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Abstract—In this paper, we propose a novel approach to dis-
tance measurement for rankings, introducing a new metric that
exhibits exceptional properties. Our proposed distance metric
is defined within the interval of 0 to 1, ensuring a compact
and standardized representation. Importantly, we demonstrate
that this distance metric satisfies all the essential criteria to
be classified as a true metric. By adhering to properties such
as non-negativity, identity of indiscernibles, symmetry, and the
crucial triangle inequality, our proposed distance metric provides
a robust and reliable approach for comparing rankings in a
rigorous and mathematically sound manner. Finally, we compare
our new metric with distances such as Hamming distance,
Canberra distance, Bray-Curtis distance, Euclidean distance,
Manhattan distance, and Chebyshev distance. By conducting
simple experiments, we assess the performance and advantages
of our proposed metric in comparison to these established dis-
tance measures. Through these comparisons, we demonstrate the
superior properties and capabilities of our new drastic weighted
similarity distance for accurately capturing the dissimilarities and
similarities between rankings in the decision-making domain.

I. INTRODUCTION

D
ISTANCE measures are fundamental tools in many areas

of data analysis, including machine learning, statistics,

data mining, and many more [1], [2]. They quantify the dif-

ference or dissimilarity between pairs of objects, like vectors,

sets, or more complex structures, providing a quantitative basis

for their comparison [3].

A key aspect of distance measures is that they must satisfy

certain properties, such as non-negativity (distances are always

non-negative), identity of indiscernibles (the distance between

an object and itself is zero), symmetry (the distance from A

to B is the same as from B to A), and the triangle inequality

(the direct distance from A to B is always shorter or equal to

the distance from A to B via an intermediary point C) [4].

There are various types of distance measures, including

Euclidean [5], Manhattan [6], Chebyshev [7], Hamming [6],

Canberra, Bray-Curtis, and many others [8], [9], each with

their own characteristics and use-cases. Some measures like

Euclidean and Manhattan are primarily used for continuous

variables [6], while others like Hamming are used for categor-

ical variables [10]. Some measures are sensitive to the scale

and distribution of the data, while others are more robust.

The choice of the appropriate distance measure is highly

dependent on the nature of the data and the specific objectives

of the analysis [11], [12]. For example, in a scenario where

extreme values or outliers are important, a measure such as

the Chebyshev distance could be useful as it focuses on the

maximum difference in any one dimension. On the other hand,

for data that represents rankings or preferences, a measure like

Spearman’s footrule or the Kendall tau distance might be more

appropriate [13].

When comparing rankings in decision-making, distance

measures play a vital role. To compare rankings, we need

a way to quantify how similar or different two rankings are

[14], [15]. That’s where distance measures come in. They

provide a numeric value representing the dissimilarity between

two rankings, with lower values typically indicating greater

similarity.

The choice of distance measure can have a significant im-

pact on the comparison. Some measures are more sensitive to

the exact order of the rankings, while others, like Spearman’s

footrule [16], are more focused on the overall similarity.

Moreover, some measures are more sensitive to differences

at the top of the rankings [17], [18], while others treat all

positions equally. Overall, comparing rankings using distance

measures can provide valuable insights in decision-making,

helping decision-makers understand how different choices,

evaluations, or scenarios compare to each other, and aiding

in making more informed, data-driven decisions [19].

Rankings and comparisons form an integral part of decision-

making processes in diverse fields such as information re-

trieval, sports [20], elections, and more [21]. However, a sig-

nificant challenge that persists in these scenarios is quantifying

the dissimilarity or distance between different rankings ef-

fectively and accurately. Traditional distance measures, while

useful, can often fail to capture the nuances and subtleties

inherent in the comparison of rankings. To address these

limitations and introduce a more robust and versatile solution,

the motivation behind this paper emerges.

In this paper, the main contribution is to propose a novel

distance metric that is particularly well-suited for ranking

comparisons. We aspire to create a metric that not only

captures the dissimilarity between rankings accurately but also
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exhibits essential properties required of a true metric. A key

part of our motivation is to ensure that this new measure is

defined within the interval of 0 to 1, thus providing a compact

and standardized representation that is easy to interpret across

diverse scenarios.

The structure of the paper is as follows: In Section II,

the necessary groundwork is laid by introducing and defining

key distance measures. Section III is dedicated to proposing

a novel distance metric, WSdra, along with comprehensive

proof of its properties. Section IV then provides a comparative

study of this new metric against the traditional measures

introduced in Section II. Finally, Section V concludes the

paper by summarizing the research findings and their potential

implications.

