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Abstract—Neuro-symbolic integration of symbolic and subsym-
bolic techniques represents a fast-growing AI trend aimed at
mitigating the issues of neural networks in terms of decision
processes, reasoning, and interpretability. Several state-of-the-
art neuro-symbolic approaches aim at improving performance,
most of them focusing on proving their effectiveness in terms
of raw predictive performance and/or reasoning capabilities.
Meanwhile, few efforts have been devoted to increasing model
trustworthiness, interpretability, and efficiency—mostly due to
the complexity of measuring effectively improvements in terms of
trustworthiness and interpretability. This is why here we analyse
and discuss the need for ad-hoc trustworthiness metrics for neuro-
symbolic techniques. We focus on two popular paradigms mix-
ing subsymbolic computation and symbolic knowledge, namely:
(i) symbolic knowledge extraction (SKE), aimed at mapping
subsymbolic models into human-interpretable knowledge bases;
and (ii) symbolic knowledge injection (SKI), aimed at forcing
subsymbolic models to adhere to a given symbolic knowledge. We
first emphasise the need for assessing neuro-symbolic approaches
from a trustworthiness perspective, highlighting the research
challenges linked with this evaluation and the need for ad-hoc
trust definitions. Then we summarise recent developments in SKE
and SKI metrics focusing specifically on several trustworthiness
pillars such as interpretability, efficiency, and robustness of
neuro-symbolic methods. Finally, we highlight open research op-
portunities towards reliable and flexible trustworthiness metrics
for neuro-symbolic integration.

I. INTRODUCTION

A
GROWING number of critical applications are be-

ing developed that rely on artificial intelligence (AI)

solutions—mostly, on machine and deep learning (ML, DL),

more specifically. In this realm, the most popular trend is by

far the engineering of intelligent computational systems where

hard-to-code tasks are automatically learned from data—

promoting a data-driven problem-solving approach. Tasks that

can be learned this way range from image [1], [2] to text

processing [3], [4], stepping through graph learning [5], [6],

[7] and time series forecasting [8], [9], among the many oth-

ers. The popularity of (semi-)autonomous AI systems largely

depends on their ability of outperforming humans in some

specific tasks. Yet, AI agents – and especially ML agents

– cannot be really trusted by humans, for the obscurity

of their data processing and decision making pipeline, and

for their limited interaction with human users as well. In

the recent past, this lack of trustworthiness jumped to the

news due to some AI systems’ behaviour harming humans—

such as chatbots suggesting deleterious practice1 and facial-

recognition technology recognising innocents as criminals.2

Therefore, the need to assess the level of trustworthiness of

AI system before its deployment it is nowadays apparent to all

parties involved in the development of AI solutions. Targeting

this need, the European Union (EU) has recently released the

Ethics Guidelines for Trustworthy AI3 as a part of its AI

strategy.

While representing a fundamental stepping stone in the

definition of AI trustworthiness, these ethics guidelines appar-

ently focus on popular ML agents solutions in their definition

process. Indeed, most trust requirements are clearly linked

with the black-box nature of ML and DL solutions—such as

the need for transparency, explanations, human interaction, and

many others. However, AI is not just ML/DL, so AI systems

are much more than ML/DL systems. Recent research efforts

have focused on novel AI paradigms aiming at blending the

subsymbolic perspective of ML and DL agents with sym-

bolic AI solutions focusing on high-level symbolic (human-

readable) representations of problems, logic, and search: this

is where neuro-symbolic integration systems (NeSy) stand

today. NeSy integrate neural (subsymbolic) and symbolic AI

solutions aiming at suitably complementing their strengths and

weaknesses, introducing reasoning and cognitive capabilities

(the symbolic way) while preserving fast-learning capabilities

(the subsymbolic way). The range of NeSy approaches is

vastly distant from the AI systems accounted for in the

definition of EU trustworthiness pillars, as they leverage sym-

bolic (human-comprehensible) solutions which are in principle

trustworthy by design. Therefore, NeSy introduces a further

level of complexity in the definition of their trustworthiness

value, given by the complex interaction between symbolic and

subsymbolic elements. The result is the current lack of suitable

definitions of the notion of trustworthiness in terms of NeSy

systems.

This is why in this paper we deal with the definition of

trustworthiness for NeSy systems, focusing specifically on two

broad NeSy categories, namely:

1https://edition.cnn.com/2023/06/01/tech/eating-disorder-chatbot/
2https://www.nytimes.com/2020/12/29/technology/facial-recognition-

misidentify-jail.html
3https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-
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• symbolic knowledge injection (SKI) models—that is, sys-

tems featuring symbolic knowledge that can be explicitly

provided so that subsymbolic predictions are either com-

puted as a function of it, or made consistent with it;

• symbolic knowledge extraction (SKE) models, represented

by the set of approaches accepting subsymbolic predictors

as input and producing symbolic knowledge as output; the

aim for the SKE system is to extract symbolic knowledge

reflecting the behaviour of the predictor with high fidelity.

The definition of requirements for trustworthy NeSy systems

represents a fundamental step towards their safe adoption.

However, requirements definition by itself can not be con-

sidered as an exhaustive measure to ensure and calibrate

the trustworthiness of NeSy systems. Instead, it is of utmost

significance to define NeSy trustworthiness metrics that allow

to actually measure the level of a system trust, possibly

enabling an in-depth analysis of the components raising trust

concerns. Whereas a few trustworthiness metrics definition

already exist, tackling specific components of NeSy models –

such as accuracy, robustness and efficiency –, the vast majority

of NeSy most relevant aspects are still unexplored.

This is why in this paper we:

• define how the AI trustworthiness requirements translate

to the NeSy realm, analysing in detail each pillar of trust

and its implication on NeSy models.

