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Abstract—With the growing demand for computing power, new
multicore architectures have emerged to provide better perfor-
mance. Reducing their energy consumption is one of the main
challenges in achieving high performance computing. Current
research trends develop new software and hardware techniques
to achieve the best performance and energy compromise. In this
work, we investigate the effect of processor frequency scaling
using Dynamic Voltage Frequency Scaling on performance and
energy consumption for the WZ factorization. This factorization
is implemented both without optimization techniques and with
strip mining. This technique involves transforming the program
loop to improve program performance. Based on time and energy
tests, we have shown that for the WZ factorization algorithm,
regardless of the presence of manual optimization, it pays to
reduce the frequency to save energy without losing performance.
The conclusion can be extended to analogous algorithms —
also having a high ratio of memory access to computational
operations.

Index Terms—processor frequency scaling, performance, en-
ergy, WZ factorization

I. INTRODUCTION

M
ULTICORE architectures are now common in all com-

puting environments, from portable handheld devices to

HPC computing platforms and supercomputers. The advent of

multicore architectures has increased application performance

by allowing them to run at a higher level of parallelism. This

opened a new era for High Performance Computing (HPC).

Of course, the increase in efficiency is closely related to the

increase in energy consumption. Computing energy is cur-

rently a serious problem with dire environmental and economic

consequences, and its mitigation is extremely important.

Top500 [1] is a website that has been updating the top

500 supercomputers list for performance in the LINPACK [2]

benchmark since 1993. GREEN500 [3] is a complementary

list to part of the TOP500 list, which since 2007 has ranked

the top 500 supercomputers in terms of energy efficiency. The

discrepancy between the energy-saving supercomputers and

the fastest supercomputers may be seen from their respective

positions in both lists. The relationship between performance

and energy consumption is unclear and depends on many

factors.

Energy efficiency can be achieved on the following two

levels: hardware [3] and software [4], [5], [6], [7], [8], [9],

[10]. The first approach is based on innovation in computer

hardware, represented by microarchitecture and advances in

the design of integrated circuits. Based on the software, the

second approach can be divided into two categories: opti-

mization of energy consumption at the operating system level

and optimization of energy consumption at the application

level. The approach to optimizing power consumption at

the operating system level focuses on minimizing the power

consumption of the entire node through the use of techniques

such as clock and power gating [11], dynamic voltage, and

frequency scaling (DVFS) [12], [13]. In contrast, application-

level optimization methods use application-level parameters

and models to maximize the energy efficiency of the applica-

tion.

Some papers have analyzed the energy impact of numerical

linear algebra algorithms that do not change the code but

only control software parameters (e.g. block size) accordingly.

ATLAS (Automatically Tuned Linear Algebra Software) [14]

is an example of the automatic tuning of a library to the

architecture of the machine for reducing execution time. The

focus of the paper [15] is to propose a method for tuning the

ATLAS library, whereby it is possible to replace the execution

time tuning process by tuning the energy consumption. In that

work, the performance and the number of MFlops/J as well as

the execution time and energy consumption were investigated

for single and double precision for different array sizes.

In the article [16], different techniques related to algo-

rithm transformation were used to reduce static and dy-

namic energy consumption on multicore machines with

shared memory. In particular, one of the most popular ma-

trix factorizations, namely the LU factorization, was con-

sidered. In the LU factorization code, the most energeti-

cally expensive instructions were extracted, and then, by

performing a code transformation, an attempt was made

to reduce their number. That work investigated the ef-

fect of the number of threads on dynamic and total en-

ergy consumption, performance, and also the number of
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MFlops/W for different matrix sizes at a fixed number of

threads.

The authors of [17], [18], present algorithms for solving

systems of equations, trying to improve their performance,

in particular in parallel. Improvement in performance was

obtained by appropriate transformation of the underlying al-

gorithm using looping tiling and appropriate data structures.

There are currently not too many studies in the literature on

the analysis of both efficiency and energy consumption in the

context of loop transformations.

In our work, we study a numerical algorithm (the WZ

factorization) in which loops are transformed. This algorithm

concerns numerical linear algebra, particularly solving systems

of equations on multi-core architectures using OpenMP in

constant performance and energy consumption.

In this paper, we will focus on the combination of two

approaches at the software level, namely the DVFS technique

(at the operating system level) and the optimization of the

program algorithm (at the application level) on one of the latest

multicore architectures. The main idea is to capture the actual

performance and energy consumption of a multi-threaded

computing application when it is executed on a multicore

computing platform by changing the clock frequency.