II. PRELIMINARIES

A. Weighed similarity

The Weighted Similarity (WS) measure aims to be sensitive

to significant changes in rankings while remaining robust

against minor fluctuations. It also offers the advantage of being

easy to interpret, with its values falling within a specified range

[17].

In designing the WS measure, a key assumption is made

that differences in the top rankings are more impactful than

those lower down the list. This is intuitive in scenarios where

top-ranked items often have more importance, such as in

competitive rankings or search results.

The formula to calculate the WS measure is:

WS = 1−
n
∑

i=1

2−xi
|xi − yi|

max{|1− xi|, |N − xi|}
(1)

In this equation: WS represents the similarity coefficient’s

value, n is the length of the ranking, and xi and yi represent

the place in the ranking for the ith element in the respective

rankings x and y.

This formula implies that WS calculates the absolute differ-

ences in the ranks of each element in two rankings, normalizes

them by the maximum possible difference for that element, and

then sums the results. This total is subtracted from 1 to convert

it into a similarity measure. Thus, a larger WS value indicates

a higher similarity between the two rankings, making WS an

effective tool for comparing and analyzing rankings [17].

B. Hamming distance

Hamming distance is a metric that measures the difference

between two strings of equal length. It counts the number of

positions at which the corresponding symbols in the strings

differ [6]. The formula for calculating Hamming distance is

as follows:

d(x, y) =

∑n

i=1 δ(xi, yi)

n
(2)

where xi and yi represent the symbols at position i in the two

strings, and δ(xi, yi) is an indicator function that equals 0 if

xi and yi are equal, and 1 otherwise. The Hamming distance

provides a way to quantify the dissimilarity between two

vectors by measuring the number of symbol mismatches [22].

C. Canberra distance

The Canberra distance is a metric used to quantify the dis-

similarity between two vectors or points in a multidimensional

space. It takes into account both the magnitude and direction of

differences between corresponding components of the vectors

[23]. The formula for calculating the Canberra distance is as

follows:

d(x, y) =
n
∑

i=1

|xi − yi|

|xi|+ |yi|
(3)

where xi and yi represent the components at position i in

the two vectors. The Canberra distance considers the absolute

difference between the components, normalized by the sum

of their magnitudes. This normalization accounts for differ-

ences in scale and ensures that each component contributes

proportionally to the overall distance calculation.

D. Bray-Curtis distance

The Bray-Curtis distance is a metric used to measure the

dissimilarity between two vectors or points in a multidimen-

sional space. It considers both the magnitude and direction of

differences between corresponding components of the vectors,

taking into account their relative proportions [24]. The formula

for calculating the Bray-Curtis distance is as follows:

d(x, y) =

∑n

i=1 |xi − yi|
∑n

i=1 |xi + yi|
(4)

where xi and yi represent the components at position i in the

two vectors. The Bray-Curtis distance calculates the absolute

difference between the components and normalizes it by the

sum of their absolute values. This normalization accounts

for differences in scale and ensures that each component

contributes proportionally to the overall distance calculation.

E. Euclidean distance

The Euclidean distance is a metric used to measure the

straight-line distance between two points in a multidimen-

sional space. It calculates the length of the line connecting the

two points, taking into account the differences between their

corresponding components [6]. The formula for calculating the

Euclidean distance is as follows:

d(x, y) =

√

√

√

√

n
∑

i=1

(xi − yi)2 (5)

where xi and yi represent the components at position i in

the two points. The Euclidean distance computes the squared

differences between the components, sums them up, and takes

the square root of the result. This computation ensures that

each component’s contribution to the distance calculation is

positive and reflects the actual geometric distance between the

points.
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F. Manhattan distance

The Manhattan distance, also known as the city block

distance or L1 distance, is a metric used to measure the

distance between two points in a multidimensional space. It

calculates the sum of the absolute differences between the

corresponding components of the two points [25]. The formula

for calculating the Manhattan distance is as follows:

d(x, y) =

n
∑

i=1

|xi − yi| (6)

where xi and yi represent the components at position i in

the two points. The Manhattan distance measures the distance

traveled along the grid-like streets of a city, where movement

can only occur in vertical and horizontal directions. It sums up

the absolute differences between the components, disregarding

their sign.

