: parent1, parent2
9: selection(population, parent1, parent2);

10: if underProbabilityThreshold(crossoverRate)
then

11: child← crossover(parent1, parent2)
12: end if

13: if underProbabilityThreshold(mutationProb)
then

14: child← mutate(child)
15: end if

16: repairedSolution← repair(child);
17: fitness← evaluate(repairedSolution);
18: children.append(child)
19: end for

20: populaton← children
21: end for

22: return population[0]

Algorithm 2 Repair Algorithm

Require: gameState, actionSpace, solution
1: Initialize resultBuildOrder as an empty list

2: for i = 0 to solution.buildOrderSize− 1 do

3: action← solution.buildOrder[i]
4: if isActionPossible(gameState, actionSpace, action)

then

5: resultBuildOrder.append(action)
6: end if

7: end for

8: return resultBuildOrder

IV. EXPERIMENTS

In this section, all research experiments are presented to

answer four research questions:

• RQ1 - How do different genetic operators (crossover,

mutation) influence the evolution process? (a30case)

• RQ2 - How does GA configuration (budget, selection,

crossover rate, mutation probability) influence the evolu-

tion process? (allcases)

• RQ3 - How effective is GA using Lamarckianism in

comparison to Baldwin Effect? (allcases)

• RQ4 - How effective selected GA configuration based on

previous experiments is in comparison to some state-of-

the-art setups in the context of all test cases? (allcases)

The following sections present details and results of devel-

oped experiments to answer the above research questions.

A. Test cases

We prepared three objective scenarios for enriching ex-

periments: aggressive, balanced, and development. Each

scenario is divided into three problem sizes: 30, 60, and 150,

where problem size describes how long action sequences we

want to examine. For 9 cases, we propose objective vectors

O = [m1,m2,m3,m4]. In the aggressive scenario, the goal

is to gain as much army value as soon as possible, the

development scenario aims to create a strong economy, and the

balanced scenario is a mix of economy, army, research, and de-

fense; we propose values of each O based on game experience.

This approach allows us to examine the algorithm’s behavior

in response to varying types of problems in the context of

different levels of complexity.

Based on our knowledge of the game and previous manual

experiments, we propose setting budgets for all examined

methods corresponding to three problem sizes. Additionally,

we use a short code to name each case; for instance, an

aggressive problem of size 30 is labeled a30. The case a30
will serve as the base case. For the a30 case, we define

O = [0, 2000, 0, 0], meaning that, given a maximum of 30

actions, a selected method needs to identify a build order that

yields an army value of 2000 in the shortest possible makespan

(see Tab.I on p.7).

For testing procedures in tuning/general experiments, as

default a30 scenario is used. For methods comparison, all test

cases are used.

B. Setup

All experiments were done using the computer with AMD

EPYC 7H12 64-Core Processor, Ubuntu operating system, and

C++20. Because of the non-determinism nature of GA, for

every configuration, we repeat the experiment 10 or 30 times,

depending on the experiment.

For each case scenario, we propose to examine three

different solution sizes described by n = sum(O) ∗ 1.5%.

For example, in the case of a30 we examine population

sizes 60, 90, and 150. We can define the number of genera-

tions as number of generations = budget/population size.

Therefore we have specific problem sizes for each scenario

with defined budgets. For each problem size, we have three

population size/generations proportions constrained by budget.

For example, in the aggressive scenario for problem size 30,

we have three population size/generations proportions: 60/750,

90/500, and 150/300.

