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Abstract—In the field of Materials Science, tomographic im-
ages play an important role in the analysis of composite materials.
We present a computational environment that helps specialists
in the field to carry out analysis and evaluation of samples
of composite materials. This environment takes the form of a
tailored Problem Solving Environment (PSE) and builds upon
the SCiRun PSE. Its implementation is driven primarily by four
major attributes: modularity, flexibility, interactivity and perfor-
mance. Users can easily assemble networks of modules, with some
of the modules being specifically designed for materials science
analysis. These modules are flexible in terms of configuration, so
yielding more flexibility to the setup of the networks, as well as
in relation to the user interaction upon them once running. The
implementation of data processing algorithms supporting critical
modules rely on parallel programming. Furthermore, the quality
of tomographic images under analysis is an issue of concern.

I. INTRODUCTION

R
ESEARCHERS in the field of materials science use X-

ray micro/nanotomography (mCT) for studying compos-

ite materials, namely for 3D geometrical characterization of

the material’s constituent phases. The tomographic image that

is reconstructed using specialized software corresponds to a

3D matrix, where each voxel in space is usually represented

by an integer corresponding to its grey-level.

On that basis, it is important to provide materials science

specialists with proper software to accomplish the research

goals set. In particular, researchers are mainly interested on:

• Visualizing data in 3D;

• To perform different image processing operations in order

to remove any artifacts present in the image;

• To exclude irrelevant objects to the ongoing analysis;

• To perform image processing operations that label each

of the distinct objects under consideration;

• To obtain geometric information that establishes a statis-

tical description of the entire population of objects under

consideration.
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In this article we describe a framework for building flex-

ible environments for the analysis of tomographic images of

composite materials. Besides the normal operations we may

expect to use in tools of this category, this framework is mostly

concerned with usability and data quality issues that materials

science specialists might face. They are:

• Modularity and flexibility, as the system must support an

easy way of specifying the processing steps, and should

allow to easily perform testing and reconfiguration tasks;

• Interactivity, in the sense that individual processing and

visualization operations should be carried out faster since

specialists want to see the outcome of those operations as

quickly as possible, and also to allow a smooth steering

of the computations;

• Tomographic image quality, since it should not be taken

for granted that all images will show high contrast.

The organization of the paper is as follows: Section II

presents related work that has been developed in the area

of computational environments for analysing scientific data.

Then, in Section III, we introduce a framework alongside

guidelines to build a computational environment to process

and analyse scientific data, followed in Section IV by an

implementation with focus on data collected from material

science experiments. In order to validate our proposal, we

discuss a case-study in Section V, in particular concerning

tomographic images with low contrast, so difficult to process,

and finally Section VI wraps up with conclusions.

II. RELATED WORK

Computational environments to process tomographic images

can broadly be split into two major categories: environments

that allow users to apply processing algorithms to tomographic

images on a one-o-one basis, that is, with the simple paradigm

read-transform-visualize in sight, and the so-called visual

programming environments, more friendly but complex, which

allow users to set up a network of processing modules via

graphical deployment in a canvas, with related computations

following the data-flow model [1].
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As inferred from above, visual programming environments

allow specialists to specify a sequence of processing steps by

choosing a set of modules available in a menu, including obvi-

ously reading tomographic images, and interconnects them. An

example of those is the commercial software Avizo/Amira [2].

On the other hand, one can prefer to use the other category

of environments, like the image processing and visualization

software ImageJ/Fiji [3] or Paraview [4]. Worth pointing out

that we can always follow the route of developing dedicated

software, like the case of spam mentioned in [5].

In respect to visual toolkits mentioned above that rely

on the data-flow model, sometimes referred to as PSEs due

to its usability in various scientific areas, it is clear that a

major advantage they present is that they can be tailored to

the specific needs of a particular scientific area, yielding to

dedicated environments. One example is SCIRun [6] from the

University of Utah, USA. The toolkit has been very successful

regarding the development of dedicated PSEs. For example, it

is the case of BioPSE [7], which is specifically tailored for

running bio-electric field simulations on top of SCIRun.

III. FRAMEWORK

Given the information provided by practitioners in the mate-

rials science field, our understanding is that we should have an

integrated software solution, embracing both image processing

algorithms and visualization capabilities, but underlying a

clean and easy-to-use approach. On that basis, the proposed

solution will address primarily the following requirements:

• Open-source desktop solution but providing users inter-

activity and computational steering;

• Processing of tomographic images, including the ones

with low contrast;

• Availability of various processing algorithms, even the

complex ones requiring higher computational resources;

• Providing adequate data formats in accordance to the

processing operations of concern.

We borrow the idea from the concept of PSE, sustained by

the data-flow model [1], upon which SciRun is a prominent

example. Hence, our solution provides four distinct categories

of modules: data readers, filters, mappers and renders. Fig. 1

depicts the processing model we advocate.

Specialists will have at their disposal such modules to

create networks, that ultimately will solve their problems. The

networks will be managed by the specialists themselves. This

includes the setting of control parameters and of both data and

images to/from modules via input/output ports.

IV. IMPLEMENTATION

All the developed modules were built on top on SciRun.