• analyse the available metrics for each of the novel NeSy

trust requirements as well as the potential future direc-

tions to explore in the analysis of NeSy trust;

• suggest some novel metrics to measure specific NeSy

elements, focussing on SKI and SKE as two well-defined

broad categories of NeSy models.

This article is organised as follows. Section II presents the

transition from trustworthy AI requirements to their corre-

sponding NeSy trust pillars, analysing in depth how NeSy

elements impact each requirement. Section III showcases the

need for defining trust metrics – rather than requirements – and

analyses the complexity of that definition, the reason behind it,

and how we propose to tackle it. We then introduce the relevant

concepts of SKI and SKE needed to design trust metrics in

Section IV, and propose a detailed analysis of available and

lacking metrics in Section V. Finally, we conclude and present

the future directions in Section VI.

II. FROM TRUSTWORTHY AI TO TRUSTWORTHY NESY

As a fundamental step of its AI strategy, the European Union

(EU) has defined seven key trustworthiness criteria to meet

during the development, deployment, and use of AI systems,

namely: (i) human agency and oversight, as the need for over-

sight mechanisms enabling the informed interaction between

the AI agent(s) and the human(s) counterpart; (ii) robustness

and safety, as the need for accuracy, reliability, resilience and

security of AI agent(s); (iii) privacy and data governance, as

the need for ensuring legitimised access to data, while taking

into account data quality and integrity; (iv) transparency, as the

need for providing human users with explanations of the AI

agent(s)’s decision process; (v) diversity, non-discrimination

and fairness, as the need for avoiding unfair bias while

enable everyone’s access to AI technology; (vi) environmental

and societal well-being, as the need for sustainability of AI

agent(s) and the transition to their environmentally friendly

development; (vii) accountability, as the need for mechanisms

that ensure responsibility and accountability for the behaviour

and outcomes of AI systems. The above requirements define

a broad umbrella of concepts and means to identify relevant

components in the deployment of AI systems and ensure

their trustworthiness. However, being designed to be general

enough to be applicable to any – or at least as most as

possible – AI systems, they are actually too general to be

used to define actual metrics to effectively measure every sort

of AI systems. Therefore, to make them actually working,

a more detailed specification of trustworthiness requirements

is needed: in particular, the general EU pillars should be

translated into domain-specific pillars, promoting the defini-

tion of trustworthiness metrics for each specific AI domain.

Such a translation should also account for the current bias of

EU trustworthiness pillars towards subsymbolic AI systems—

where, for instance, the black-box nature of all components

is given as understood when dealing with issues such as

transparency, explainability, human interaction, even though

it mostly concerns subsymbolic components only.

Thus, in the remainder of this paper we define the pillars

of trustworthiness for AI systems based on Neuro-Symbolic

(NeSy) integration. We analyse the seven EU-defined trustwor-

thiness criteria for AI, and translate each of them into its NeSy

counterpart, leveraging on the aspects of NeSy that promote

fairness and explainability by design. On the other hand,

leveraging both symbolic and subsymbolic paradigms, NeSy

systems may be affected by robustness, safety, and bias issues

from both sides – i.e., symbolic and subsymbolic –, hindering

their overall trustworthiness. Therefore, a fundamental issue in

the NeSy context is to identify whether and to what extent the

blending of symbolic and subsymbolic techniques can either

help or hinder trustworthiness, in particular in the perspective

of the definition of ad-hoc trustworthiness metrics.

a) Human agency and oversight: in its original formula-

tion this requirement stresses the need for the introduction

of oversight mechanisms enabling informed interaction be-

tween AI agents and humans counterparts. The underlying

assumption here is that humans can not understand AI system

at all – or, can understand interaction with AI systems in a

very limited way – so AI systems can never be considered

as trustworthy, as human agents are incapable to fix the AI

system when issues arise. When taking into account NeSy

mechanisms, the symbolic and subsymbolic fusion component

clearly affects the interaction with with its human counterpart.

Instead, the symbolic component could represent the enabling

agent for meaningful interaction between human and the sys-

tem, promoting human-in-the-loop, human-on-the-loop, and

human-in-command approaches.
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NeSy version

The need for assessing to what extent the symbolic and subsymbolic
interaction of NeSy components helps improving informed human-AI
interaction and human oversight.

b) Technical robustness and safety: in its original for-

mulation this requirement stresses the need for accuracy,

reliability, resilience, and security of AI agents. Indeed, an

inaccurate or unstable AI agent can not be considered trustwor-

thy, as its behaviour may fluctuate radically throughout its life

cycle. Let us consider for instance adversarial examples [10],

[11], where slight perturbations of the input fed to the AI

system result in radically different outcomes: AI system of

that sort are inherently unreliable—thus untrustworthy. Even

though this has motivated some research efforts focused on

the identification of robustness issues of ML/DL systems,

very small light has been shed on the robustness and safety

issues of NeSy systems. NeSy agents rely on both symbolic

and subsymbolic components, the former being – with some

exception – verifiable and stable by design while the latter

lacks of stability, verifiability or strong mathematical modeling

of their behaviour and properties. The interaction of such

elements introduce non-trivial behaviour in NeSy systems,

where the symbolic components can be used as a helping

tool for stabilising subsymbolic elements or the subsymbolic

tools can be used to produce imperfect – thus unreliable –

symbolic knowledge. Therefore, we consider relevant studying

to what extent the verifiability of symbolic components alters

during the integration process, and how the (in)stability of the

subsymbolic element is impacted by the symbolic knowledge.

