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Abstract—A polynomial-size mixed integer linear program-
ming model for the Precedence-Constrained Minimum-Cost Ar-
borescence Problem with Waiting-Times was recently proposed
in the literature, that uses a smaller number of variables and
constraints compared to previously proposed polynomial-size
models. In this work, we extend this model with constraint
programming constructs to further enhance its performance. An
extensive computational study support that modern constraint
programming solvers are the best tool available at solving the
models proposed. Several improvements to state-of-the-art results
are finally reported.

Index Terms—Combinatorial Optimization; Arborescences;
Precedence-Constraints.

I. INTRODUCTION

THE Minimum-Cost Arborescence (MCA) problem in-

volves finding a directed minimum-cost spanning tree,

rooted at vertex r, in a given input directed graph. Jack

Edmonds [1], and Yoeng-Jin Chu and Tseng-Hong Liu [2]

independently introduced the first polynomial time algorithm

for solving the problem. Gabow and Tarjan [3] improved the

running time of the algorithm by using disjoint-sets and a

special implementation of Fibonacci heaps.

Several variations of the MCA problem with different

objective function and/or constraints were introduced in the lit-

erature since its introduction. Given a finite resource associated

with each vertex in the input graph, the Resource-Constrained

Minimum-Weight Arborescence problem [4] is an NP-hard

problem which asks to find an arborescence with minimum

total cost where the sum of the costs of outgoing arcs from

each vertex is at most equal to the resource of that vertex.

Given an integer Q and non-negative integer vertex demand

qj associated with each vertex, the Capacitated Minimum

Spanning Tree problem [5] is an NP-hard problem which

asks to find a directed minimum spanning tree rooted at r,

such that the sum of the weights of the vertices in any subtree

off the root is at most Q. Given a weighted directed acyclic

graph with each vertex having a specified color from a set

of colors, the Maximum Colorful Arborescence problem [6]

is an NP-hard problem which asks to find an arborescence

of maximum weight, in which no color appears more than

once. Given an integer rank associated with each vertex, the

Restricted Fathers Tree problem [7] asks to find a minimum-

cost arborescence rooted at r, such that the path between each

vertex and the root contains only vertices with same rank or

higher.

Constraint programming (CP) is paradigm for solving

combinatorial problems by representing them as constraint

satisfaction problems (CSP) [8]. A CSP is represented as a set

of variables each with a defined domain of values, and a set

of relations/constraints on the subsets of these variables. A CP

solver takes a CSP and finds an assignment to all the variables

that satisfies the constraints, and can also extend the problem

to finding optimal solutions according to an optimization

criteria. A CP solver searches the solution space systematically

using a branch-and-bound algorithm with inference techniques

which consists of propagating the information contained in

one constraint to the neighboring constraints. Such techniques

reduce the size of the solution space that needs to be explored

[9]. CP has been used to solve a wide range of problems

in the literature. Hande [10] proposed a CP model for the

Open Vehicle Routing problem with Heterogeneous Vehicle

Fleet (HFOVRP). In [10] the CP model is compared with

a mixed-integer linear programming (MILP) model of the

HFOVRP, and they showed that the CP model is effective

for providing good-quality solutions for small-sized instances

of the HFOVRP in short computational times compared to

the MILP model. Kasapidis et al. [11] presented a MILP

model and a CP model for the Multi-Resource Flexible Job-

Shop Scheduling problem with Arbitrary Precedence Graphs.

The computational experiments conducted in [11] has shown

that the CP model is more effective and achieves the best
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Fig. 1: Example of an instance solved as a PCMCA-WT. The graph on left shows the instance with its respective arc costs,

and the precedence relationship (1, 3) ∈ R marked as a dashed arrow. The graph on the right shows an optimal PCMCA-WT

solution of cost 8.

results compared to the MILP model, although more time-

consuming on some instances. Kirac et al. [12] proposed a

CP approach for solving the Team Orienteering problem with

Time Windows and Mandatory Visits, and they showed that

the CP-based approach finds 99 of the best-known solutions

and explores 64 new best-known solutions for the benchmark

instances. Kizilay et al. [13] proposed a novel CP model for the

Mixed-Blocking Permutation Flow Shop Scheduling problem

with Batch Delivery that minimizes the total tardiness and

batch cost. The results of their study has shown that due to the

complexity of the problem, the developed CP model can solve

only small-sized instances in reasonable computational time.