Notice that the interactivity and steering requirement is de-

livered by SciRun. Next, we will introduce new implemented

modules, yielding to an open-source solution that works on

desktops.

A major concern is that tomographic images showing up

low-contrast between matrix and particles are challenging to

identify and characterize objects – let us focus hereafter on

particles. Common approaches sometimes fail to to so and

some take too much time to deliver results. That is why we

have taken a careful approach while designing those modules

that are related the most. For example, modules belonging

to the category Filter have been implement using OpenMP

or CUDA, so a parallelization approach targeting both CPUs

and GPUs. Operations that do occur at voxel level will take

advantage of data parallelization.

In respect to visualization functionalities, we take advantage

of native SciRun visualization modules, mostly for general

3D visualization. But for specific purposes, like visualizing

and analysing particle features, specialists are able (i) to

automatically launch external viewers and, importantly, (ii) to

use a new 2D visualization module to check features on a

image plane basis, regardless of its orientation in the 3D space.

Also, for a better understanding, specialists can playback the

outcomes of image operations that were applied, in sequence.

In relation to image operations, and among the various

modules that have been implement, there are some operations

that deserve to be singled out. They are: edge detection,

segmentation, erode and dilate, and crucially particle identifi-

cation and subsequent characterization.

Edge detection. This operation basically creates conditions

to correctly identify particles. Examples of filters that relate

to this task are Unsharp (mask to unsharping to enhance

high-frequencies like boundaries), Gradient (first derivatives),

Laplacian (second derivatives to enhance tiny boundaries), So-

bel (Sobel derivatives to give direction of intensity variations)

and ZeroCrossings (location based on 2nd derivatives).

Segmentation. The goal in this operation is to highlight

particles within the raw image. This is carried out via the

Thresholding filter: Assuming that we have a raw image

defined in a gray scale, by applying the filter we get a black-

and-white image. Also, we can chose to apply bi-segmentation,

meaning that we end up with black, or white, or unchanged

voxels. Crucially, this operation requires setting critical cut-off

levels, usually inferred with the help of image histograms.

Erode and Dilate. These two operations working together

help to achieve particle separation. It happens when somehow

the boundaries of particles touch to each other, that is, it seems

there are contiguous voxels but belonging to different particles.

Notice that the given image is already in black-and-white.

Dilate implies enlarging the border of a particle (white to

black), whereas Erode is the converse operation. When there

is a sequence Erode then Dilate, it is called Open operation.

The reverse sequence is called Close operation.

Particle Identification. This crucial task implies the use of

various filters supporting a bi-segmentation process, which is

even more critical when the raw tomographic images show

low contrast between matrix and reinforcements. It also relies

on two modules: ParticleLabelling and PoissonReconstruction.

The first one is based on a labelling algorithm [8] but imple-

mented with OpenMP or CUDA, (there are two versions avail-

able, meaning it is up to the specialist to decide which version

is going to be used) yielding to a fine-tuned parallel imple-

mentation to reduce execution times. The second module uses
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Fig. 1. Processing model based on the data-flow visualization paradigm.

the Possion surface reconstruction algorithm [9] available in

the Point Cloud Library (PCL) library. (https://pointclouds.org)

While the first module produces sets of interconnected voxels,

(parts of potential particles) the second module takes a cloud

of points as input (those voxels) and properly reconstructs the

surfaces of the particles. Then, as output, polygonal meshes

are generated to depict the reconstructed surfaces.

Particle Characterization. Once particles have been geo-

metrically identified, specialists still have to further evaluate

the outcome as it is presented to them. Notice that we may end

up with clusters of particles or even fake particles. But in the

end, the final decision about accepting or rejecting a particular

particle rests on the specialists. The outcome will be a set of

particles of interest and their characterization – the location

within the sample, the geometric profile such as volume, area

and bounding box, among other similar concepts.

Worth pointing out that the way data is organized affects

the performance of applied algorithms. That is why it has

been also implemented a set of rapid but robust data formats

converters. Then, in a particular situation, specialists will

decide which ones to use in order to achieve better efficiency

and performance. Also, because the visual appearance of

particles is helpful in the characterization process, specialists

have at their disposal various visualization functionalities.

V. EVALUATION

In order to validate the extended PSE, we discuss now

a case-study concerning samples of aluminum as the base

material (matrix) and tungsten carbide as reinforcements but

showing low contrast between them. That is, if we were to

draw an histogram of densities, it will not show two clear

peaks – one corresponding to the matrix and another one to

the reinforcements – as we were expecting to obtain in a clear

bi-segmentation process.

The samples were collected at the European Synchrotron

Radiation Facility in Grenoble and were defined in a regular

grid. For evaluation purposes, we use a subset corresponding to

a uniform 3D cube lattice of dimension [512×512×432], with

each voxel corresponding to one µm
3 approximately [10].

Looking at the raw tomographic images, they show low

contrast between the base material and reinforcements, and

contain various porous. (See Fig. 2) Furthermore, information

gathered during the collecting process hinted that the particles

were showing a cone-shaped, convex geometry, they could be

broken, and the average size is about 35 µm.

