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Abstract—Currently, anomaly detection is an increasingly
important issue in terms of research work and applications in
production systems. Information about system malfunction allows
the implementation of precise diagnostic and corrective actions.
Two main approaches based on statistical analysis and machine
learning techniques are used in anomaly detection systems, which
are computationally complex, especially when dealing with high
traffic volumes in computer network. In this paper, the limitation
of the sampling frequency for network traffic parameters is
proposed as a technique to reduce the computational complexity
of anomaly detection methods. The proposed approach has been
verified in a real network link monitoring system for a medium-
sized ISP. The results obtained are promising and can be used
to build a production system that enables the development of
early warning systems in the area of security incident detection
dedicated to high-speed access links.

I. INTRODUCTION

D
ISTRIBUTED information systems are becoming in-
creasingly prevalent in critical areas of human life. For

instance, they are used to control traffic in the city [1], [2],
monitor patients’ vital signs [3], or manage technological
processes in smart factories [4]. This information systems
are exposed to a number of new types of cyber security
threats. The market offers ready-made tools for executing
attacks, which affects the constant increase in the number
of security incidents. During the pandemic period alone,
cybercrime increased by 600% [5], and the average cost of a
data security breach in the U.S. in 2022 was 4.35 million [6].
There is no single effective system of protection against these
threats. Nowadays threat detection and elimination systems
have a cascade structure. In other words, we have many
interconnected layers in which IDS, IPS, ACL, etc. function.
Each type of layer is sensitive to different types of attacks. In
the case of carrier access links, such as those used for Internet
Service Provider (ISP) companies, simple Access Control List
(ACL) rules that filter network traffic based on source and
destination addresses are generally applicable. Even in the
case of such a simple mechanism, the implementation of a
larger number of ACLs, or the implementation of a mechanism
for logging information (what flow and by what ACL was
blocked) can bring significant delays in the transmission path.
Therefore, the authors posed the question during their research:
is it possible to detect anomalous behavior without introducing

additional delay while reducing the computational complexity
of detecting process? Anomaly detection is an important
data analysis task that detects anomalous or abnormal data
from a given data set. Preliminary research has shown that
a conducted cyberattack can affect the change of statistical
characteristics of network traffic in the access link. There-
fore, the analysis of descriptive link parameters, statistical
techniques or artificial intelligence can be used in the area
of an access link on the border of the protected network to
detect the threat. Anomaly detection is widely used in myriad
fields such as medical, public health, fraud detection, intru-
sion detection, industrial damage, image processing, sensor
networks, robot behavior and astronomical data [7]. Current
research is concerted around speeding up the detection process
reducing the computational complexity of the entire process
and identifying not only the occurrence of a given anomaly
but also eliminating its causes.

At present, there is a clear trend related to identifying the
best AI models for anomaly detection in ISP links in order to
achieve the best possible detection performance. Applications
in this area include both supervised and unsupervised methods
[8], [9], [10], [11]. Of course, previously, network traffic
sampling methods [12] were used for anomaly detection using
traditional IDS probes. Such methods were applied, for exam-
ple, in the work [9], and the obtained results look promising.
Their applications allow for preliminary verification in terms
of detecting anomalies in large volumes of network traffic.
However, it should be noted that a large body of work in this
field is based on previously prepared test datasets [13], [14],
[15] or on data obtained from real links with low throughputs
[16]. Preliminary results of conducted research have shown
that, in addition to data sampling, the proper preparation of
acquired data and flow aggregation have a positive impact on
detection outcomes. Of course, data preprocessing can also
be computationally complex, but it can be easily parallelized
and computed distributed among system nodess [17], [18].
The analysis of available literature clearly demonstrates the
pursuit of increasing the accuracy of predictive models, but
we must not forget about their applicability in real computer
networks. In this study, the authors decided to investigate
the impact of data set impoverishment (sampling) on the
sensitivity of the anomaly detection model and whether it
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is possible to limit the number of processed traffic samples
while maintaining the detection level. The entire study was
conducted in a production network of an ISP (Enf sp. z o.o).
The developed detection layer at the ISP access link can
serve as an additional layer of protection against cyber-attacks
in cascade anomaly detection systems [19]. If the detection
effectiveness of the model slightly decreases with decreasing
traffic sampling frequency, it will positively contribute to
reducing the amount of necessary measurement data to be
transmitted and the processing time required, thus increasing
the applicability of the solution in real networks.