Montemanni and Dell’Amico [14] proposed a CP model for

the Parallel Drone Scheduling Traveling Salesman problem,

and showed that by exploiting multi-threading computation,

the method was able to optimally solve all the instances

considered in the literature.

The Precedence-Constrained Minimum-Cost Arborescence

(PCMCA) problem is an NP-hard problem [15] that was first

introduced by Dell’Amico et al. [16]. The PCMCA problem

is an extension to the MCA problem, in which precedence

constraints must be satisfied as follows. Given a set R of

ordered pairs of vertices, then for each precedence relationship

(s, t) ∈ R, a path in the solution which covers both s and t,

must visit vertex s before visiting vertex t. The objective is

to find an arborescence of minimum total cost satisfying the

precedence constraints. The PCMCA problem has applications

in the design of commodity distribution networks where cer-

tain paths are not allowed in the network due to logistical

constraints [16]. Several MILP models of the problem were

proposed in [15], [16], [17].

The Precedence-Constrained Minimum-Cost Arborescence

Problem with Waiting-Times (PCMCA-WT) is an NP-hard

problem that was recently introduced by Chou et al. [15].

The PCMCA-WT is a variation on the PCMCA problem

characterized by the following differences. Given arc costs

indicating the time required to traverse an arc, suppose there

is a flow which starts at the root vertex r, that must reach every

vertex in an arborescence T . For each precedence relationship

(s, t) ∈ R, the flow must enter vertex s at the same time step,

or before entering vertex t, which means that the flow can stop

at any vertex and wait. The waiting time at vertex t is defined

as the difference between the time at which the flow enters s

and the time at which the flow reaches t. The objective of the

problem is to find an arborescence T of minimum total cost,

plus total waiting times, where the flow never enters s after

entering t for all (s, t) ∈ R. Several MILP models for solving

the problem were proposed in [15].

The PCMCA-WT problem can be formally defined as

follows. Given a directed graph G = (V,A,R, r), where

V = {1, . . . , n} is the set of vertices, A ⊆ V × V is the

set of arcs, R ⊂ V ×V is the set of precedence relationships,

and r ∈ V is the root of the arborescence. Let cij be a cost

associated with each arc (i, j) ∈ A which represents the time

required for the flow to travel from vertex i to vertex j. Let

dj be the time step at which the flow enters vertex j ∈ V , and

let wj be the waiting time at vertex j ∈ V . The objective of

the problem is to find an arborescence T rooted at vertex r,

that has a minimum total cost plus total waiting time, where

the flow never enters t before entering s for all (s, t) ∈ R (i.e.

dt ≥ ds for all (s, t) ∈ R).

Figure 1 presents an example of an instance solved as

a PCMCA-WT. The instance graph (left graph) shows the

precedence relationship (1, 3) ∈ R marked as a dashed arrow,

while the solution graph (right graph) shows an optimal

solution of that instance, with the corresponding di and wi

value written next to each vertex. The graph on the right shows

an optimal PCMCA-WT solution of cost 8 (sum of all the arcs

cost plus total waiting time at each vertex), with a resulting

waiting time of value 1 at vertex 3, since d1 = 4, while d3 = 3
and (1, 3) ∈ R.

The rest of this paper is organized as follows. Section II

introduces the MILP model used in this study. Section III in-

troduces a CP model that extends the MILP model introduced

in Section II by introducing redundant constraints for a subset

of the original inequalities and describing them in terms of
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CP constructs, in order to further exploit the capabilities of

the CP solver. Section IV summarizes computational results,

while some conclusions are outlined in Section V.

II. A MIXED INTEGER LINEAR PROGRAMMING MODEL

A polynomial-size MILP model for the PCMCA-WT was

recently proposed by Dell’Amico et al. [18]. The model

extends a classical formulation for the MCA problem [19],

through the addition of precedence-enforcing constraints. The

precedence-enforcing constraints detect a precedence violating

path by propagating a value along all the paths of the solution

starting from t for all (s, t) ∈ R [16], [17].

A different version of the model that contains a smaller

number of variables and constraints was also proposed in [18].

The reduction is achieved by exploiting the special property

of the PCMCA-WT, that is for any precedence relationship

(s, t) ∈ R, the flow must enter vertex t at the same time step

or after entering vertex s. This implies that it is possible to

remove a precedence relationship (s, t) ∈ R when the input

graph does not contain a zero-cost path that starts from t and

ends in s. The reduced model for the PCMCA-WT proposed

in [18] is summarized as follows. For further details the reader

can refer to [18].