We conduct crossover/mutation experiments incorporat-

ing three standard crossovers: one-point crossover, two-point

crossover, and uniform crossover. We also examine three

different mutations: random, bit flip, and mixed mutation

presented in COEPc. For our configuration experiment, we

validate three distinct population sizes/generations proportions

within a specified budget across all nine scenarios, using

136 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



TABLE I
TEST CASES – SCENARIOS

Genotype size Budget Aggressive Balanced Development

30 45000 a30 O = [0, 2000, 0, 0] b30 O = [1100, 1000, 250, 150] d30 O = [1500, 200, 0, 0]

60 150000 a60 O = [0, 4000, 0, 0] b60 O = [2000, 1000, 400, 300] d60 O = [2200, 400, 0, 0]

150 750000 a150 O = [0, 10000, 0, 0] b150 O = [3300, 1000, 250, 150] d150 O = [5500, 0, 0, 0]

Fig. 2. Mutation comparison for a30

TABLE II
MUTATION COMPARISON a30

Mutation type mean std_dev

Bit Flip 409.9 46.8

Mixed 314.3 19.2

Random 329.2 20.7

various tournament selection sizes, crossover rates, and mu-

tation probabilities. It is important to note that mutation

probability refers to the chance of applying a mutation that

alters precisely one gene in the genotype, an approach inspired

by state-of-the-art implementations. In addition to the standard

configuration experiment, we investigate a further variant: a

reverse tournament of size n that selects a parent randomly

based on the n−1 best candidates and thus considerably lowers

selection pressure.

Once we establish the GAPS configuration (GAPSc), we

explore it in the context of Lamarckianism and the Baldwin

Effect.

Finally, we compare GAPSc with BnB and MCTS as well as

COEPc and MOEAc for a state-of-the-art comparison. State-

of-the-art GA-based methods configurations:

• COEPc - random selection (best 25%), two-point

crossover (crossover rate 100%), mixed mutation (prob-

ability 50%), Baldwin Effect-based repair,

• MOEAc - tournament selection (size 2), one-point

crossover (crossover rate 90%), bit flip mutation (proba-

bility 100%), Baldwin Effect-based repair.

C. How does crossover/mutation influence GAPS effective-

ness? – RQ1

The experiments with genetic operators (i.e. crossover and

mutation) showed that although chosen crossover does not

Fig. 3. Selection results for a30

TABLE III
SELECTION COMPARISON TYPE a30 REPEATS

Tournament size mean std_dev

reversed 5 315.1 14.51

reversed 3 298.4 14.31

2 305.5 17.69

5 309.0 17.25

10 315.1 14.51

have much impact on the evolution, mutation can be quite

vital (see Tab.II and Fig.2). The best mutation proved to

be presented in COEP mixed mutation, which encapsulated

four different mutations where each can be applied to created

offspring. It helps enrich population exploitation of solution

space, improving evolution quality.

D. How to configure the GAPS? – RQ2

In the initial stage of experiments, the configuration exper-

iment proved the insignificance of validated population sizes.

Fig. 4. Mutation probability comparison (a30)

KONRAD GMYREK ET AL: GENETIC ALGORITHM FOR PLANNING AND SCHEDULING PROBLEM – STARCRAFT II BUILD ORDER CASE STUDY 137



TABLE IV
MUTATION PROBABILITY COMPARISON FOR a30, BEST FITNESS FOR 10

REPEATS

Mutation probability mean std_dev

1% 360.5 22.3

10% 327.5 35.1

50% 309.0 17.2

Fig. 5. Lamarckianism in comparison to Baldwin Effect for d60

It could be suggested that we search too few configurations to

show a significant difference. However, this gives us valuable

information about the evolution process.

The selection/crossover rate/mutation probability experiment

provided us with the best configuration for the next exper-

iments, which proved to be reversed tournament selection

with size 3, crossover rate = 40%, and mutation probability

= 50% – see Tab.III with Fig.3. and Tab.IV with Fig.4.

Based on experimental results, we can define the best-found

configuration of GAPS (GAPSc): random correct solutions

generation, tournament selection (size 5), one-point crossover

(crossover rate 30%), mixed mutation (probability 50%), and

Baldwin Effect-based repair.