The article has the following structure: Chapter 2 presents
the network structure of the ISP access node and the ar-
chitecture of the data acquisition and processing system. In
Chapter 3, the data aggregation and sampling process are
discussed in detail. Chapter 4 describes the model used for
anomaly detection. Chapter 5 presents the obtained results,
including the accuracy of detection in relation to the sampling
frequency. In Chapter 6, the obtained results were summarized,
and directions for further research were indicated.

II. ISP EDGE NODE TOPOLOGY

As mentioned earlier, the research was conducted in the
environment of a medium-sized ISP. Real network traffic
from end customers was analyzed. In order to carry out the
research, it was necessary to modify the structure of the
access node used in the system. The system structure is shown
in Figure 1. The access router (Extreme MLX-4) connect
the entire network segment to the Internet using the BGP
protocol. The core of the access network was built based on
two switches: Extreme 690 (CORE switch) and Extreme 670
(S1 switch). Policy shaping and NAT for the LAN segment
were implemented through a software router (TC + IPTables)
built on a Dell R710 server. Two additional hosts, PC1 and
PC2, were introduced into the network. PC1 was connected
to the LAN network using a Dasan switch, while PC2 was
connected through a TP-Link switch in the demilitarized zone
of the access node. Its task was to emulate an attack on
PC1. All traffic transmitted to the LAN is directed through
port P1. Using the port mirroring mechanism, the traffic
from port P1 is copied to the Dell PowerEdge R940 server,
where calculations related to anomaly detection are performed.
This server had the following specifications: Intel(R) Xeon(R)
Gold 624 CPU @ 2.60GHz processor; 128 GB of RAM;
NVIDIA Tesla V100-PCIE-16GB GPU; HDD 4.5 TB. The
’PowerEdge R940’ server hosted a virtual machine based on
the Debian OS, which collected traffic (bidirectional) using
tcpdump. The laboratory setup allowed for data collection in
the infrastructure from the layer 1 to layer 7 of the ISO/OSI
model, capturing individual packets for specific network flows
using the tcpdump sniffer. Such an environment allowed for
testing various data processing techniques and AI algorithms
to determine the optimal sampling frequency at which the
created models would effectively detect abnormal periods in
the packet flow in the investigated network.

Fig. 1. ISP network edge node architecture with testbed elements

In the next step, a system was built to allow smooth
frequency sampling changes. It should be noted that during
the conducted research, the entire traffic from port P1 was
collected. The entire sampling process was performed on the
PowerEdge R940 server, enabling repeated tests for different
sampling frequencies. Ultimately, in production systems, the
sampling frequency can be set on a specific probe installed in
the network. This not only reduces the amount of processed
data but also limits the amount of data transmitted between the
probe and the detection system. Additionally, initial data pre-
processing can also be performed on the measurement probe
(in the test system port P1 acts as the probe). Sequential packet
selection with a fixed period between consecutive samples was
used in the sampling process. In other words, all collected
packets were labeled with consecutive natural numbers, and
only those packets whose indexes were multiples of a selected
natural number s, such as s = 2 (sampling every other packet),
were chosen for further analysis. Of course, it is possible to
apply a different statistical distribution of samples, which will
be the subject of further research. The data received from the
ISP network was saved in .dump file format. Subsequently,
it was divided into equal time intervals (windows). Each
window represents a short time of network operation that
is evaluated by the machine learning model to classify the
entire window as either anomalous or not. The order of the
sampling and windowing processes is interchangeable. In the
next step, CICFlowMeter software [20] was used for feature
extraction. As a result of its operation, CSV files containing
feature vectors describing each analyzed packet were obtained.
These files were used in further analysis for feature selection
and aggregation, which will be described in detail in the
subsequent part of the article. The data processing process
is described in Figure 2.