The LU factorization is a well-known factorization used

to solve the linear systems. From the very nature, this

factorization is sequential. Throughout recent years, parallel

implementations of LU decomposition have been implemented

on various modern computers. In particular, the researchers

have taken into account the improvement of its parallel perfor-

mance. The WZ factorization is designed straight into parallel

computers of SIMD type according to Flynn classification

and it seems to be a potentially attractive alternative to

Gaussian elimination or Cholesky factorization for parallel

computations, especially for SIMD computers. The advantage

of the WZ factorization is that it simultaneously evaluates two

columns or two rows instead of one column or one row as it

happens with the LU factorization. The WZ factorization has a

fewer number of iterations of the loop but more computations

in each iteration in comparison with the LU factorization. For

the WZ factorization, we can achieve higher parallelism. The

algorithms with higher parallelism are desirable for multicore

architectures.

In work [19], we presented the detailed implementation of

multi-threaded WZ factorization with OpenMP [20] on mul-

ticore architecture using various nested loop transformation

strategies to program optimization. In this work, we investigate

the effect of CPU frequency scaling on performance and

energy consumption for the WZ factorization in two selected

versions, namely basic and strip-mining (optimized). We se-

lected these versions for testing based on the results of the

work [21]. Strip-mining is a loop transformation technique to

improve memory performance. Additionally, we are examining

the influence of the parameter value of the strip-mining —

block size — for the WZ factorization in the strip-mining

version on energy efficiency.

The rest of the paper is organized as follows. Section 2

introduces the DVFS technique. Section 3 describes the WZ

factorization algorithm using OpenMP programming models

in two versions. Section 4 presents the numerical experimental

evaluation of the impact of processor frequency scaling on

performance and energy consumption for WZ factorization on

multicore architecture. Lastly, Section 5 concludes the paper.

II. DVFS — PROCESSOR FREQUENCY SCALING

Nowadays, computers incorporate various energy manage-

ment techniques that support the reduction of energy con-

sumption. Examples are Dynamic Voltage Frequency Scaling

(DVFS) or, for example, the use of special instructions and

specialized coprocessors. DVFS [12], [13] is a technique that

reduces the clock frequency and voltage level of various

computing node components (CPU, DRAM, etc.) at the cost

of some performance degradation. Today, DVFS is widely

supported by energy-saving and efficient processors supplied

by different vendors under different names (eg SpeedStep for

Intel [22] and PowerNow processors or Cool’n’Quiet for AMD

processors [23]). DVFS can reduce the power consumption

of a CMOS chip such as modern processors by reducing the

frequency at which it operates as shown in the formula:

P = CfV 2 + Pstatic

where C is the capacitance of the transistor gates, f is the

operating frequency, V is the supply voltage, and Pstatic is a

static power which is mainly due to various leakage currents.

The voltage required for stable operation is determined by

the clock frequency of the circuit and may be reduced if the

frequency is also reduced. This can result in a significant

reduction in energy consumption due to the compound V 2

shown above.

However, dynamic power CfV 2 alone is not the total power

of the system. Due to the static power consumption and the

asymptotic execution time, it has been shown that the power

consumption of the software shows a convex energy behavior,

i.e. there is an optimal processor frequency at which energy

consumption is minimized [24].

III. WZ FACTORIZATION

We present shortly the WZ factorization [25], [26]. We

transform a square and nonsingular matrix A into a product of

two matrices, namely WZ. The matrix W is a matrix of the

form of a butterfly with units on its main diagonal, the matrix

Z is a matrix of the form of an hourglass. Both the matrices

are complements of each other in the sense of the structure

of non-trivial elements (one has non-trivial elements in places

where the other has zeros/units — and vice versa). The forms

of these matrices can be seen in Figure 1.