NeSy version

The need for assessing the impact of both symbolic (verifiable) and
subsymbolic (not verifiable) interaction on the stability of the NeSy
system.

c) Privacy and data governance: in its original formula-

tion this requirement stresses the need for legitimate access to

data, while taking into account data quality and integrity. This

requirement identifies the untrustworthy nature of systems

optimised over unreliable data, and promotes the introduction

of open data for testing AI systems and their behaviour.

To this end, NeSy systems differ quite heavily from their

pure subsymbolic AI counterparts, as they – in most cases –

require the processing of symbolic knowledge and data at the

same time. Therefore, it is relevant to notice that data quality

issues extend to knowledge quality issues when considering

NeSy systems—even though symbolic knowledge is typically

managed explicitly by AI programmers and is often verifiable

in automatic way.

NeSy version

The need for ensuring the quality of both data and symbolic knowl-

edge of a NeSy system, along with its accessibility.

d) Transparency: in its original formulation this require-

ment stresses the need for producing explanations of the AI

agents’ decision processes, deeming as untrustworthy those

AI systems for which it is complex or unfeasible to obtain

an explanation of its decision process. The definition of an AI

system transparency depends on the complexity of the process

of obtaining explanations, and their understandability. Indeed,

in most AI scenarios multiple explanations can be drawn to

render transparent the system at hand, depending on the level

of detail needed and the process used. While being concep-

tually similar, the transparency level of NeSy systems – with

respect to their pure subsymbolic AI counterparts – may differ

a lot in terms of extraction complexity and understandability.

Indeed, most NeSy systems represent a more transparent

solution by design, as they leverage symbolic components,

inputs or outputs, which are – to some extent – intrinsically

understandable by humans. Therefore, we consider relevant to

assess if – and to what extent – the integration components

of NeSy systems impacts the transparency of the obtained

agent(s).

NeSy version

The need for assessing the gain in terms of transparency obtained
by a NeSy system with respect to its pure subsymbolic components.

e) Diversity, non-discrimination, and fairness: in its

original formulation this requirement stresses the need for

avoiding unfair bias and enable everyone’s access to the

AI technology. Indeed, biased AI technologies must not be

deployed as they have been proven to increase the chance

of harmful events against human agents. Given the relevance

of fairness, several efforts have been put in place to investi-

gate the nature of AI mechanisms’ bias. However, biases of

pure subsymbolic models and their NeSy counterparts differ

conceptually in terms of their root causes: bias can rise in

NeSy models as the consequence of any unexpected behaviour

of their subsymbolic components, or their interaction with

their symbolic elements. Indeed, similarly to what done for

NeSy robustness, here it is relevant to highlight that the bias

and fairness of symbolic components represent a verifiable

and provable variable, while its interaction with subsymbolic

elements does not, as it is not possible to define a-priori

how the subsymbolic interaction impact the overall system

behaviour. Therefore, it is fundamental for NeSy systems to

consider possible biases rooted in each step of the fusion

between symbolic and subsymbolic components. This is also

valid for possible bias benefits that can be obtained from the

interaction between symbolic and subsymbolic components

in NeSy, as the symbolic elements can be used to tune the

subsymbolic components to avoid biases that may arise during

their optimisation.
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NeSy version

The need for measuring biased and discriminative behaviour of
NeSy agents rooted in the interaction between their symbolic and
subsymbolic components.

f) Environmental and societal well-being: in its original

formulation this requirement stresses the need for sustainabil-

ity of AI agents and the transition to their environmentally

friendly development, deeming as untrustworthy those AI

agents that do not benefit all human beings, including future

generations. While measuring the impact of pure subsymbolic

AI agents on the environment has been the focus of several

works in the AI community, the in-depth analysis of how

NeSy mechanism can help reducing the environmental impact

of AI. The symbolic component of several NeSy mechanism

can be leveraged as a helping tool for reducing the amount

of resources required for the optimisation of its subsymbolic

component. Moreover, it is also possible for some NeSy mech-

anism to leverage symbolic approaches to achieve comparable

performance – w.r.t. pure subsymbolic AI agent – while requir-

ing a smaller memory footprint—resulting in smaller latency

and energy consumption. On the other hand, the complex

interaction between symbolic and subsymbolic components

may introduce an overhead in the NeSy system, causing the

waste of resources and thus decreasing the efficiency of the

agent. Therefore, it is necessary to define a novel resource

efficiency requirement for NeSy agents.

NeSy version

The need for assessing the gain in terms of sustainability of NeSy
systems with respect to their pure subsymbolic components.

g) Accountability: in its original formulation this re-

quirement stresses the need for mechanisms that ensure

responsibility and accountability for AI systems and their

outcomes. At its core, accountability can be defined as an

obligation to inform about, and justify the AI’s conduct [12].

Therefore, the fundamental property for AI’s accountability

is represented by answerability, which is the property of an

AI system to allow for interrogation concerning a decision

process. Accountability is closely tight to transparency, as it

requires for an AI system to produce justification – a.k.a.

explanations – for its actions. Therefore, a similar analysis to

the one done for transparency applies to this context, where

we stress the relevance of analysing the accountability gains

obtained through symbolic and subsymbolic integration in

NeSy systems over ML/DL counterparts.

NeSy version

The need for assessing the gain in terms of answerability obtained
by a NeSy system with respect to its pure subsymbolic components.

III. ON THE RELEVANCE OF TRUSTWORTHINESS METRICS

The trustworthy requirements proposed for both general

AI systems and NeSy agents represent a general umbrella

of concepts that should be covered in the system at hand.

Indeed, none of the requirements defined so far give a specific

characterisation of a target level – e.g., target fairness –

for that requirement to be considered satisfied. Such general

characterisation of trustworthiness is mainly caused by two

contributing factors, namely

• High variability characterising AI systems. AI agents

optimised to solve different tasks are expected to differ

largely in terms of inner working principles. Therefore,

identifying a common trustworthiness definition with the

due level of detail represents a complex task

• Conceptual complexity of trustworthiness building blocks.