G. Chebyshev distance

The Chebyshev distance, also known as the maximum value

or L∞ distance, is a metric that measures the dissimilarity

between two vectors or points in a multidimensional space. It

calculates the maximum difference between the corresponding

components of the two vectors [7]. The formula for calculating

the Chebyshev distance is as follows:

d(x, y) =
n

max
i=1

|xi − yi| (7)

where xi and yi represent the components at position i in

the two vectors. The Chebyshev distance provides a measure

of the largest difference between any pair of corresponding

components in the vectors, which corresponds to the maximum

distance in any dimension.

III. A NEW PROPOSED DRASTIC METRIC

In the realm of data analytics and decision-making, the

concept of distance plays a pivotal role, enabling us to evaluate

similarities, disparities, and rank variables effectively. How-

ever, traditional distance metrics have their inherent strengths

and limitations. To address these shortcomings and propel the

field forward, we introduce a novel distance measure based on

the WS coefficient.

Our proposed distance metric revolutionizes the notion of

distance by adopting a drastic approach. Instead of penalizing

discrepancies in ranking, we treat each comparison in the rank-

ing position as a binary attribute, representing a significant or

non-significant relationship. This novel perspective eliminates

the conventional notion of assigning varying degrees of penalty

based on the magnitude of ranking differences. In essence,

our approach treats all errors equally, as an error is an error

regardless of what is given in analysed position. This drastic

approach fosters a fairer assessment of rankings.

Moreover, our new distance measure recognizes the inher-

ent significance disparity across different ranking positions.

It assigns greater consequence to the head of the ranking,

acknowledging the top positions as more crucial than the lower

ones. This acknowledgment aligns with the understanding that

errors at the top of the ranking can have more significant

implications than errors further down the list. By considering

this significance disparity, our distance measure offers a more

nuanced and accurate evaluation of rankings.

Crucially, our proposed measure is normalized within the

interval from 0 to 1, enabling straightforward interpretation

and comparison across diverse contexts. This normalization

facilitates intuitive understanding and ensures that the distance

measure remains consistent and interpretable regardless of the

specific data or application domain.

By embodying these innovative characteristics, our pro-

posed distance measure qualifies as a true metric in the rig-

orous mathematical sense. Its drastic approach, significance-

awareness, and normalized range combine to offer a com-

prehensive and reliable framework for comparing rankings in

various decision-making scenarios. Through empirical evalua-

tions and theoretical analyses, we demonstrate the superiority

and practical utility of our proposed distance measure, paving

the way for enhanced ranking analysis and informed decision-

making in diverse domains.

A. Definition

The new metric, denoted as WSdra(x, y), is defined as

follows:

WSdra(x, y) =

∑N

i=1 2
−if(xi, yi)

1− 2−N
(8)

The metric operates on two rankings, denoted as x and y,

with each ranking consisting of N elements. The key element

of this metric is the function f(xi, yi), which compares the

elements at corresponding positions in the two rankings.

The function f(xi, yi) is defined as follows:

f(xi, yi) =

{

0, if xi = yi

1, if xi ̸= yi
(9)

In other words, if the elements at position i in the rankings

x and y are the same, f(xi, yi) is assigned a value of 0.

Conversely, if the elements are different, f(xi, yi) takes the

value of 1.

The WSdra(x, y) metric computes the weighted sum of

f(xi, yi) values for each position i, using the weights given by

the geometric series 2−i. The weights decrease exponentially

as i increases, reflecting a decreasing level of importance for

elements further down the rankings. The summation of the

weighted f(xi, yi) values is then divided by the factor 1−2−N

to ensure normalization within the range of 0 to 1.

Overall, this new metric captures the dissimilarities between

two rankings by assigning a weight to each pairwise com-

parison based on the function f(xi, yi). It combines these

weighted comparisons to provide a comprehensive measure

of dissimilarity between the rankings x and y, where a higher

value indicates greater dissimilarity. The normalization factor

ensures that the metric remains consistent and interpretable

across different ranking sizes.
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TABLE I
A SIMPLE EXAMPLE OF TWO RANKINGS, I.E., xi AND yi .

i xi yi f(xi, yi) 2−i

1 1 3 1 1
2

2 2 2 0 1
4

3 3 1 1 1
8

We demonstrate a short computational example of the newly

proposed metric. Consider the example shown in Table I,

which illustrates two rankings, denoted as xi and yi. Each

row in the table corresponds to a position i in the rankings,

and we calculate the associated values of f(xi, yi) and 2−i.