Let xij be a variable associated with every arc (i, j) ∈ A

such that xij = 1 if (i, j) ∈ T , and 0 otherwise. Let yi be

a variable associated with every vertex i ∈ V that indicates

the order in which vertex i is visited on the path connecting

vertex i to the root r. Let ut
j be a variable associated with

every vertex j ∈ V , and vertex t ∈ V where t is part of a

precedence relationship (i.e. ∃(s, t) ∈ R). Let dj be the time

at which the flow enters vertex j ∈ V , and let wj be the

waiting time before the flow enters vertex j. Let Pij ⊂ A be

a simple directed path that starts from i and ends at j, and

let c(Pij) =
∑

(i,j)∈P cij be the cost of that path. For each

s ∈ V , let Vs = {t ∈ V \{r} | ∃ (s, t) ∈ R, c(Pts) = 0}. The

PCMCA-WT can be formulated as the following MILP model.

minimize
∑

(i,j)∈A

cijxij +
∑

i∈V

wi (1)

s.t.:
∑

(i,j)∈A

xij = 1 ∀j ∈ V \{r} (2)

yi − yj + 1 ≤ n(1− xij) ∀(i, j) ∈ A : j ̸= r (3)

ut
s = 0 ∀(s, t) ∈ R : t ∈ Vs (4)

ut
t = 1 ∀t ∈ Vs (5)

ut
j − ut

i − xij ≥ −1 ∀(s, t) ∈ R : t ∈ Vs, (i, j) ∈ A (6)

dr = 0 (7)

wr = 0 (8)

dj ≥ di −M + (M + cij)xij ∀(i, j) ∈ A (9)

wj ≥ dj − di −M + (M − cij)xij ∀(i, j) ∈ A (10)

dt ≥ ds ∀(s, t) ∈ R (11)

xij ∈ {0, 1} ∀(i, j) ∈ A (12)

yi ≥ 0 ∀i ∈ V (13)

ut
j ≥ 0 ∀t ∈ Vs, j ∈ V (14)

di, wi ∈ R
+
≤M ∀i ∈ V (15)

The set of constraints (2) impose that every vertex excluding

the root must have exactly one parent. Constraints (3) are

the subtour elimination constraints, which enforce that any

feasible solution is acyclic. The set of constraints (2) and (3)

guarantee that any feasible solution is an arborescence rooted

at vertex r ∈ V . Constraints (4) and (5) fix the values of

ut
s and ut

t to 0 and 1 respectively, for all (s, t) ∈ R, where

t ∈ Vs. Constraints (6) impose that if xij = 1 then ut
j ≥ ut

i

(see Figure 2 for further explanation). Constraint (7) sets the

time step at which the flow enters the root to 0. Constraint (8)

sets the waiting time at the root r to be equal to 0. Constraints

(9) impose that when arc (i, j) ∈ A is selected to be part of

the solution, then the flow enters vertex j at a time step that is

greater than or equal to the time step at which the flow enters

vertex i plus cij . Constraints (10) enforce that the waiting time

at vertex j is greater than or equal to the difference between

the time at which the flow enters vertex j and the time at which

the flow enters vertex i plus cij . Constraints (11) enforce that

the time at which the flow enters vertex t is greater than or

equal to the time at which the flow enters vertex s for all

(s, t) ∈ R. Finally, constraints (12)-(15) define the domain of

the variables, and M is an upper bound on the value of an

optimal solution.

t

ut
t = 1

1

ut
1 ≥ 1

2

ut
2 ≥ 1

s

(4) → ut
s = 1

(6) → ut
s ≥ 0

xt1 = 1 x12 = 1 x2s = 1

R

Fig. 2: An example on how a precedence relationship (s, t) ∈
R can be enforced by propagating the value of ut

t along every

path starting from t, and if the solution contains a path from

t to s, then we are propagating a value of one to vertex s

and imposing that ut
s ≥ 1. However, we enforce ut

s = 0,

and therefore the solution violates the precedence relationship

(s, t) ∈ R.

III. A NEW CONSTRAINT PROGRAMMING MODEL

The CP solver used in this study, CP-SAT [20] is a solver

that utilizes integer programming techniques (linear relaxation,

presolve, cuts, and branching heuristics) to enhance its perfor-

mance [21] and has recently been shown to successfully deal

with different combinatorial optimization problems [22], [23].