Trustworthiness is defined as a collection of diverse

features of a systems to be achieved for it to be wor-

thy of humans’ trust. However, some – if not most –

of the trustworthiness sub-components are not easy-to-

grasp concepts in their definition. For example, taking

into account bias, we immediately understand that bias

must be one of the sub-components required to achieve

trustworthiness. However, the definition of bias by itself

represents a complex task that have bogged researchers

with troublesome questions like what is bias?, when is

a system biased?, what is the minimum amount of bias

for a system to be considered as such?. Being complex

in their definition, these building blocks are also complex

to measure effectively, hindering the overall level of trust

measurement.

The issues connected with the general characterisation of AI

trustworthiness hinder the applicability of such trustworthiness

requirements. Indeed, while representing a valid starting point

for analysing AI trustworthiness, these requirements do not

fully allow to comprehensively grasp the extent of a system’s

trustworthiness. To this end, the definition of trustworthiness

metrics – rather than requirements or pillars – represents an

open issue of the utmost importance. Trustworthiness metrics

make it possible to evaluate the extent of a system trust, allow-

ing for a more detailed classification of the AI components to

be deployed and the ones to block. However, the definition of a

single general, flexible, and ubiquitous trustworthiness metric

is made almost impossible by the same issues that affect the

generality of trustworthiness requirements. Therefore, we here

consider to translate the trustworthiness requirements into a set

of equivalent trustworthiness metrics, taking into account the

high variability characterising AI systems and the conceptual

complexity of trustworthiness building blocks.

We first consider the issue connected with the high vari-

ability characterising AI systems. To enable the definition of

rigorous trustworthy metrics, we here propose to consider the

transition from the general AI trustworthy requirements to the

corresponding pillars for each AI branch. Section II presents a

similar transition from trustworthy AI into trustworthy NeSy.

A similar transition can be identified for each and every

AI domain, obtaining domain-specific detailed trustworthiness

requirements. This step enables a stricter definition of trust-

worthiness for each AI domain, making it possible to focus

more specifically on the peculiar approaches, components, and
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aspects that characterise the domain under analysis.

To tackle the conceptual complexity of trustworthiness

building blocks, we here propose to avoid focusing on the

proposal of single, overly-complex trustworthy metrics with

the aim of obtaining a general formulation applicable to any

AI system. Rather, we suggest to tackle the measurement of

systems’ trustworthiness through the adoption of a broad set

of highly-specialised metrics that analyse single components

of the trustworthiness definition. In this context, we con-

sider proposing a single metric or a set of metrics for each

pillar/requirement of trustworthiness. The proposed metrics

should focus on a specific issue or feature of the AI system

at hand – such as its robustness to specific input perturbation,

or the bias towards a specific group –, producing as output

a single numeric value, describing its safety level—i.e., how

much that issue is alarming for the system. Highly-specialised

metrics can then be arbitrarily combined to obtain a dynamic

trustworthiness score, depending on the trustworthiness com-

ponents that are to be considered more relevant for the scenario

under examination. This simplified process allows not just the

easier definition of each set of trustworthiness metric – e.g.,

bias metrics, robustness metrics, etc. –, but also the evaluation

of set based on a given relevance. Consider for example a sce-

nario where the bias requirement should be considered as more

relevant w.r.t. the human oversight requirement. Our approach

allows a higher weight to be assigned to the bias metrics before

its combination with the human oversight metrics to obtain the

general trustworthy measurement. Therefore, we here propose

to tackle the trustworthiness measurement issue by adopting

a dynamic broad set of highly specific metrics that can be

combined depending on the given measurement requirements.

IV. BACKGROUND ON SKI AND SKE

In this section we provide an overview of the two NeSy

mechanisms we focus on, namely Symbolic Knowledge In-

jection (Section IV-A) and Symbolic Knowledge Extraction

(Section IV-B).

A. Symbolic Knowledge Injection (SKI)

Symbolic Knowledge Injection (SKI) defines the set of

NeSy systems characterised by explicit procedures aiming at

affecting how subsymbolic components draw their inferences

for them to be made consistent with some given symbolic

knowledge. In their definition, SKI mechanisms require having

a subsymbolic predictor – a.k.a. model – and a given symbolic

knowledge which always hold true for the considered con-

text. The given symbolic knowledge should consist of logic

formulæexpressed in any logic language of choice. In their

scope, SKI mechanisms are designed to either (i) leverage

the given input symbolic knowledge to enrich the training

of the subsymbolic predictor; (ii) process the given symbolic

knowledge via subsymbolic computations to achieve a novel,

more meaningful symbolic knowledge; (iii) combine both of

the previous processes. To achieve any of these scopes, SKI

requires the given symbolic knowledge to be converted into a

specific numeric form processable by the subsymbolic potion

of the NeSy mechanism, to enable the injection process. More

in detail, the converted symbolic knowledge is leveraged by the

SKI approach to steer the learning process of the underlying

subsymbolic model in any of the following way: (i) penalising

the subsymbolic component during its training, whenever

it violates the given symbolic knowledge, usually through

defining a custom-made hybrid loss function; (ii) construct

(a portion of) the subsymbolic component in such a way to

make it reflect the given symbolic knowledge; (iii) convert

the given symbolic knowledge into numeric-array form to be

used as training data for the subsymbolic components of the

NeSy system. In other words, SKI can be seen as the proces

of optimising subsymbolic predictors in such a way that they

are helped by the given symbolical knowledge.