Thus, ranking xi means the order of alternatives in the form

A1 > A2 > A3, and ranking yi in the form A3 > A2 > A1.

To calculate the WSdra(x, y) value for these rankings, we use

the formula (8) and we get the following result:

WSdra(x, y) =
1
2 · 1 + 1

4 · 0 + 1
8 · 1

1− 1
8

=
5
8
7
8

=
5

7

A true metric, also known as a metric space or distance

metric, is a mathematical concept used to quantify the distance

or similarity between objects within a set. It defines a set of

rules or properties that a distance function must satisfy to be

considered a true metric [2].

In a true metric, the following properties should hold:

1) Non-negativity: The distance between any two objects is

non-negative. It is always equal to or greater than zero.

2) Identity of indiscernibles: The distance between two

objects is zero if and only if the objects are identical.

3) Symmetry: The distance between object A and object B

is the same as the distance between object B and object

A.

4) Triangle inequality: The distance from object A to object

B, added to the distance from object B to object C, is

always greater than or equal to the distance from object

A to object C.

In the following subsections, we will explore each of

the presented properties to demonstrate the validity of the

proposed measure as a true metric. Our objective is to care-

fully analyze and evaluate these properties, providing a solid

foundation for the metric’s credibility. Through a systematic

examination, we will investigate the non-negativity, identity

of indiscernibles, symmetry, and triangle inequality properties.

By establishing the fulfillment of these properties, we aim to

establish the proposed metric as a reliable tool for comparing

rankings. The goal is to offer a well-founded framework that

promotes accurate assessments and meaningful insights for

decision-making.

B. Non-negativity

To prove the inequality

∑

N

i=1
2−if(xi,yi)

1−2−N ≥ 0 when f(xi, yi)
can take the values 0, 1, or a combination of 0 and 1, we will

consider three different cases.

Case 1: f(xi, yi) = 0 for all i: When all terms in the

summation are multiplied by 0, the numerator becomes zero.

The denominator, 1− 2−N , is positive since 2−N < 1 for all

positive N . Thus, the inequality holds trivially: 0 ≥ 0.

Case 2: f(xi, yi) = 1 for all i: In this case, each term in the

summation will be equal to 2−i since f(xi, yi) is always 1.

The numerator then becomes:

N
∑

i=1

2−i = 2−1 + 2−2 + . . .+ 2−N

This sum is a finite geometric series, and its sum can be

calculated as follows:

N
∑

i=1

2−i =
2−1(1− 2−N )

1− 2−1
=

1− 2−N

2− 1
= 1− 2−N

Since 1 − 2−N is positive, the numerator is non-negative.

The denominator, 1 − 2−N , is also positive and is equal to

the nominative. Therefore, when f(xi, yi) = 1 for all i, the

inequality holds:

∑N

i=1 2
−if(xi, yi)

1− 2−N
= 1 ≥ 0

Case 3: f(xi, yi) is equal 0 or 1: In this case, the numerator

of the expression is a sum of terms, each multiplied by

2−if(xi, yi). Since f(xi, yi) can be 0 or 1, the product

2−if(xi, yi) will be either 0 or 2−i. It means that nominative

will be limited to interval:

0 ≤

N
∑

i=1

2−if(xi, yi) < 1

Since both 0 and 2−i are non-negative, the numerator is a

non-negative number. The denominator, 1 − 2−N , is positive

and it is the biggest possible value of nominative, therefore

WSdra will be limited to:

0 ≤

∑N

i=1 2
−if(xi, yi)

1− 2−N
≤ 1

Hence, when f(xi, yi) takes 0 or 1, the inequality holds:

∑N

i=1 2
−if(xi, yi)

1− 2−N
≥ 0

In all cases, we have shown that the inequality holds.

Therefore, we can conclude that

∑

N

i=1
2−if(xi,yi)

1−2−N ≥ 0 when

f(xi, yi) can be equal to 0, 1, or a combination of 0 and 1.