Furthermore, the computational results in Section IV show

that for the model considered in this work, the CP solver

outperforms the MILP solver on a subset of the instances con-

sidered in terms of achieved average optimality gap, solution

time, and the quality of the solutions obtained. Therefore, we

introduce a CP model in this section that extend the MILP

model introduced in Section II by adding the set of constraints
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(3) and (6) formulated as logical constraints, and merging the

two sets of constraints (9) and (10) into one set of logical

constraints. By doing so, we further exploit the capabilities

of the CP solver. Since the CP solver used utilizes integer

programming techniques, it is beneficial to include both the

logical and linear form of the constraints in the model, so

that when the logical constraint is not enforced by the SAT

solver (i.e. the logical constraint is not included in the model

by the solver), their equivalent linear constraint is included in

the program when computing its linear relaxation.

Using a set of implication constraints which enforce the

implied constraint when the value of the variable is true, the

MILP model introduced in Section II can be extended using

the following set of constraints.

xij =⇒ yj = yi + 1 ∀(i, j) ∈ A : j ̸= r (16)

xij =⇒ ut
j ≥ ut

i ∀t ∈ Vt, j ∈ V \{r} (17)

xij =⇒ dj = di + wj + cij ∀(i, j) ∈ A (18)

Constraints (16) are the subtour elimination constraints

modelling the nonlinear relationship yj = (yi + 1)xij . Con-

straints (17) are the precedence-enforcing constraints modeling

the nonlinear relationship ut
j ≥ ut

ixij . Constraints (18) com-

bine the two constraints (9) and (10) into a single equality

constraint that model the nonlinear relationship (dj − di −
wj − cij)xij = 0. Note that variables di and wi are defined as

integers (compared to the MILP model), since a CP solver only

accepts integer variables and coefficients. This means that cij
for all (i, j) ∈ A should be integer or to be discretized before

solving the model. The value of cij can be discretized by

multiplying every cij by a constant k, and then considering

only the integer part of the result. In order to compute the

correct solution cost, the objective function value should be

divided by k. A higher k value leads to higher numerical

precision, whereas a low k value leads to a lower numerical

precision and thus faster execution. Therefore, a k value which

balances the two factors should be considered. In this study

we only consider instances with integer coefficients. However,

the interested reader can refer to [14] where the authors show

how changing the k value can affect the computation time.

IV. EXPERIMENTAL RESULTS

The computational experiments are based on the bench-

mark instances of TSPLIB [24], SOPLIB [25], [26], and

COMPILERS [27], originally proposed for the Sequential

Ordering Problem (SOP) [28], [29], [30]. The benchmark

instances are the same instances previously adopted in [15],

[18] for the PCMCA-WT with the following characteristics.

The benchmark sets contain a total of 116 instances (81 open

instances) ranging in size between 9 and 700 vertices, with

an average of 248 vertices. Finally, all instances have integer

coefficients (i.e. the weight of the arcs of the cost graph is

integer). All the experiments are performed on an Intel Xeon

Platinum 8375C processor with 8 cores running at 2.9 GHz

with 16 GB of RAM. For all instances an upper bound on

the value of the optimal solution (i.e. M ), is set to the value

of the solution cost of solving the instance as a SOP, using a

nearest neighbor algorithm [27]. This is a valid upper bound

for the cost of the optimal solution of the PCMCA-WT, being

a feasible solution for the SOP a simple directed path that

includes all the vertices of the graph, such that t never precede

s for all (s, t) ∈ R. This implies that dt ≥ ds for all (s, t) ∈ R,

with a waiting time equal to zero at each vertex by definition.

The computational results are generated using two solvers:

a MILP Solver and a CP Solver. The MILP Solver is CPLEX

v12.8 [31], and is run with 8 thread standard B&C algorithm,

with the two parameters NodeSelect and MIP emphasis are set

to BestBound and MIPEmphasisOptimality respectively. The

CP Solver is Google OR-Tools [20] v9.5 CP-SAT solver, and

is run with its default parameters with all 8 threads available

are allocated for the solver. A time limit of 1 hour is set on the

computation time of both solvers. For the rest of this section

we will be referring to the MILP model introduced in Section

II as BM (Basic Model), while the CP model introduced in

Section III will be referred to as RM (Reinforced Model).