We chose this numerical algorithm here because it’s quite

complicated and difficult to optimize by the compiler. Figure

2 presents a parallel basic algorithm for the WZ factorization

for an even size of the matrix (we only consider even sizes

— without loss of generality).
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Fig. 1: The output of the WZ factorization — forms of the

matrices W (left) and Z (right).

for(k = 0; k < n/2-1; k++) {

// the following four lines are omitted

// in the next versions of the algorithms

// (thay are always the same)

p = n-k-1;

akk = a[k][k]; akp = a[k][p];

apk = a[p][k]; app = a[p][p];

detinv = 1 / (apk*akp - akk*app);

#pragma omp parallel for

for(i = k+1; i < p; i++) {

w[i][k] = (apk*a[i][p] - app*a[i][k])

* detinv;

w[i][p] = (akp*a[i][k] - akk*a[i][p])

* detinv;

#pragma simd

for(j = k+1; j < p; j++)

a[i][j] = a[i][j]

- w[i][k]*a[k][j]

- w[i][p]*a[p][j];

}

}

Fig. 2: The parallel basic algorithm for the WZ factorization

— pseudocode.

Considering performance and energy consumption, it is

important to have optimized algorithms and their implemen-

tation. A general technique for improving performance is to

take full advantage of feature multicore architectures. A good

example is the use in the code of loop optimization as the

most common critical places are just the loops. One of the

known loop optimization techniques is strip-mining. A loop in

the process of strip-mining is divided into two loops, where

the inner one has BLOCK_SIZE iterations and the outer one

has n/BLOCK_SIZE iterations (n is the number of iterations

in the original loop). The strip-mining alone can have some

positive impact on the performance (by easing the automatic

vectorization process).

In Figure 3, we present a parallel strip-mining algorithm

for the WZ factorization with the parameter of this algo-

rithm, namely n/BLOCK_SIZE. We use the compiler clause

__assume which tells the compiler that a given condition is

fulfilled — here, we declare that ii and jj are multiples of

the BLOCK_SIZE.

The number of floating-point operations for the WZ factor-

for(k = 0; k < n/2-1; k++) {

. . .

#pragma omp parallel for

for(i = k+1; i < p; i++) {

w[i][k] = (apk*a[i][p] - app*a[i][k])

* detinv;

w[i][p] = (akp*a[i][k] - akk*a[i][p])

* detinv;

start = RDTTNM(k+1, BLOCK_SIZE);

for(jj = start; jj < p;

jj += BLOCK_SIZE) {

__assume(jj % BLOCK_SIZE == 0);

#pragma simd

for(j = jj; j < jj+BLOCK_SIZE;

++j)

a[i][j] = a[i][j]

- w[i][k]*a[k][j]

- w[i][p]*a[p][j];

}

}

}

Fig. 3: Parallel strip-mining in the basic algorithm — pseu-

docode.

ization is:
2

3
n3 +O(n2)

and number of memory access is:

7

6
n3 = O(n2)

what gives the ratio of memory access to computations — 7

4
.

This means that we need almost two memory accesses for one

floating point operation to perform our algorithm.

IV. NUMERICAL EXPERIMENTS

A. Methodology

We test two types of versions of the WZ factorization

algorithm: the basic algorithm and block algorithms with strip-

mining. Our test dataset is a random square matrix with

dimensions of n× n double-precision values, n = 32768. So

our test dataset is 1073741824 cells, which is 8GB of data.

All versions of the algorithm match the row-wise layout and

are implemented in C++ with vectorization and parallelism.

The following block sizes were checked during the tests: 64,

128, 256, 512.

Our experimental setup includes the following computing

platform equipped with a multicore processor with the fol-

lowing parameters:

• processor: Intel(R) Xeon(R) Gold 5218R

• CPU @ 2.10GHz HT (2x20 cores)

• Cache: L1: 32KB, L2:1024KB, L3: 28MB

The following software was installed during tests:

• operating system: CentOS 7.5;

• kernel: Linux 3.10.0;
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Fig. 4: Runtime and energy consumption of basic for data size 32768

TABLE I: Energy efficiency for basic (32768)

Frequency [GHz] Time [s] Total energy [J] Performance [Gflops] Energy efficiency [Gflops/J]

0.8 607.88 108132.066 38.59 0.217
1.0 595.58 107218.43 39.38 0.219

1.2 612.59 113827.77 38.29 0.206
1.4 605.92 118292.45 38.71 0.198
1.6 616.01 123146.44 38.08 0.190
1.8 611.79 125920.48 38.34 0.186
2.0 596.57 128343.30 39.32 0.183
2.1 598.88 131927.20 39.17 0.178

• icc compiler v. 2021.5.0 with the following compiler

options:

-qoenmp -03 -ipo -no-prec-div

-fp-model fast=2

We used the RAPL (Running Average Power Limit) in-

terface [27] to measure the power and energy consumption

of CPU-level components. We access RAPL energy meters

via Machine-Specific Registers (MSR). Counters are 32-bit

registers that indicate the amount of energy used since the

processor was started, they are updated approximately once

every 1 ms or 1000 Hz. Since its introduction, RAPL has

been widely used in energy measurement and modeling. The

results presented in the work [27] suggest that RAPL can

be a very useful tool for measuring and monitoring energy

consumption on multicore computers without the need to

implement complicated power meters. The experience of the

authors of the work [28] and our experience [21], [29] with

RAPL confirms the results from the literature. RAPL is able

to measure the energy consumption of a complex scientific

application with acceptable accuracy and detail.

We carry out 5 iterations of each version of the algorithm

for each tested frequency and then average the results to obtain

a statistically correct result. As shown in [21], running HT for

the tested versions of the WZ factorization algorithm has no

benefit in speeding up the calculations so we run all versions

without HT on 40 threads.

We made changes to the clock frequencies using CPU

frequency scaling. The intel_pstate driver is used by

default to control the performance of Intel processors on

GNU/Linux systems. With this driver, we did not get a

satisfactory effect of forcing the clock frequency, so we

used the acpi_cpufreq driver, which by default follows

the conservative governor. Governor conservative

increases or decreases the clock frequency depending on the

core load, selecting one of several available frequencies from

the minimum to the maximum supported by the editor. For the

Intel Xeon Gold 5218R processors we use, the permissible

frequencies range from 0.8 GHz to 2.1 GHz. Using the

cpupower program, we change the minimum and maximum

values of the CPU frequency limit to a given level. The

frequency setting was done for all cores of both installed

processors with the commands:

cpupower frequency-set -d 1800000

cpupower frequency-set -u 1800000

for setting the minimum and maximum frequency limit values

to 1.8 GHz.

We conducted our tests for frequencies ranging from 0.8

GHz to 2.1 GHz, making changes every 0.2 GHz, 0.8 GHz is

the lowest frequency to which we could lower the clock.

B. The performance and energy consumption for basic WZ

factorization algorithm

First, we measure the runtime of the basic version of the

WZ factorization algorithm. The test results are presented in

Figure 4.

In Figure 4 on the left diagram we can see that the algorithm

runtime is similar regardless of the clock frequency. The

difference between the shortest operating time (frequency 1.0
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GHz) and the longest (frequency 1.6 GHz) is 3% (20 seconds).

In Figure 4 on the right diagram we can see that the energy

consumption increases with increasing clock frequency. For

a higher frequency, we have a greater instantaneous power

consumption, hence, with a similar runtime, we have a greater

energy consumption. We have the lowest energy consumption

for the frequency of 1.0 GHz. Lots of energy were consumed

at the highest frequency. Lowering the clock frequency to 1.0

GHz saves about 19% of the energy consumed here.

In Table I, we have a summary of the runtime, total energy,

performance, and energy efficiency for the basic algorithm.

We can see that both the best performance and the energy

efficiency of the algorithm will be achieved at the frequency

of 1.0 GHz. Thus, there are benefits to lowering the clock

frequency.

C. The performance and energy consumption for basic-sm

versions of WZ factorization algorithm

Next, we test block versions of the WZ factorization algo-

rithm with strip-mining (abbreviated as sm). We consider four

block sizes: 64, 128, 256, 512 so we have the following ver-

sions: basic-sm-64, basic-sm-128, basic-sm-256,

basic-sm-512. Our goal is to answer the question of

whether the sm optimization will affect the performance

and energy consumption and whether the additional clock

frequency scaling for the sm version will also have a positive

effect on the reduction of energy consumption without loss of

performance.

The test results are presented in Figure 5. Here we see a

similar situation as in the case of the basic version, the

operating time of the tested versions of the algorithm slightly

fluctuates for different frequencies (left diagram in Figure

5), while the energy consumption increases with increasing

frequency (right diagram in Figure 5). We can also observe that

the lowest energy consumption for each of the tested blocks

was for the lowest tested frequency: 0.8 GHz. In addition, we

can notice that, regardless of the frequency, block 64 was the

weakest, both in terms of operating time and energy consumed.

The best, however, are blocks 256 and 512.

In Table II and Table III, we have a summary of the run-

time, total energy, performance and energy efficiency for the

basic-sm-256 and basic-sm-512 versions of algorithm

respectively.