C. Identity of indiscernibles

To prove that only WSdra(x, x) = 0 for the given expres-

sion WSdra(x, y) =

∑

N

i=1
2−if(xi,yi)

1−2−N , we can substitute x for

y in the expression:

WSdra(x, x) =

∑N

i=1 2
−if(xi, xi)

1− 2−N

Now, let’s focus on the numerator of the expression. Since

f(xi, xi) represents the function f evaluated at the same
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element xi for both arguments, it will always yield the same

result. Therefore, f(xi, xi) is a constant for all i. Let’s denote

this constant as c, such that f(xi, xi) = c for all i. Substituting

c into the numerator, we have:

N
∑

i=1

2−if(xi, xi) =
N
∑

i=1

2−ic = c

N
∑

i=1

2−i

The sum
∑N

i=1 2
−i is a finite geometric series and can be

computed as:

N
∑

i=1

2−i =
2−1(1− 2−N )

1− 2−1
=

1− 2−N

2− 1
= 1− 2−N

Now, substituting this value back into the expression, we get:

WS(x, x) =
c
∑N

i=1 2
−i

1− 2−N
=

c(1− 2−N )

1− 2−N
= c

Since c is a constant, it does not depend on the choice of x, and

therefore, c is equal to f(xi, xi) for any xi. Since f(xi, xi)
can take the values of 0 or 1 (according to the given property),

we can notice that in this case c is equal 0. Therefore, based

on the given expression, we can universally prove that only

WS(x, x) = 0 and it depends on the specific value of c (i.e.,

the constant f(xi, xi)).

D. Symmetry

To prove that WSdra(x, y) = WSdra(y, x) for the expres-

sion WSdra(x, y) =

∑

N

i=1
2−if(xi,yi)

1−2−N , we need to show that

the weighted sum is symmetric with respect to its arguments.

Let’s consider the left-hand side WSdra(x, y) and the right-

hand side WS(y, x) of the equation separately and compare

them.

WSdra(x, y) =

∑N

i=1 2
−if(xi, yi)

1− 2−N

WSdra(y, x) =

∑N

i=1 2
−if(yi, xi)

1− 2−N

To show that WSdra(x, y) = WSdra(y, x), we need to

demonstrate that the numerator and denominator of both ex-

pressions are equal. For each term in the numerator, we have:

f(xi, yi) in the expression for WSdra(x, y) and f(yi, xi)
in the expression for WSdra(y, x). Since the order of the

arguments is switched between the two expressions, we can

see that f(xi, yi) = f(yi, xi) for each i. Therefore, the

numerator of both expressions is identical. The denominator

of both expressions is the same: 1−2−N . Since the numerator

and denominator of both WSdra(x, y) and WSdra(y, x) are

equal, we can conclude that WSdra(x, y) = WSdra(y, x).
Hence, we have proven that the weighted sum expression

WSdra(x, y) is symmetric with respect to its arguments,

satisfying the property WSdra(x, y) = WSdra(y, x).

TABLE II
ALL POSSIBLE BINARY COMBINATIONS FOR f(ai, bi), f(bi, ci), f(ai, ci)

AND THE VALUE Xi OBTAINED AS f(ai, bi) + f(bi, ci)− f(ai, ci).

f(ai, bi) f(bi, ci) f(ai, ci) Xi

0 0 0 0

0 1 1 0

1 0 1 0

1 1 1 1

1 1 0 2

E. Triangle inequality

We’ll work with the formula (8) to prove the triangle

inequality property:

WSdra(a, b) +WSdra(b, c) ≥ WSdra(a, c)

Let’s denote A = WSdra(a, b), B = WSdra(b, c), and C =
WSdra(a, c). Substituting these values into the inequality, we

have A+B ≥ C. Now, let’s consider the individual terms in

the numerator of each expression.

WSdra(a, b) :
N
∑

i=1

2−if(ai, bi)

WSdra(b, c) :

N
∑

i=1

2−if(bi, ci)

WSdra(a, c) :
N
∑

i=1

2−if(ai, ci)

Now, let’s examine the numerator term-wise for the three

expressions: for each i, 2−i is a non-negative constant; for

each term f(ai, bi) in WSdra(a, b), f(bi, ci) in WSdra(b, c),
and f(ai, ci) in WSdra(a, c), they can take the values of 0 or 1

according to the formula (9). Now, we can compare the terms

between the expressions, where for each term i, we have:

2−if(ai, bi) + 2−if(bi, ci) ≥ 2−if(ai, ci)

This inequality holds because for any given term, either

f(ai, bi) = f(ai, ci) = 1 or f(bi, ci) = 0 (which makes

the left-hand side greater than or equal to the right-hand

side) or f(ai, bi) = f(bi, ci) = 0 (which makes the left-

hand side equal to the right-hand side). The all possible cases

are presents in Table II, where Xi = f(ai, bi) + f(bi, ci) −
f(ai, ci). Now, summing up these inequalities over all i from