E. Lamarckianism in comparison to Baldwin Effect – RQ3

Results of GAPS in the context of Lamarckianism and

the Baldwin Effect varies based on the scenario. At times,

one outperforms the other. However, generally speaking, the

Baldwin Effect tends to be the more stable choice (see Tab.V

and Fig. 5).

F. State-of-the-art setups comparison – RQ4

Experimental results showed that BnB and MCTS methods

could not find any solutions for any scenarios under a given

budget because they cannot search for solutions of defined

sizes (ex. 30). Therefore to extract some solutions, we compare

TABLE V
LAMARCKIANISM IN COMPARISON TO BALDWIN EFFECT FOR d60, BEST

FITNESSES FROM 30 REPEATS

Repair type mean std_dev

Lamarckianism 187.8 2.7

Baldwin Effect 188.9 1.9

TABLE VI
COMPARISON RESULTS OF BNB, MCTS AND GAPS FOR a30, BEST

FITNESSES FROM 30 REPEATS

Method mean std_dev

GAPS 318.7 32.8

BnB 1933 0.0

MCTS 1827.3 43.1

Fig. 6. Comparison results for GA for b150

them by giving the task of finding a solution with the most

military units in a given budget and then comparing these

solutions to the solution found by GA in a30 case (see Tab.VI).

The experiment shows that under a budget of 45000, associated

with a problem of size 30, BnB can find an optimal solution

for acquiring 200 army value. MCTS, on the other hand, can

find a suboptimal solution that can provide 300 army value.

In comparison, for the same budget, GAPS is able to find a

solution that achieves the given goal of 2000 army value on

average in 318.7 in-game seconds.

The results from the GA-based experiments reveal inter-

esting insights (see Table VII and Figure 6). These suggest

that our GAPS configuration (GAPSc) often discovers superior

solutions in smaller, aggressive cases. Conversely, COEPc

tends to generate better solutions in larger, more balanced
cases. The outcomes for development cases are quite similar.

The explanation for this might be rooted in the specifications

of the distinct scenario. Aggressive cases typically require

highly optimized solutions with a specific order of action

execution. In contrast, development cases permit a wider

range of solutions, all yielding similar results.

G. Comparison to known build order

We conduct a final experiment in which we take a well-

rated Stalker rush build order from a website that stores the

best Sc2 build orders. We simulate this order, extract metrics,

and then input those metrics as an objective vector for our

implementation to check if GAPS can find a similar build

order. The experiment reveals that while the website build

order takes 221 in-game seconds, our method only requires

205 seconds to produce a build order described by the same

objective vector. Although using the same actions, the solution

provided by GAPS completely reorders them in a manner

138 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



TABLE VII
COMPARISON RESULTS FOR GA FOR ALL SCENARIOS

GAPSc COEPc [2] MOEAc [4]

Case mean std_dev mean std_dev mean std_dev

a30 302.17 11.34 306.83 20.27 356.63 37.29

b30 258.2 10.15 251.26 10.78 320.033 32.22

d30 187.23 2.06 187.83 2.29 207.03 39.16

a60 409.3 16.21 420.23 19.55 452.467 22.57

b60 318.5 14.5 309.36 7.99 373.36 27.17

d60 246.57 3.55 245.2 4.99 262.2 10.71

a150 731.0 9.1 707.7 20.25 785.9 20.96

b150 561.27 18.62 534.56 15.37 644.3 39.93

d150 1422.13 1.2 1422.87 1.83 1422.83 1.84

that allows a significant number of actions to be executed

concurrently.

V. CONCLUSION

This study offers several key conclusions regarding applying

and optimizing GAPS for planning and scheduling problems

in the context of the game StarCraft II.

Mutation operators significantly impact the evolutionary

process. The mixed mutation strategy described in [2] provided

the best results, enhancing the population’s ability to exploit

the solution space and thereby improving the quality of

evolution.