In this case, other than for the basic version of the

algorithm, the best performance and the best energy efficiency

are not achieved for the same frequency. It is the same for

both blocks, the best performance was obtained for the 1.4

GHz frequency and the best efficiency for 0.8 GHz. Here,

too, we can infer that lowering the frequency (in the case of

our algorithm to 0.8 GHz) results in less energy consumption.

We save 21% of energy consumption without losing time for

block 256 and save 19% of energy consumption lose about

2% (11 seconds) of time for block 512 compared to 2.1

GHz. If we look at high frequencies (2.0 and 2.1 GHz), we

get slightly better results in terms of efficiency and energy

efficiency for block 512 compared to block 256. However,

if we want to reduce energy consumption without losing

time, a bit better results are observed for block 256. The

Figure 6 shows a juxtaposition of tests for the basic and

baisc-sm -256 versions. Lowering the clock to 0.8 GHz

we can see that strip-mining will pay off regardless of the

clock frequency. Meanwhile, if we use the clock frequency

reduction mechanism, we can get 21% for basic-sm-256

without wasting time, and for basic equal to 19% without

wasting time, but for basic-sm-256 it pays to lower the

clock frequency to 0.8 GHz, and for basic it is enough to

1.0 GHz.

V. CONCLUSION

In this paper, we focused on the combination of two

approaches, namely the DVFS technique and the optimization

of the strip-mining loop. Our goal was to answer the question

of whether traditional methods of strip-mining loop optimiza-

tion in combination with the DVFS technique will reduce

energy consumption without major losses on performance.

Measurements were made on a 2nd Generation Intel Xeon

Scalable Processors using the Intel RAPL interface.

There are a lot of memory references in our algorithm, so

frequency scaling does not significantly affect performance, as

our tests showed. The reduction of the frequency to the level

of 0.8–1.0 GHz did not cause a decrease in performance in

the case of the basic version, Table I. We improved memory

access using strip-mining transformation, which resulted in a

performance increase of about 9%. Although in the case of

the basic-sm versions lowering frequency we lose a bit of

performance (less than 2%, Table II), we can still lower the

frequency while maintaining better performance than for the

basic version.

Our tests also showed two facts. First, the first version

of the basic will use more energy than the basic-sm,

which means that the strip-mining transformation will pay off.

Second, with this algorithm, the frequency scaling affects the

energy consumption. By reducing the frequency to 0.8 GHz,

we can reduce the power consumption for basic-sm-256

by 21%, Table II.

The conclusion from our tests is that the highest frequency is

not always the best in terms of time and energy consumption.

For the WZ factorization algorithm, it pays to reduce the

frequency to save energy without losing performance. The

frequency that works best during experiments is the smallest

that can be tested here, i.e. 0.8 GHz.

In the future, we plan to extend our tests by a wide one a

range of architectures, including graphics cards. Moreover, we

will evaluate the performance and energy consumption impact

of various execution systems for OpenMP loop configurations

and transformations for WZ and the three decomposition main

kernels in dense linear algebra algorithms (Cholesky, LU and

QR).
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Fig. 5: Runtime and energy consumption of basic-sm for data size 32768

TABLE II: Energy efficiency for basic-sm-256 (32768)

Frequency [GHz] Time [s] Total energy [J] Performance [Gflops] Energy efficiency [Gflops/J]

0.8 549.62 96781.44 42.68 0.242

1.0 564.49 101886.49 41.55 0.230
1.2 568.83 105726.79 41.24 0.222
1.4 548.34 106968.62 42.78 0.219
1.6 576.02 114994.40 40.72 0.204
1.8 564.11 116015.06 41.58 0.202
2.0 570.03 122833.96 41.15 0.191
2.1 551.03 122763.00 42.57 0.191

TABLE III: Energy efficiency for basic-sm-512 (32768)

Frequency [GHz] Time [s] Total energy [J] Performance [Gflops] Energy efficiency [Gflops/J]

0.8 553.72 97352.90 42.36 0.240

1.0 573.04 102853.71 40.93 0.228
1.2 550.89 102039.32 42.58 0.230
1.4 538.57 104694.09 43.55 0.224
1.6 585.31 115855.60 40.07 0.202
1.8 574.01 116610.11 40.86 0.201
2.0 567.50 122428.81 41.33 0.192
2.1 542.94 120763.71 43.20 0.194
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