B. Symbolic Knowledge Extraction (SKE)

Symbolic Knowledge Extraction (SKE) represents the set

of NeSy approaches accepting subsymbolic predictors as input

and producing symbolic knowledge as output. More in detail,

SKE mechanisms aim at distilling the knowledge that a sub-

symbolic predictor has grasped from data into symbolic form,

expressed by a set of logic formulæ. SKE enables the construc-

tion of a symbolic surrogate model that mimics the behaviour

of a subsymbolic component. The obtained symbolic rules

may then be exploited to either (i) understand and explain the

behaviour of the original predictor; or (ii) replace subsymbolic

components of the system while retaining its learning capabil-

ities; To achieve symbolic knowledge construction, SKE can

either (i) inspect (even partially) the parameters of the sub-

symbolic component – i.e., decompositional approaches –; or

(ii) rely solely on the subsymbolic component’s outputs—i.e.,

pedagogical approaches. Depending on the SKE approach the

obtained symbolic knowledge can be under the form of lists of

rules, decision trees or decision tables, each of them composed

by any statement structure, such as propositional rules, fuzzy

rules or any other kind of logic formulæ. In other words,

SKE can be seen as the process of optimising symbolic AI

components in such a way that their behaviour mimics given

subsymbolic components.

V. NESY METRICS FOR TRUSTWORTHINESS

In this section we present the trustworthiness metrics (both

available and missing ones) for NeSy systems, specifically

focusing on SKI and SKE. We analyse each of the seven trust-

worthiness pillars/requirements separately to obtain a thorough

representation of the state-of-the-art and future directions.

A. Human Oversight

NeSy version of human oversight requirement is defined

as the need for assessing to what extent the symbolic and

subsymbolic interaction of NeSy components helps improving

informed human-AI interaction and human oversight.

1) Available Metrics: Most approaches to measure human

oversight in AI scenarios focus on aspects of human-AI

interaction, where explanation of behaviours represents the

most important component of the interaction process. As a

ANDREA AGIOLLO, ANDREA OMICINI: MEASURING TRUSTWORTHINESS IN NEURO-SYMBOLIC INTEGRATION 5



results, much attention has been paid to the measurement of

how explanations could guide people to respond to and predict

the AI system behaviour [13]. A large number of studies exist

in this realm, which mainly leverage on users to subjectively

rate system predictability, likability, etc.[14] While useful in

order to define systems predictability, these studies lack the

assessment of human influence and control on the AI system

at hand. The reason for this is to be found mainly on the

black-box and data-driven nature of subsymbolic models that

these works take into account. Indeed, most – if not all –

subsymbolic models allow for limited control by the human

users, given mostly by the data gathering and selection process.

2) Missing Metrics: Unlike pure subsymbolic systems,

NeSy models intrinsically enable higher level of human over-

sight via the integration of symbolic knowledge. However,

the extent of such oversight capabilities should be studied in

depth through the proposal of ad-hoc metrics that measure

how much the behaviour of a NeSy system can be controlled

by a human user. To this aim, in the SKI context, we

consider proposing a novel metric assessing the impact of

the injection process to the underlying model. The impact

can be measured as the amount of injected knowledge that

is effectively absorbed by the underlying model. The metric

would assess the level of available human oversight in SKI

systems, allowing for a precise definition of the extent of

human control. Meanwhile, the SKE context emphasises the

need for measuring the modifiability of the extracted symbolic

knowledge from an initial subsymbolic predictor. Indeed, SKE

approaches by themselves do not allow for an in-depth control

of the model behaviour, but rather enable their inspection. In

this context, a desirable solution is represented by refining the

extracted knowledge and using it as input for a SKI system

acting upon the same subsymbolic model. This process would

enable a sort of debugging loop of NeSy systems leveraging

both SKE and SKI, with an increased potential for human

oversight. Here, we require the definition of an ad-hoc metric

capable of assessing the portion of symbolic knowledge that

can be extracted, refined and injected back in the system with

it being correctly assimilated by the model.

B. Robustness

NeSy version of the robustness requirement is defined as

the need for assessing the impact of symbolic (verifiable) and

subsymbolic (not verifiable) interaction on the stability of the

NeSy system.

1) Available Metrics: The state-of-the-art picture of NeSy

robustness emphasises the lack of a common agreement on the

definition of robustness itself, thus leading to diverging works

focusing on opposite aspects of NeSy systems. Indeed, in this

context, several works focus on highlighting the robustness of

NeSy models in terms of their performance over complex or

out-of-distribution inputs [15], [16], [17]. Although relevant

for pointing out the potential of NeSy approaches, these

works propose somehow misleading definitions of robustness,

mostly focusing on NeSy flexibility rather than its stability.

NeSy systems may perform well on complex and out-of-

distribution samples, while suffering instability on small in-

put perturbations—causing robustness collapse. Several other

concepts have been taken into account when considering

NeSy robustness such as prediction coherence and consis-

tency [18], subsymbolic verification through neuro-symbolic

integration [19], avoidance of reasoning shortcuts [20] and

many more. However, the majority of these approaches not

only assess an ad-hoc concept of robustness, but also focus on

its qualitative evaluation thus failing to assess the quantitative

aspect required to achieve robustness metrics.

While it is true that there exists some confusion concerning

the definition of NeSy robustness, there are few relevant

works aiming at defining precise robustness metrics. More

in detail, Yang et al. [21] present a novel learning approach

for neuro-symbolic programs, showing its robustness against

input perturbations in terms of provably safe portion of the

learned model. In this context, NeSy robustness against ad-

versarial attacks represents a popular area of research with

several works aiming at proving either qualitatively [22] or

quantitatively [23] the safety of NeSy approaches. Most of

these works define robustness in terms of accuracy degradation

over varying input perturbation intensity, independently of the

input perturbation type and magnitude.