Tables I, II and III show the complete results of each model

and solving method, where we report the following. For each

instance, columns Name and Size report the name and size

of the instance. Column ρ(R) reports the density of arcs in

the set of precedence relationships computed as
2·|R|

|V |(|V |−1) .

Column Best-Known reports the best-known bounds on the

optimal solution for each instance as [LB,UB], where LB

is the lower bound on the optimal solution, and UB is the

best-known solution. The best-known solutions are obtained

from the results appeared in [18], generated using the same

computational setup and configuration used in this study.

For each model solved with the corresponding solver, we

report the following columns. Columns LB and UB report

the lower/upper bound on the optimal solution achieved by

the corresponding solving method of that model. Column

Gap reports the optimality gap computed as UB−LB
UB

. Column

Branches reports the number of branches created in the search-

decision tree, and is only reported when the models are solved

with the CP Solver. Finally, column Time [s] reports the

solution time in seconds and is only reported for the instances

that are solved optimally within the time limit. In the tables,

bold numbers indicate that a new best-known lower/upper

bound is found.

A. Multi-threading Computation

The performance of CP solvers can often be greatly im-

proved by the use of multi-threading computation, usually

more than MILP solvers due to the different approaches used

to solve the mathematical model. In this section, we assess the

effect of multi-threading on the performance of the CP Solver

and MILP Solver at solving the model introduced in Section II.

The four instances ft53.1, prob.42, ESC78, and jpeg.4753.54

were selected as both solvers are able to optimally solve those

instances within the time limit using 8 threads.

Figure 3 reports the time required to optimally solve the

different instances considered using a number of threads
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Fig. 3: Time required by the MILP Solver and CP Solver to optimally solve different instances with different number of

threads. A time of 60 minutes reported means that the respective solver was not able to optimally solve the instance within

the time limit.

between 1 and 8. In the figure, a time of 60 minuets reported

means that the respective solver was not able to optimally

solve the instance within the time limit of one hour.

The results reported in Figure 3 show that the CP Solver

substantially benefits from the use of multi-threading compu-

tation. Furthermore, the results show that the CP Solver is

not able to optimally solve three out of four instances within

the time limit when less than four threads are allocated for the

solver. However, when allocating four or more threads, the CP

Solver is able to optimally solve those instances. Furthermore,

a drastic change in performance can be observed between four

and five threads, reaching a speedup up to 93.5%. On the other

hand, the MILP Solver does not seem to benefit as much from

multi-threading for the instances considered, possibly due to

the overhead of task distribution, and the waiting time incurred

by the variety of methods run in parallel. Furthermore, we

can notice less consistent gain when increasing the number of

threads used by the MILP Solver compared to the CP Solver. It

should be noted that the differences between the two solvers

might be less extreme when more challenging instances are

considered, but this is difficult to investigate as most instances

are hard to solve optimally, even with longer computational

time limit (hours) is allowed, and with eight threads allocated

for the solvers.

In conclusion, the CP Solver appears to greatly benefit from

multi-threading computation; therefore, all the experiments

reported in this section were run on eight cores.

B. Analysis of the Results

In this section, we first compare and discuss the results

achieved by the MILP and CP Solvers by solving the model

BM. We then compare and discuss the results achieved by the

CP Solver by solving the models BM and RM.

TABLE IV: Summary of the results achieved by solving the

model BM with the MILP Solver and CP Solver.

MILP Solver CP Solver

Average optimality gap 0.340 0.301
Average solution time 297.6 89.7
New best-known lower bounds 0 9
New best-known upper bounds 0 19
New optimal solution 0 1

Table IV summarizes the results of solving the model BM

by the MILP Solver and CP Solver, where we report the fol-

lowing. The Average optimality gap is computed with respect
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to all the instances where both solvers find a feasible/optimal

solution before reaching the time limit when solving the

model BM. The Average solution time is computed on all

the instances that are solved optimally by the both solvers.

The New best-known lower bounds and New best-known upper

bounds rows report the number of instances where solving the

model by each solver resulted in an improved lower or upper

bound. Finally, New optimal solution row reports the number

of instances where an optimal solution is found for an instance

that was previously open, by each solver.