1 to N , we have:

draWS(a, b) + draWS(b, c) ≥ draWS(a, c)

∑N

i=1 2
−if(ai, bi)

1− 2−N
+

∑N

i=1 2
−if(bi, ci)

1− 2−N
≥

∑N

i=1 2
−if(ai, ci)

1− 2−N

∑N

i=1(2
−if(ai, bi) + 2−if(bi, ci)− 2−if(ai, ci))

1− 2−N
≥ 0
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TABLE III
THE COMPARED RANKINGS, I.E., xi AND y

(j)
i

FOR j = 1, 2, ..., 7, WHERE

RED COLOR INDICATES THE DIFFERENCES WITH THE ORIGINAL RANKING.

i xi y
(1)
i

y
(2)
i

y
(3)
i

y
(4)
i

y
(5)
i

y
(6)
i

y
(7)
i

1 1 2 1 1 1 3 4 5

2 2 1 3 2 2 2 2 2

3 3 3 2 4 3 1 3 3

4 4 4 4 3 5 4 1 4

5 5 5 5 5 4 5 5 1

N
∑

i=1

2−i (f(ai, bi) + f(bi, ci)− f(ai, ci)) ≥ 0

N
∑

i=1

2−iXi ≥ 0

Therefore, Xi is always non-negativity, we can conclude

that we have proven triangle inequality for WSdra distance.

IV. COMPARISON AND DISCUSSION

Table III provides a visual representation of the initial

ranking xi and sample rankings y
(j)
i for j = 1, 2, ..., 7. The

table is designed to compare the considered distance measures

with the proposed new measure. In this table, the red color

highlights the differences between each example ranking and

the initial ranking.

The table consists of nine columns. The first column, labeled

i, denotes the position in the rankings. The second column

represents the initial ranking, denoted as xi. The remaining

columns, labeled y
(j)
i , correspond to the examplary rankings

for j = 1, 2, ..., 7.

Each cell in the table represents the element at position

i in the corresponding ranking. The red color is used to

indicate any differences between the element in the examplary

ranking and the initial ranking. By visually highlighting these

differences, the table facilitates a clear comparison between

the rankings and serves as a reference for evaluating the

performance of different distance measures. Table III provides

a useful reference point for understanding the subsequent anal-

yses and discussions related to the comparisons between the

considered distance measures and the proposed new measure.

Table IV provides a comprehensive summary of the similar-

ity and distance measures for the previously presented rank-

ings, offering valuable insights for analyzing and comparing

the relationships between xi and each y
(j)
i . The measures

included in the table enable a thorough assessment of the

similarities and differences among the rankings.

The table introduces a new proposed distance metric de-

noted as WSdra, represented in blue font. This novel metric

returns distances ranging from 0.5484 to 0.7742. It was

developed as an enhancement of the WS coefficient. To ensure

consistent information direction, the 1 −WS coefficient was

introduced, yielding values ranging from 0.2083 to 0.5313.

This modification was incorporated into the analysis, as the

new distance metric was built upon this coefficient.

In addition to the newly proposed metric, Table IV includes

well-known distance measures commonly used for comparison

purposes. These measures, namely Hamming, Canberra, Bray-

Curtis, Euclidean, Manhattan, and Chebyshev, offer additional

perspectives on the dissimilarity between xi and each y
(j)
i

ranking.

The Hamming measure, typically employed for comparing

categorical data, consistently yields a distance value of 0.4000

for all comparisons. This suggests that all rankings y
(j)
i exhibit

the same level of distance and similarity with respect to

xi. However, from a decision-making standpoint, it becomes

evident that this statement does not hold true, as, for example,

ranking y
(1)
i is closer to xi than ranking y

(2)
i .

The Canberra measure calculates distances ranging from

0.6667 to 1.3333, providing insights into the relative dissimi-

larity between xi and the different y
(j)
i rankings. This measure

considers both the magnitude and direction of differences

between the rankings, offering a comprehensive assessment

of their dissimilarity.

The Bray-Curtis measure, which evaluates dissimilarity

based on the proportions of shared and unique elements, yields

distances ranging from 0.0667 to 0.2667. This measure takes

into account the presence and absence of specific elements,

providing valuable information regarding the relative dissimi-

larity between the rankings.

Let’s delve deeper into the two distinct sets of rankings:

y
(1)
i to y

(4)
i , and y

(1)
i alongside y

(5)
i to y

(7)
i . What sets these

rankings apart is the presence of a singular swap between

alternatives, occurring either in adjacent positions or non-

adjacent ones.