2) Missing Metrics: As a result of the mixed focus given

to NeSy aspects when tackling robustness, several aspect

of NeSy robustness and stability have not been thoroughly

analysed, yet. Indeed, there exists the need to study if – and

to what extent – the stability and verifiability of symbolic AI

components is preserved throughout the integration process

in NeSy models. In this context, focusing on the SKI realm,

we suggest that a measure of integration stability – as the

portion of symbolic elements that are correctly integrated in

the injected model – is needed here. Such a metric would

basically represent the portion of symbolic control that a

NeSy system can attain during its integration step. Secondly,

also those scenarios where the symbolic elements of NeSy

models suffer from some sort of imperfection have to be taken

into account. Here, it is important to measure the stability

of SKI models when the injected knowledge is altered as a

result of some imperfect automation process. Finally, it is

also relevant to measure the stability of NeSy systems over

symbolic representation variability, to assess how different

symbolic representations – e.g., logic formulæ, knowledge

graphs, etc. – may impact the integration process. To this end,

we propose to measure the performance of SKI integration

when two syntactically different yet equivalent chunks of

symbolic knowledge are exploited in the same integration

process.

C. Data & Knowledge Quality

NeSy version of the data & knowledge quality requirement

is defined as the need for ensuring the quality of both data

and symbolic knowledge of a NeSy system, along with its

accessibility.

1) Available Metrics: Given the impact of data quality

on the optimisation process of ML and DL systems, several
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quality metrics are available, namely: (i) class overlap [24],

(ii) boundary complexity [25], (iii) label noise [26], (iv) class

imbalance [27], (v) missing value analysis [28], and many

more. Although designed for subsymbolic AI models, these

metrics translate to the data-driven component of NeSy sys-

tems without particular issues, especially in those systems

that follow a neural to symbolic – neuro → symbolic [29] –

pipeline such as SKE approaches. In this context, these metrics

makes it possible to check the correctness of the information

that the subsymbolic components of NeSy gather from the

data.

2) Missing Metrics: Unlike pure subsymbolic approaches

– which rely solely on data for optimisation –, NeSy models

gather information from both a data-driven and a symbolic

knowledge component. In this context, it is fundamental to

assess the level of compatibility or overlap between the data

and the symbolic knowledge to be combined. In most NeSy

systems quite a strong overlap is required between data and

symbolic knowledge in order to avoid optimisation drift issues,

where the integrated knowledge contrasts concepts learnt from

the data. Meanwhile, a perfect overlap would also not be ideal

in NeSy systems, as the optimisation process would gather the

same information from both data and symbolic knowledge.

Therefore, we here stress the need for new metrics that could

measure the conceptual and technical overlap between data

and symbolic knowledge at hand. Another relevant aspect to

measure in this context is represented by the quality of the

symbolic component of the NeSy system. While symbolic

AI approaches are verifiable and deemed trustworthy, several

NeSy – especially SKI – approaches rely on the integration of

knowledge bases given a-priori and defined by human experts.

Although mostly reliable, knowledge bases may be either

incomplete or imperfect due to the human-centred building

process. Therefore, metrics are needed that would make it

possible to score knowledge components exploited in NeSy

systems.

D. Transparency

NeSy version of the transparency requirement is defined as

the transparency gain obtained by a NeSy system with respect

to its pure subsymbolic components.

1) Available Metrics: When focusing on transparency, most

of the available metrics for AI and NeSy models focus on

explanations quality evaluation. Generally speaking, explana-

tions quality is characterised by several key attributes [30],

namely: (i) understandability – i.e., explanation complexity

–; (ii) completeness – i.e., explanation coverage –; (iii) suffi-

ciency of detail – i.e., explanations depth –; (iv) usefulness

– i.e., explanation applicability –; and (v) feeling of satis-

faction—i.e., explanation interactivity. By focusing on some

of the above attributes, several works propose explainability

and transparency metrics for AI and NeSy. Authors in [31]

introduce a set of metrics to evaluate interpretability methods

through measurements of simplicity, broadness, and fidelity

of explanations. Meanwhile, Holzinger et al. [32] introduce a

system causability scale to measure explanations quality, based

on the notion of causability [33] together with the notion of

usability scale. Although designed for explanations in general,

these metrics nicely fit in the SKE frame, where they can be

used to assess the quality of the extraction mechanism, as done

in [34], where authors focus on unambiguity, interpretability,

and interactivity of explanations.

2) Missing Metrics: Available explainability metrics aim

at measuring the quality of explanations in absolute terms—

i.e., how good are my extracted explanations? Meanwhile,

our definition of NeSy transparency requires to measure the

gain in transparency obtained from symbolic and subsymbolic

integration. Therefore, there is the need for novel metrics for

NeSy systems comparing the quality of a system’s explana-

tions before and after symbolic and subsymbolic integration.

Moreover, we here stress the unbalanced nature of explain-

ability metrics, as most metrics focus solely on features of

explanations that are automatically measurable – e.g., correct-

ness, coverage, length, etc. –, whereas there are basically no

metrics focusing on human oriented specifications. A relevant

issue for future research in this are is the definition of metrics

that account for the subjective human factor in explanations,

assessing the level of explanations satisfaction and understand-

ability via human-assisted experimentation. Finally, it should

be noted that transparency should not just focus on measuring

the quality of the explanations that can be obtained from a

system, but should instead assess the complexity of the process

for extracting those explanations, too. Indeed, explanations

obtained from a DL model using SKE may be complete,

understandable and useful, but require a high computational

burden to be extracted, rendering the overall DL and SKE

process less transparent.

E. Fairness

NeSy version of fairness requirement is defined as the need

for measuring biased and discriminative behaviour of NeSy

agents rooted in the interaction between their symbolic and

subsymbolic components.