In order to describe the process of windowing, i.e., to divide
packets into windows depending on the time of their capture,
let us make the following assumptions:

T = {t0, t1, t2, . . . , tz}

tk = k · f, k ∈ N0, k ≤ z
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Fig. 2. Data processing scheme

z =

⌊

ttest

f

⌋

,

where: ttest – total duration of the test; k – the number of
the given window; P - set of all packages; T – set of all the
moments of time in which the windows begin; f – the length
of the window within which the packages will be aggregated.

In view of this, we can assume that the set of packages
contained in a given window can be described as follows:

Ou = {p ∈ P : tu ≤ p(t) < tu+1}

u = 0, 1, . . . , z − 1

where: O – set of all windows; p(t) - packet capture time p.
The data was divided into two sets:

1) The training set represented normal network traffic and
was collected for one hour under standard network oper-
ating conditions. It consisted of traffic from LAN clients
and PC2 (see Figure 1). These data will be used to train
a model for the purpose of identifying normal traffic. The
anomaly detection model used in the further part of this
work will be based on a set of unsupervised algorithms.
This approach was chosen because in case of supervised
learning model, staff would have to label which packets
belonged to normal traffic and which were considered
anomalous. This process is extremely time-consuming.
Naturally, in the case of unsupervised learning, during
the training period, it is essential to ensure that the
network is not under attack. Therefore, the training time
of the models must be closely monitored by the technical
personnel. After training the model on attack-free traffic,
it should be able to determine whether incoming packets
grouped in windows Ou will contain flows characterized
by parameter values deviating from the characteristics of
normal traffic. The training dataset contained information
on 1,182,566,238 packets.

2) The test set aimed to verify the performance of the model
based on the training set. The packets in the windows
represented network traffic in two states: normal and
anomalous. The anomaly was a 5-minute long Denial-
of-Service (DoS) attack. The test dataset contained infor-
mation on packets captured over a period of 45 minutes,
out of which 20 minutes represented normal traffic, the
next 5 minutes included the anomaly, and the remainder
consisted of normal traffic again. For this dataset, window
labeling was performed to mark them as either anomalous
or non-anomalous in order to assess the quality of the
trained model. The test set contained information on
697,871,782 packets.

It should be noted that during the conducted research, a series
of experiments related to DoS and DDoS attacks were carried
out, and repeatability of the obtained results was achieved. The
DoS attack was identified by the ISP operator as the most
common type of attack that the network encounters during
its normal operation. Of course, the model shows sensitivity
to other types of anomalies not related to DoS attacks, but
research in this area needs to be continued.

III. PRE-PROCESSING OF DATA

The data collected during the experiments were continu-
ously subjected to the process of cleaning and preparation
for further stages of processing related to model training and
anomaly detection. According to the scheme presented in Fig-
ure 2, all extracted windows Ou had to undergo a vectorization
process, so that each window represented independent feature
vectors. The vectorization method used in this work is an ag-
gregation approach of selected flow features obtained through
feature extraction using the CICFlowMeter software for unique
source and destination IP address pairs. A flow represents the
packet flow between two network devices, defined by source
and destination IP addresses, as well as used ports and network
protocols. For the purpose of this work, the notations p(s)

and p(r) were adopted to denote the source and destination
IP addresses of a given packet, respectively. Therefore, the
vectorization process can be described as follows:

D(u) =
{

F2

(

F1

(

R
(u)
i

))

: i = 0, 1, . . . ,
∣

∣

∣
R(u)

∣

∣

∣

}

,

R(u) =
{{

p ∈ Ou :
{

p(s), p(r)
}

= Ū
(u)
j

}

,

j = 0, 1, . . . ,
∣

∣

∣
Ū (k)

∣

∣

∣

}

,

U (k) =
{{

p(s), p(r)
}

: p ∈ Ok

}

,

where: D(u) - the aggregated feature vectors of window flows
u; R(u) - a set of packet collections with unique destination
and recipient IP addresses; U (u) - a set of all destination and
source IP address pairs in the window k; Ū (u) - a subset
contained in U (u) composed only of its unique elements; F1

- the first aggregation function, its task is to aggregate packet
features for each unique flow; F2 - the second aggregation
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function, its task is to aggregate flow features for each unique
destination and recipient IP address pair.