Search for optimal GAPS configuration, including popula-

tion size, number of generations, selection, crossover rate, and

mutation probability, reveals that population size and number

of generations did not significantly impact the experiment

results. The best-founded configuration proved to be: reversed

tournament selection of size 3, one-point crossover with

crossover probability of 40% as well as mixed mutation [2]

with mutation probability of 50%.

The results were scenario-dependent when comparing

Lamarckianism and the Baldwin Effect in GA. The Bald-

win Effect emerged as a more stable choice across different

problem sizes and scenarios. This stability is primarily due

to the Baldwin Effect’s ability to balance exploration and ex-

ploitation in the solution space, reducing the risk of premature

convergence to suboptimal solutions.

In contrast to other state-of-the-art configurations, GAPSc

demonstrated proficiency in smaller, aggressive cases where

precision and optimization were vital. Conversely, COEPc

prevailed in larger, balanced cases where flexibility and a range

of solutions were advantageous. Therefore, careful considera-

tion of case characteristics is crucial when deciding the most

appropriate method to apply. In doing so, we can utilize the

strengths of each method, ensuring optimal outcomes.

The final experiment underscored the potential of GA in

optimizing game strategies. In comparison to a highly-rated

Stalker rush build order from a renowned strategy website, the

GA generated a similar build order in fewer in-game seconds,

showcasing its potential to create efficient and competitive

game strategies. The time difference (16sec.) might cause a

significant difference at the very beginning of the high-ranked

match.

In conclusion, the findings of this study underscore the

effectiveness and potential of Genetic Algorithms in tackling

complex planning and scheduling problems, similar to Star-

Craft II Build Order Optimization. Furthermore, they provide

a foundation for future exploration and optimization in this

domain.

VI. FUTURE WORKS

Several promising future research directions exist for en-

hancing the Genetic Algorithm applied to BO.

Firstly, the development of more sophisticated objective

metrics could be beneficial. Such metrics would encapsulate

the tactical nuances of each unit in the game, providing a richer

representation of the problem domain within the evolutionary

process. This enhancement could lead to solutions that better

reflect the complex dynamics of the game.

A natural extension of this is the application of a multi-

objective Genetic Algorithm. It would enable the simultane-

ous optimization of several objective functions, providing a

more comprehensive optimization that considers the nature of

planning and scheduling problems.

Using surrogate models, also known as meta-models, could

help accelerate the evaluation process within the GA. These

models, built based on existing evaluation data, can provide

fast, approximate evaluations, significantly speeding up the

evolutionary process.

Exploring different approaches could also increase the ef-

fectiveness. One promising method that aligns well with the

nature of Genetic Algorithms in the context of presented

results is Extreme Optimization (EO). This technique focuses

on the most complex components of a solution and attempts

to improve them. Thus, it could be particularly effective in

complex environments like those encountered in StarCraft II,

where optimizing numerous suboptimal solutions is necessary.

Combining GA with EO could lead to a more efficient search

process. While GA excels at exploring a broad solution space,

adding EO allows it to focus more specifically on the areas

that need the most improvement, leading to more exploitation

of the solutions space and enhancing effectiveness.

Integrating GA with a high-level agent could validate its

performance and potentially create a powerful StarCraft II bot.

This agent could use the GA-generated solutions as part of its

decision-making process, while the feedback from the agent’s

performance could further inform and refine the evolutionary

process.

GAPS can be extended to numerous domains, such as

economics, and military simulations, due to its inherent flexi-

bility and adaptability. In the economic field, GAPS can be

applied to optimize portfolio management, improve supply

chain efficiency, and refine resource allocation plans in large-

scale projects, effectively scheduling investments over time to

maximize returns while minimizing risk. Similarly, in military

simulations, GAPS can optimize strategies for defense and

offense, logistics, troop deployment, and disaster response by

assessing multiple scenarios accordingly.