Considering the model BM, the MILP Solver achieves an

average optimality gap of 0.340 across all the instances, but

fails to solve a single instance (marked bold in the table)

as it runs out of memory while solving the linear relaxation

of the model. On the other hand, the CP Solver achieves an

average optimality gap of 0.301 (a 11.5% improvement) when

excluding the instance that is not solved by the MILP Solver,

and an average optimality gap of 0.298 (a 12.4% improvement)

across all the instances. By further inspecting the results, we

notice that the CP Solver achieves a smaller average optimality

gap within the time limit for instances with density less than

0.85 and size smaller than 400.

For a total of 27 instances that are optimally solved by

both solvers, the MILP Solver has an average solution time of

297.6 seconds, while the CP Solver has an average solution

time of 89.7 seconds (a 69.9% improvement). We should note

that the CP Solver generally finds the optimal solution in less

time compared to the MILP Solver on small to medium sized

instances.

Finally, out of a total of 81 open instances, the CP Solver is

able to find an improved lower bound for 9 instances (11.1%),

an improved upper bound for 19 instances (23.5%), and finds

the optimal solution of one instance that was previously open.

On the other hand, the MILP Solver is not able to improve the

best-known solution of any instance. Based on the experiments

performed on the model BM presented in Section II, we can

conclude that the CP Solver has an overall better performance

at solving the given MILP model.

TABLE V: Summary of the results achieved by solving each

model with the CP Solver.

BM RM

Average optimality gap 0.298 0.287
Average solution time 146.9 99.4
New best-known lower bounds 9 4
New best-known upper bounds 19 27
New optimal solution 1 1

The rest of this section discusses the results achieved by the

CP Solver by solving the two models BM and RM. The results

are summarized in Table V where we report the following.

The average optimality gap reports the Average optimality gap

of all the instances where the solver finds a feasible/optimal

solution before reaching the time limit by solving both models.

The Average solution time reports the average solution time

in seconds of all the instances that are solved optimally by

the solver when solving both models. The New best-known

lower bounds and New best-known upper bounds rows report

the number of instances where solving each model resulted in

an improved lower/upper bound. Finally, New optimal solution

report the number of instances where an optimal solution is

found for an instance that was previously open.

In terms of achieved average optimality gap, the CP Solver

achieves an average optimality gap of 0.287 (a 3.7% improve-

ment) when solving the model RM, compared to solving the

model BM. Furthermore, for a total of 36 instances that are

solved optimally when solving both models, the CP Solver

generates 57.9% less branches in the search-decision tree when

solving the model RM compared to solving the model BM. By

further inspecting the results, we notice that the CP Solver

achieves a smaller average optimality gap within the time

limit when solving the model RM for instances with density

less than 0.89 and size less than 500, which means that the

CP Solver performs better on a larger subset of the instances

compared to solving the model BM.

For a total of 36 instances that are solved optimaly by

the CP Solver when solving both models, the CP Solver has

an average solution time of 146.9 seconds when solving the

model BM, and an average solution time of 99.4 seconds (a

32.4% improvement) when solving the model RM.

Finally, out of a total of 81 open instances, when solving

the model BM the CP Solver finds an improved lower bound

for 9 instances (11.1%), an improved upper bound for 19

instances (23.5%), and finds the optimal solution for one

instances that was previously open. On the other hand, when

solving the model RM the CP Solver finds an improved

lower bound for 4 instances (4.9%), an improved upper bound

for 27 instances (33.3%), and finds the optimal solution for

the same instance that was previously open. Based on the

computational experiments and the improvements in the results

achieved by the CP Solver when solving the model RM, we can

conclude that duplicating the constraints can indeed improve

the performance of the solver for the given model.

V. CONCLUSIONS

The computational experiments has shown that the CP

Solver outperforms the MILP Solver at solving instances with

sizes up to 500 with precedence relationships density that is

less than 0.89. Furthermore, the CP Solver achieves a smaller

average optimality gap and solution time compared to the

MILP Solver. By adding constraint programming constructs

to the MILP model, we were able to further exploit the

capabilities of the CP Solver, and improve its performance

at solving the instances. In terms of solution quality, and out

of a total of 81 open instances, the CP Solver was able to find

the optimal solution to an instance that was previously open,

provide new best-known lower bounds for 13 instances, and

establish new best-known solution for 46 instances. Based on

the computational experiments performed, we have shown that

the CP Solver performs better on average for the given models.

Furthermore, duplicating constraints by defining them in their

linear form and logical form further pushes the performance
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of the CP Solver. Future work will consider investigating new

valid constraints/inequalities for the PCMCA-WT that can be

used within a constraint programming paradigm to further

utilize its potential.
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