In the first set of rankings, we begin by examining mod-

ifications at the top (or head) of the ranking and gradually

proceed towards the bottom (or tail). Ranking tasks inherently

pose a significant challenge, as they tend to assign more

weight or significance to changes at the beginning of the

ranking sequence rather than towards the end. For instance,

let’s consider a scenario where a company not placed first in

the ranking wins a tender—such an event is, of course, wrong,

as that company would either won or be removed from the

ranking (e.g., due to withdrawal).

By comparing these rankings with the xi ranking

and employing five different distance measurement meth-

ods—Hamming, Bray-Curtis, Euclidean, Manhattan, and

Chebyshev—we observe that the comparison values for all

paired rankings remain constant. The respective constant val-

ues assigned to these methods are 0.4, 0.0667, 1.4142, 2.0000,

and 1.0000. This indicates that these five measurements may

not adequately capture the variability required for decision-

making processes, as they remain insensitive to changes in

ranking positions, regardless of where those changes occur.

Furthermore, when considering the 1 − WS ratio and the

Canberra distance, both measurements consistently exhibit a

decreasing trend in values with each subsequent ranking, y
(j)
i ,
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TABLE IV
SUMMARY OF SIMILARITY AND DISTANCE MEASURES FOR xi AND y

(j)
i

FOR j = 1, 2, ..., 7 RANKINGS.

Measures d(xi, xi) d(xi, y
(1)
i

) d(xi, y
(2)
i

) d(xi, y
(3)
i

) d(xi, y
(4)
i

) d(xi, y
(5)
i

) d(xi, y
(6)
i

) d(xi, y
(7)
i

)

WSdra 0.0000 0.7742 0.3871 0.1935 0.0968 0.6452 0.5806 0.5484

1−WS 0.0000 0.2083 0.1458 0.0833 0.0286 0.3750 0.4375 0.5313

Hamming 0.0000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000

Canberra 0.0000 0.6667 0.4000 0.2857 0.2222 1.0000 1.2000 1.3333

Bray-Curtis 0.0000 0.0667 0.0667 0.0667 0.0667 0.1333 0.2000 0.2667

Euclidean 0.0000 1.4142 1.4142 1.4142 1.4142 2.8284 4.2426 5.6569

Manhattan 0.0000 2.0000 2.0000 2.0000 2.0000 4.0000 6.0000 8.0000

Chebyshev 0.0000 1.0000 1.0000 1.0000 1.0000 2.0000 3.0000 4.0000

(xi, y1
i ) (xi, y2

i ) (xi, y3
i ) (xi, y4

i ) (xi, y5
i ) (xi, y6

i ) (xi, y7
i )

0.2

0.4

0.6

0.8

1.0

1.2
WSdra
canberra

Fig. 1. Comparison of the proposed distance WSdra with the Canberra distance.

where j = 1, 2, 3, 4.

Shifting focus to the second set of rankings, we encounter a

scenario where the order of alternatives is swapped, albeit not

in adjacent positions. This gives rise to a peculiar situation

where the comparison of xi with y
(1)
i results in erroneous

rankings at the first and second positions. Similarly, in the

comparison of xi with y
(5)
i , erroneous rankings occur at the

first and third positions, and so on. Intuitively, we would expect

a larger distance in the first case, with decreasing values in

subsequent comparisons, as errors are initially observed at

the first position and then propagate to the further subsequent

positions.

However, both the Canberra distance and the 1 − WS

ratio exhibit counter-intuitive behavior, as their values increase

rather than decrease. This contradicts the initial assumption.

Moreover, the 1−WS ratio cannot be considered a true metric

due to its lack of symmetry. The comparison between the

results obtained using the WSdra method and the Canberra

method is depicted in Fig. 1. The analysis reveals a significant

correlation for the first set of alternatives, with a Pearson cor-

relation coefficient of 0.9995. This high correlation indicates a

strong agreement between the values obtained from the WSdra

method and the Canberra method for this set of rankings.

In the case of the second set of rankings, a similarly

strong correlation is observed; however, it possesses a negative

nature with a correlation coefficient of -0.9965. This negative

correlation suggests an inverse relationship between the values

obtained by the WSdra method and the Canberra method for

this particular set of rankings.

When considering both sets of rankings collectively, a mod-

erate positive correlation of 0.6995 is observed. This indicates

that, overall, there is a consistent relationship between the

rankings obtained from the WSdra method and the Canberra

method, albeit with a moderate strength of association.