1) Available Metrics: Given the nuances characterising a

context-dependent notion like fairness, developing quantitative

formulations for fairness metrics is challenging [35]. In the

general context of AI systems, fairness is generally regarded

as outcome fairness, which is the definition of equality of

the decision making process outcomes. Here, fairness can be

categorised into individual vs. group notions of fairness, and

observational vs. causal approaches to assess fairness [36].

Observational fairness approaches are characterised by a num-

ber of existing metrics, such as: (i) independence metrics –

e.g., statistical parity, group fairness, demographic parity, etc.

–; (ii) separation metrics – e.g., equal opportunity, equalised

odds, predictive equality, etc. –; and (iii) sufficiency met-

rics—e.g., groups calibration, predictive parity, etc.

While representing a fundamental requirement, fairness in

NeSy setups is yet to be explored in detail. Indeed, only a

handful of works have investigated fairness in NeSy systems.

Authors in [37] propose to leverage the combination of sym-

bolic knowledge extraction from Logic Tensor Networks [38]
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and injection of fairness constraints via continual learning

to enforce fairness. Gao et al. [39] inject a fairness-based

component in the loss function of subsymbolic models during

their optimisation process to achieve higher fairness. Beyond

their obvious relevance, these work focus solely on possible

fairness benefits obtained through NeSy, as they rely on the

application of SKI and SKE to reduce bias issues, leveraging

the general AI fairness metrics. Therefore, available NeSy-

specific fairness metrics are still missing that would aim

at measuring just the impact of symbolic and subsymbolic

integration upon fairness. This deficit is probably due to two

aspects: (i) most observational fairness metrics are considered

to be applicable to NeSy systems without modification; and

(ii) most research focuses on measuring the fairness and assess

it, rather than aiming at identifying its root causes.

2) Missing Metrics: In its NeSy version, the fairness re-

quirement highlights the need to assess the possible fairness

issues or improvements that arise from the use of symbolic and

subsymbolic integration. It is clear that this requirement is not

satisfied by available fairness metrics. Indeed, although most

observational fairness metrics apply to NeSy systems, they do

not allow for identification of the root causes of bias. One ap-

proach to tackle this issue would be to measure NeSy fairness

as a differential of observational fairness between a SKI/SKE

model and its ML/DL counterpart. However, such an approach

would be over-simplistic, as it would not allow the specific

sub-components of the integration process or of the symbolic

knowledge that impact fairness to be captured. One possible

solution would be to measure the fairness of NeSy systems

over a set of symbolic knowledge bases, each representing a

specific set of fairness goal. This process would allow fairness

goal to be decomposed into its components/elements, then

measure how well a NeSy system can enforce each fairness

element.

F. Resource Efficiency

NeSy version of the resource efficiency requirement is

defined as the need for assessing the gain in terms of sus-

tainability with respect to pure subsymbolic counterparts.

1) Available Metrics: When dealing with resource effi-

ciency of AI systems in general, the detailed definition of the

set of resources to take into account represents a fundamental

aspect. Several elements of the system at hand can be identified

as resources, ranging from the energy required by the system

to be optimised to its scalability—e.g., overall complexity.

In this context, Agiollo et al. [40], [41] propose a rigorous

definition of resource efficiency improvements achievable by

SKI systems spanning over four different resource compo-

nents. More in detail, the authors focus on the definition

of energy, latency, memory, and data efficiency of any SKI

model, aiming at addressing its environmental impact – e.g.,

energy and data –, and its scalability—e.g., memory and

latency. These metrics are defined as the relative difference in

terms of resources – e.g., energy, etc. – required to optimise

a SKI model to reach the same level of performance of

a subsymbolic counterpart. To this end, the authors define

each of the resource analysed, and provide for a tool to

measure them in a SKI setup, showing how SKI can improve

energy and data efficiency, while degrading the system latency.

Latency increments are linked with the increased complexity

of the system given by the interaction between symbolic and

subsymbolic components, which is however beneficial in terms

of number of data required for optimising the model. Indeed,

several other works show the data efficiency of NeSy models

– such as [42], [43], [44] – even though they lack a proper

definition for efficiency.

2) Missing Metrics: As data efficiency represents one of the

declared advantages of NeSy systems, most of the literature

focuses specifically on this aspect, leaving some space for

investigation about other relevant aspects of resource effi-

ciency. More in detail, detailed analysis of the environmental

impact of AI and NeSy models development in terms of

their carbon footprint are still mostly missings. Studying the

energy consumption of the development of a single NeSy

model is not enough, as the computation infrastructure used

throughout this development – such as clusters and cloud

infrastructures – strongly impact its environmental footprint.

Moreover, whereas few metrics exist that assess the efficiency

of NeSy under the SKI perspective, there are basically no

metrics for resource efficiency in the SKE area. In this context,

it would be desirable to have metrics similar to the ones

obtained for SKI comparing the resource usage of the original

subsymbolic model and its symbolic emulation. Depending on

the SKE approach at hand, it is possible to consider extracting

a small symbolic AI models mimicking the behaviour big DL

frameworks. The small symbolic model obtained may help

hugely reducing the amount of resources – especially energy,

latency, and memory – required to deploy the AI system.

Therefore, we here suggest as a future direction to investigate

whether – and to what extent – SKE can produce small and

fast counterparts of DL models. Here, the resource efficiency

metric could be simply designed as the relative difference

between the amount of resources required to run the original

DL model and its symbolic emulation.

G. Accountability

NeSy version of the accountability requirement is defined as

the need for assessing the gain in terms of answerability ob-

tained by a NeSy system with respect to its pure subsymbolic

components.