KONRAD GMYREK ET AL: GENETIC ALGORITHM FOR PLANNING AND SCHEDULING PROBLEM – STARCRAFT II BUILD ORDER CASE STUDY 139



The potential directions for enhancing the presented GA

are vast and multidimensional, ranging from more nuanced

objective functions to hybrid techniques and high-level agent

integration. These could all contribute to a more robust,

efficient, and capable GA for tackling the complex problem

of game planning and scheduling.

Finally, more advanced simulations or games can be exam-

ined, to verify how the increased number of resource man-

agement options affects the results. It could include a higher

number of resources, a resources trade/exchange system with a

simple demand/supply mechanism, and soft constraints based

on the simulation-specific rules. Those extensions can bring

the environment significantly closer to real-world scenarios.

Another interesting, yet challenging aspect to simulate is

risk management. In both game and economic environments

multiple players compete with each other, thus long-term and

error-prone plans can be replaced by less efficient but safer

strategies. It is related to the previously mentioned multi-

objective optimization as the risk exposure might be one of

the minimized objectives.

REFERENCES

[1] Kovarsky, A., and Buro, M. (2006) "A first look at build-order op-
timization in real-time strategy games." Proceedings of the GameOn
Conference. 2006.

[2] Justesen, Niels and Risi, Sebastian. (2017). Continual online evolution-
ary planning for in-game build order adaptation in StarCraft. 187-194.
10.1145/3071178.3071210.

[3] Wei, LZ and LW Sun. (2009) “Build Order Optimisation For Real-
time Strategy Game”, http://www.nus.edu.sg/nurop/2009/SoC/nurop-
LimZhanWei.pdf

[4] Blackford, J., and Lamont, G. (2014) "The real-time strategy game multi-
objective build order problem." Proceedings of the AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment. Vol. 10. No.
1. 2014.

[5] Churchill, D., and Buro M. (2011) "Build order optimization in starcraft."
Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment. Vol. 7. No. 1.

[6] Weber, Bryan S. (2018) "Standard economic models in nonstandard
settings–starcraft: Brood war." 2018 IEEE Conference on Computational
Intelligence and Games (CIG). IEEE,.

[7] Buro, M., and Kovarsky, A. (2007) "Concurrent action execution with
shared fluents.", AAAI Conf. 2007: 950-955.

[8] Fox, M., and Derek Long. "PDDL2. 1: An extension to PDDL for
expressing temporal planning domains." Journal of artificial intelligence
research 20 (2003): 61-124.

[9] Vinyals, O., Babuschkin, I., Czarnecki, W.M. et al. Grandmaster level
in StarCraft II using multi-agent reinforcement learning. Nature 575,
350–354 (2019). https://doi.org/10.1038/s41586-019-1724-z

[10] Liu, Ruo-Ze and Pang, Zhen-Jia and Meng, Zhou-Yu and Wang, Wenhai
and Yu, Yang and Lu, Tong. (2022) "On Efficient Reinforcement Learning
for Full-length Game of StarCraft II", Journal of Artificial Intelligence
Research 75, 2022, pp.213-260.

[11] El-Nabarawy, Islam and Arroyo, K. and Wunsch, D. (2020). "StarCraft
II Build Order Optimization using Deep Reinforcement Learning and
Monte-Carlo Tree Search", https://arxiv.org/pdf/2006.10525.pdf.

[12] M. Kuchem, M. Preuss and G. R. (2013) "Multi-objective assessment
of pre-optimized build orders exemplified for StarCraft 2" 2013 IEEE
Conference on Computational Intelligence in Games (CIG), 2013, pp.
1-8, doi: 10.1109/CIG.2013.6633626.

[13] C.W. Leung, T.N. Wong, K.L. Mak, R.Y.K. Fung, (2010) Integrated pro-
cess planning and scheduling by an agent-based ant colony optimization,
Computers and Industrial Engineering, Vol. 59 (1), pp.166-180.

[14] Cobb, Charles W., and Paul H. Douglas. "A theory of production."
(1928).

140 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023