Fig. 1 visually illustrates these correlations, providing a

clear understanding of the magnitude and characteristics of

the relationship between the WSdra method and the Canberra

method for the various sets of rankings. It is important to note

that the Canberra distance exceeded the value of 1, which

represents the upper limit in the WSdra distance metric.

The WSdra distance metric is based on certain assumptions

that contribute to its enhanced reliability and applicability

across diverse contexts. Firstly, this metric takes into account

the weighted differences between rankings, recognizing that

not all changes in rankings hold equal significance. By assign-

ing appropriate weights to these differences, the WSdra metric

captures the varying impact of alterations in ranking positions,

providing a more accurate assessment of dissimilarity.

Additionally, the WSdra metric adheres to the fundamental
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principle that "an error is an error." It acknowledges that any

deviation or discrepancy between rankings, regardless of its

location or magnitude, should be considered as an error. By

treating all errors equally, the WSdra metric ensures a fair and

unbiased evaluation of dissimilarity, promoting a more reliable

comparison between rankings.

Consequently, these examples demonstrate that the distance

metric WSdra provides greater reliability, as it considers

the weighted differences between rankings, adhering to the

principle that "an error is an error." It is important to note that

the value of this metric is normalized within the range of 0 to

1, ensuring its applicability across diverse contexts.

V. CONCLUSION

In this paper, we introduced a new distance metric for

the comparison of rankings, demonstrating its effectiveness

and advantages over well-established distance measures. This

novel measure, which we term the drastic WS distance,

conforms to all necessary properties of a true metric and

exhibits a unique capability to capture nuances in the ranking

structure.

The drastic distance metric provides a compact, standard-

ized representation within the 0 to 1 interval, making it easy to

interpret across a broad spectrum of applications. Importantly,

it holds the crucial properties of non-negativity, identity of

indiscernibles, symmetry, and the triangle inequality. This

compliance ensures that our proposed distance metric offers a

mathematically sound and reliable framework for comparing

rankings, further enhancing its credibility.

By conducting comparative experiments, we illustrated the

superior performance of our new drastic distance metric

against established measures such as Hamming, Canberra,

Bray-Curtis, Euclidean, Manhattan, and Chebyshev distances.

The results showcased the new metric’s enhanced sensitivity

and ability to accurately quantify dissimilarities between rank-

ings, making it a potent tool in the decision-making domain.

In conclusion, the drastic distance metric proposed in this

work represents a significant advancement in the area of dis-

tance measurement for rankings. With its proven mathematical

robustness and practical effectiveness, it has the potential to

contribute significantly to decision-making processes across

various fields. Future research directions could explore more

extensive applications of this metric and further refine its

potential through diverse real-world use cases.

ACKNOWLEDGMENT

The work was supported by the National Science Centre

2021/41/B/HS4/01296 (W.S. and A.S.).

REFERENCES

[1] S.-S. Choi, S.-H. Cha, C. C. Tappert, et al., “A survey of binary
similarity and distance measures,” Journal of systemics, cybernetics and

informatics, vol. 8, no. 1, pp. 43–48, 2010.
[2] E. Deza, M. M. Deza, M. M. Deza, and E. Deza, Encyclopedia of

distances. Springer, 2009.
[3] S. Chen, B. Ma, and K. Zhang, “On the similarity metric and the distance

metric,” Theoretical Computer Science, vol. 410, no. 24-25, pp. 2365–
2376, 2009.

[4] M. Zhu, V. Lakshmanan, P. Zhang, Y. Hong, K. Cheng, and S. Chen,
“Spatial verification using a true metric,” Atmospheric research, vol. 102,
no. 4, pp. 408–419, 2011.

[5] L. Liberti, C. Lavor, N. Maculan, and A. Mucherino, “Euclidean distance
geometry and applications,” SIAM review, vol. 56, no. 1, pp. 3–69, 2014.

[6] S. Pandit, S. Gupta, et al., “A comparative study on distance measuring
approaches for clustering,” International journal of research in computer

science, vol. 2, no. 1, pp. 29–31, 2011.
[7] R. Coghetto, “Chebyshev distance,” Formalized Mathematics, vol. 24,

no. 2, pp. 121–141, 2016.
[8] M. M. Deza, E. Deza, M. M. Deza, and E. Deza, “Distances and

similarities in data analysis,” Encyclopedia of distances, pp. 291–305,
2013.
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