1) Available Metrics: As it is represented by the answer-

ability of an AI system, accountability is closely tight to

transparency. Indeed, accountability requires the underlying

system to be explainable, and the explanations to be correct,

reliable, and comprehensible. Correctness and reliability of

explanations depend on the precision of the AI system and its

explanation construction counterpart. Therefore, most efforts

in this field focus on the explainability of the AI/NeSy system

at hand. As a result, the set of available AI and NeSy metrics

for accountability is basically represented by the same set of

metrics presented in Section V-D.
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2) Missing Metrics: While being tightly linked with ex-

plainability, accountability also requires the extracted explana-

tions to be correct and reliable. As correctness and reliability

mostly depend on the precision of the AI/NeSy system, we

here propose to define novel accountability metrics by op-

portunistically mixing transparency metrics (Section V-D) and

robustness metrics (Section V-B). Therefore, accountability

metrics should be defined as the result of explainability metrics

applied over a set of input perturbations, measuring the rate

of change of the obtained explanations.

VI. CONCLUSIONS

Trustworthiness of AI systems represents a fundamental

requirement for their ubiquitous deployment. The notion of

Trustworthy AI as defined by the EU is mostly a general one,

yet implicitly accounting for issues coming from popular ML

and DL techniques—so it fits well subsymbolic AI systems.

A set of novel NeSy systems calls for a more specific

definition of trustworthiness, as they rely on the integration of

subsymbolic and symbolic AI where the symbolic components

may affect – either positively or negatively – the trust level

of the system. Accordingly, in this paper we analyse how the

AI trustworthiness requirements defined by the EU translate

to the NeSy realm, focusing on the relevant elements of the

NeSy integration process impacting trust. First we analyse in

detail each pillar of trust and its implication on NeSy models,

then we focus on the available metrics for measuring such

requirements. The state-of-the-art analysis highlights a lack

of available metrics for most trustworthiness aspects when

specifically considering NeSy systems. Therefore, we suggest

potential future directions to explore in the analysis of NeSy

trust along with with related metrics definitions. We believe

that the rigorous definition of novel trust metrics tailored to

NeSy systems is going to represent an essential step towards

measurably reliable and trustworthy AI systems based on

neuro-symbolic integration.
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[36] R. Calegari, G. G. Castañé, M. Milano, and B. O’Sullivan, “Assessing
and enforcing fairness in the AI lifecycle,” in 32nd International Joint

Conference on Artificial Intelligence (IJCAI 2023). Macau, China:
IJCAI, August 19–25 2023.

[37] B. Wagner and A. d’Avila Garcez, “Neural-symbolic integration for
fairness in AI,” in AAAI-MAKE 2021 – Combining Machine Learning

and Knowledge Engineering, ser. CEUR Workshop Proceedings,
A. Martin, K. Hinkelmann, H. Fill, A. Gerber, D. Lenat, R. Stolle,
and F. van Harmelen, Eds., vol. 2846. CEUR-WS.org, 2021. [Online].
Available: https://ceur-ws.org/Vol-2846/paper5.pdf

[38] S. Badreddine, A. S. d’Avila Garcez, L. Serafini, and M. Spranger,
“Logic tensor networks,” Artificial Intelligence, vol. 303, pp. 103 649:1–
39, 2022. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0004370221002009

[39] X. Gao, J. Zhai, S. Ma, C. Shen, Y. Chen, and Q. Wang,
“FairNeuron: improving deep neural network fairness with adversary
games on selective neurons,” in 44th International Conference on

Software Engineering, ICSE 2022. ACM, 2022, pp. 921–933. [Online].
Available: https://dl.acm.org/doi/10.1145/3510003.3510087

[40] A. Agiollo, A. Rafanelli, and A. Omicini, “Towards quality-of-
service metrics for symbolic knowledge injection,” in WOA 2022

– 23rd Workshop “From Objects to Agents”, ser. CEUR Workshop
Proceedings, A. Ferrando and V. Mascardi, Eds., vol. 3261. Sun SITE
Central Europe, RWTH Aachen University, 2022. ISSN 1613-0073 pp.
30–47. [Online]. Available: http://ceur-ws.org/Vol-3261/paper3.pdf

[41] A. Agiollo, A. Rafanelli, M. Magnini, G. Ciatto, and A. Omicini,
“Symbolic knowledge injection meets intelligent agents: QoS metrics
and experiments,” Autonomous Agents and Multi-Agent Systems,
vol. 37, no. 2, pp. 27:1–27:30, Jun. 2023. [Online]. Available:
https://link.springer.com/10.1007/s10458-023-09609-6

[42] J. Mao, C. Gan, P. Kohli, J. B. Tenenbaum, and J. Wu,
“The neuro-symbolic concept learner: Interpreting scenes, words,
and sentences from natural supervision,” in 7th International

Conference on Learning Representations, ICLR 2019, New Orleans,

LA, USA, May 6-9, 2019. OpenReview.net, 2019. [Online]. Available:
https://openreview.net/forum?id=rJgMlhRctm

[43] Q. Zhang, L. Wang, S. Yu, S. Wang, Y. Wang, J. Jiang, and E. Lim,
“NOAHQA: Numerical reasoning with interpretable graph question
answering dataset,” in Findings of the Association for Computational

Linguistics: EMNLP 2021, M. Moens, X. Huang, L. Specia, and
S. W. Yih, Eds. ACL, 2021, pp. 4147–4161. [Online]. Available:
https://aclanthology.org/2021.findings-emnlp.350/

[44] B. Škrlj, M. Martinc, N. Lavrač, and S. Pollak, “autoBOT: evolving
neuro-symbolic representations for explainable low resource text
classification,” Machine Learning, vol. 110, no. 5, pp. 989–1028, 2021.
[Online]. Available: https://link.springer.com/article/10.1007/s10994-
021-05968-x

10 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023