Fig. 2. Glimpse of a raw tomographic image prior to any processing.

Overall, the goal is to identify particles inside the sample

an then to characterize the ones of interest. The sequence of

operations works as follows:

1) Removal of porous;

2) Increasing contrast between particles and base material;

3) Particles labelling;

4) Particles detection;

5) Particles characterization.

The initial two operations are mostly supportive of the parti-

cles labelling process. Hence, and given the modules available,

a typical workflow to accomplish the tasks mentioned can be

split into three sequential stages: particles labelling, particles

detection and finally particles characterization. In the follow-

ing we will provide further details about these three stages.

A. Particles labelling

The goal here is to figure out potential locations of particles

in the volumetric sample. It starts by smoothing the raw data,

that is, reducing the noise in the tomographic image and then,
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in sequence, applying band pass filters, labelling the image,

followed again with enhancement using pass filters.

For example, Fig. 3 shows a circular air porous that is going

to be removed by first painting its interior with the colour of

the matrix so once bi-segmentation is applied later on, it will

be converted into matrix. At this point we are able to get an

initial identification of reinforcements.

Fig. 3. Circular air porous (left) that will be removed once bi-segmentation
is applied, but only after pre-painting its interior as matrix (right).

Then, it follows a bi-segmentation process using high and

low pass filters, alongside operations to erode/dilate the out-

come. The outcome will be regions of connected voxels that

in the end may be considered as particles.

In this experiment we have identified 1 239 connected voxel

regions at this stage, that is, 1 239 particle candidates.

Fig. 4 shows a network of modules to support the labelling

process. Notice that some modules, like those related to pass

filters, also output information to visualization modules so

specialists can figure out the results of intermediate operations.

This includes drawing histograms.

B. Particles detection

At this stage the goal is to figure out the proper boundaries

of the real particles. It implies carrying out careful analysis

in relation to potential regions of particles that have been

considered in the previous stage, so we will end up with

particles of potential interest, with proper closed boundaries.

As shown in Fig. 5, particles boundaries are not continuous

at the beginning. Therefore, first it is required a reconstruction

of the boundaries, which is done using the Poisson surface

reconstruction algorithm. Only then we can compute the exact

number of particles and respective size.

In this case-study, some of the 1 239 regions of connected

voxels originated in the previous stage can still be considered

as noise. Therefore, we have used a module to discard those

fake particles. The cut-off size value set was 100 voxels,

which is a value somehow derived from the pre-understanding

and knowledge of the specialist about the sample. As result,

there were 202 particles with acceptable size, that were then

submitted to the Poisson surface reconstruction algorithm. The

final outcome was a set of particles, described via a set of Ply

files and representing polygonal meshes that can be visualized.

Fig. 4. Network of modules set by a specialist with the purpose of supporting
particle labelling.

Fig. 5. Initially, particles boundaries are not continuous so proper identifica-
tion and reconstruction is required.
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C. Particles characterization

At this final stage, the goal is to deliver the set of particles

the specialist is interested on, and with detailed characteriza-

tion, mostly based on the geometric profile. It matters not only

the selection itself but the quality of characterization.

As depicted in Fig. 6, given the detected particles from

the previous stage (Ply files), which may not be entirely

correct from a semantic point of view, we enter into an

iterative process where, at each iteration, the specialist can

accept a particular particle, or reject it, or else submit it to a

enhancement process, likewise in the previous stage.

The decisions made are also supported by the viewing of

particles, as highlighted in Fig. 7.

Fig. 6. Iterative process to select and enhance particles of interest for further
characterization.

Fig. 7. Visualization to help selecting and enhancing particles of interest:
From cluster requiring further processing (left) to accepted particle (right).

Also, the geometric profiles of the particles of interest are

computed and stored in a SQLite database. Among other

features, it includes the location within the sample, surface

area, volume, bounding box, etc. It is worth noting that

specialists have general pre-understanding about the samples

they are working with, namely in relation to shape and average

particle size.

The information stored in the database can be exported

to files for further usage with other tools of convenience.

Nonetheless, the implemented FeatureVisualizer module is

tailor-made for the purpose of visualizing particle features

within the context of the PSE itself. The underlying thinking

is that it is important to provide extra flexibility to specialists.

VI. CONCLUSIONS

We have presented a dedicated PSE to help material science

specialists to carry tasks of analysing tomographic images.

The proposed solution fits into the list of requirements set by

specialists, who were keen on having an environment where (i)

they could easily use a wide range of algorithmic strategies to

carry out their experiments, (ii) the build up of the processing

network was done in a flexible manner and (iii) they should

experience human-computer interactivity as much as possible,

alongside fast and effective visualizations.

As highlighted in the discussion about particles identifica-

tion in Section V, tomographic images with low contrast pose

additional demands as far as type and number of operations

that have to be included in the processing network. In the case-

study introduced, the system delivered the results specialists

were looking for from a scientific perspective. Also, the

network of modules was relatively easy to set up and its

steering afterwards was effective.

As a final note, once particles are properly identified and

stored in a database, and having various data formats at

disposal, a specialist can also use external tools to further

analyse the outcome of the experiment, all but in a cohesive

working environment.
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