In the first stage (aggregation F1), the characteristics of each
flow occurring in the processed window were aggregated. The
set of packets in the window is divided into subsets, where
each subset contains the set of packets responsible for the cre-
ation of a particular flow. In the second stage, the aggregated
characteristics obtained in stage F1 were further aggregated for
each unique destination and recipient IP address pair p(s), p(r)

in the processed window Ou. Additionally one dimension
describing the number of flows for unique destination and
recipient IP address pairs was added to the final vectors
D(u). This type of aggregation allows for a complete vector
representation of flow data for a given window, which directly
translates into reducing the computational complexity of the
detection process by reducing the number of features to 25.
These features were selected through experimental work aimed
at identifying characteristics that maximize the effectiveness
of anomaly detection. The list of all used features is presented
in Table I, which also indicates the actions performed in the
individual aggregation stages F1 and F2.

IV. MODEL DESCRIPTION

To test the performance of the sampling frequency’s impact
on anomaly detection accuracy, a densely connected neural
network based on an autoencoder architecture was used [21].
The application of this model for anomaly detection is well-
known in the literature, and its effectiveness for the complete
dataset was experimentally confirmed in the initial stage of
the conducted research. The operation of the adopted model
can be divided into two main stages:

1) The forward propagation stage of the neural network,
which consists of two key components:

a) Compression of the input feature vector into fewer
dimensions (encoding).

b) Reconstruction of the compressed feature input vector
(decoding).

2) The stage of calculating the reconstruction error based
on the comparison of the input vector with the output of
the neural network. Based on the reconstruction error, a
decision is made to classify the sample into normal or
containing an anomaly.

Let M denote the reconstruction error for a single vector
w. It can be observed that as a result of applying aggregation
F2, we obtain a set of vectors describing the features of all
unique sender and receiver IP address pairs. Therefore, the
reconstruction error for a single vector w can be expressed as
follows:

M (u)
w =

∑24
i=0(D

(u,w)
i −m(D(u,w))i)

2

25

To calculate the reconstruction errors for all vectors in a
given window Ou, the above formula should be applied to
each w = 0, 1, . . . ,

∣

∣D(u)
∣

∣.
The classification of a window can be expressed as follows:

TABLE I
FEATURES USED IN FEATURE EXTRACTION PROCESS

ID Feature Description Aggregation F1 Aggregation F2

0 Number of flows Count
1 Flow duration Average
2 Number of packets sent Count Sum
3 Number of packets re-

ceived
Count Sum

4 Total length of packets
sent

Sum Sum

5 Total length of packets
received

Sum Sum

6 Minimum length of
packets sent

Minimum Average

7 Maximum length of
packets sent

Maximum Average

8 Average length of pack-
ets sent

Average Average

9 Standard deviation of
length of packets sent

Standard deviation Average

10 Minimum length of
packets received

Minimum Average

11 Maximum length of
packets received

Maximum Average

12 Average length of pack-
ets received

Average Average

13 Standard deviation of
length of packets re-
ceived

Standard deviation Average

14 Packets per second Average Sum
15 Bytes per second Average Sum
16 Packets sent per second Average Sum
17 Packets received per sec-

ond
Average Sum

18 Minimum packet length Minimum Average
19 Maximum packet length Maximum Average
20 Average packet length Average Average
21 Standard deviation of

packet length
Standard deviation Average

22 Average packet size Average Average
23 Average segment size of

sent packets
Average Average

24 Average segment size of
received packets

Average Average

au =

{

anomaly if max(M (u)) > y

no anomalies otherwise,

where: y – classification threshold; au – window classification
decision u; m(D(u,w)) - vector reconstructed using autoen-
coder.

Table II presents the detailed architecture of the utilized
autoencoder, which was developed based on conducted ex-
periments aiming to maximize the effectiveness of anomaly
detection. The dimensions of the input data to each of the
layers is marked as follows: the first dimension marked "-"
is the number of feature vectors, which can be arbitrary. The
second dimension is the size of the input vectors. The output
dimension column describes the dimension of the vectors after
calculating the total excitation of each neuron and applying the
activation function.

The model was trained using windows from the training
dataset. It was trained for 30 epochs using the ADAM[22]
optimization method and mean squared error (MSE)[23] as the
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TABLE II
AUTOENCODER ARCHITECTURE

Layer Input
dimension

Number of
neurons

Output di-
mension

Activation
function.

densely
connected

(-, 25) 13 (-, 13) RELU

densely
connected

(-, 13) 6 (-, 6) RELU

densely
connected

(-, 6) 13 (-, 13) RELU

densely
connected

(-, 13) 25 (-, 25) no
activation
function

reconstruction loss for window characteristics. Additionally,
to improve the weight fitting process, the data underwent
standardization[24] using the mean and standard deviation of
the features from the windows in the training dataset.

V. RESULTS

The combination of processing data using aggregation of
unique sender and receiver IP address pairs, along with a
model based on maximum reconstruction error of processed
feature vectors in each pair’s window, yielded good results
in anomaly detection task. The windows where anomalies
occurred showed significantly higher maximum reconstruction
error compared to those characterized by normal traffic. Table
III presents the results of anomaly detection quality on the
test dataset. The performance of the developed model was

TABLE III
RESULTS OF MODEL EVALUATION ON THE TEST SET

Sampling frequency
(s)

Window size in sec-
onds

Detection accuracy

1 5 100.0%
2 5 100.0%
5 5 100.0%
10 5 100.0%
25 5 99.8%
50 5 87.6%

evaluated on the test dataset for different sampling frequencies
s = 10, 25, 50. The obtained results are presented in Figures 3
to 5. The maximum reconstruction error for the non-anomalous
sender and receiver IP address pair is indicated in blue color,
while the reconstruction error for the attacking device’s IP
address and the target IP address is shown in red color.

The results show that satisfactory performance is achieved
even in the case of s = 25, which means checking every
25th network traffic sample. It is important to note that in the
experiments, the window length was 5 seconds and the entire
attack lasted 5 minutes. It is assumed that for longer-lasting
attacks with higher network traffic intensity, such as DDoS
attacks, the sampling frequency can be further reduced. The
sampling threshold should be determined individually based on
the characteristics of the specific network and the sensitivity
of the system expected by the ISP operator.

Fig. 3. Model evaluation on test set for sampling every 10 packet

Fig. 4. Model evaluation on test set for sampling every 25 packet

Fig. 5. Model evaluation on test set for sampling every 50 packet
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VI. SUMMARY

The paper presents the results of research related to the pos-
sibilities of applying a data sampling mechanism for anomaly
detection on high bandwidth network links. The research work
was carried out in a medium ISP environment in a production
infrastructure. The anomaly detection approach proposed in
the work taking into account windowing and data sampling
allowed to reduce the data needed for anomaly detection (DoS
Attack) by 25 times. This makes it possible to reduce the
bandwidth of IDS and IPS probes detecting threats, which will
directly translate into the cost of implementing cybersecurity
systems. Further research concert around the use of non-
uniform sequential sampling of traffic, e.g. by using different
frequencies and statistical distributions depending on the time
of day or network activity. In addition, preliminary studies
have shown that the designed system is also effective in
detecting other types of anomalies, e.g. data generated by
faulty network interfaces. It should be noted that the proposed
approach makes it possible to monitor high-throughput access
links of ISPs and thus introduce another layer of protection
for the entire ICT system against cyber attacks. Thanks to the
use of traffic copies, the proposed architecture itself does not
bring delays to the end user traffic forwarding process, and
once a threat is detected, a given flow can be redirected for
further inspection using policy-based routing mechanisms.
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