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Abstract—In recent times, software developers widely use
instant messaging and collaboration platforms, as these plat-
forms aid them in exploring new technologies, raising different
development-related issues, and seeking solutions from their
peers virtually. Gitter is one such platform that has a heavy
userbase. It generates a tremendous volume of data, analysis of
which is helpful to gain insights about trends in open-source
software development and the developers’ inclination toward
various technologies. Analyzing these trends helps these platforms
better cater to the needs of the developers, in turn increasing the
usage of these platforms and promoting collaborations between
more developers. The classification techniques can be deployed
for this purpose. The selection of an apt word embedding for a
given dataset of text messages plays a vital role in determining the
performance of classification techniques. In the present work, the
comparative analysis of nine-word embeddings in combination
with seventeen classification techniques with onevsone and onevs-
rest has been performed on the GitterCom dataset for categoriz-
ing text messages into one of the pre-determined classes based on
their purpose. Further, two feature selection methods have been
applied. The SMOTE technique has been used for handling data
imbalance. It resulted in a total of 1836 classification pipelines
for analysis. The objective is to analyze their performances to
recommend efficient pipelines for the classification task at hand.
The experimental results show that word2vect, GLOVE with 300
vector size, and GLOVE with 100 vector size are three top-
performing word embeddings having performance values taken
across different classification techniques. The models trained
using ANOVA features performed similarly to those models
trained using all features. Finally, using the SMOTE technique
helps models to get a better prediction ability.

Index Terms—Functional Requirements, Non-Functional Re-
quirements, Deep Learning, Data Imbalance Methods, Feature
Selection, Classification Techniques, Word Embedding.

I. INTRODUCTION

T
HE development of modern complex software systems

requires a lot of meticulous planning and large teams

of software developers and designers. The members of these

teams are often geographically distributed across various lo-

cations and rely on online communication and collaboration

modes. Many open-source projects and software development

teams have shifted towards platforms such as Gitter and Slack

due to the features and the support they offer for collaboration

between software developers worldwide.Gitter has revolution-

ized team communications and project coordination, especially

for distributed software development teams, by providing a

user-friendly way of managing and organizing conversations.

Gitter also provides public access to user-generated data,

and the historic data is accessible indefinitely through chat

room logs. Classifying the purpose of the messages in the

developer communications on such platforms assists in better

organization of messages into categories, making them easy

to be retrieved by the users as per their requirements and

deriving various insights into the general trends in open-

source software development. This classification also helps

understand the major reasons why people use these platforms

for. Then, the platforms can be updated to fulfill the require-

ments of the users, which attracts more people to use these

platforms, promoting better collaborations, meaning both the

organizations running the platforms and the developers benefit

from this. Manual classification of this data is not feasible due

to the sheer volume of the data available. So there is a need

to deploy Machine Learning (ML) techniques to automate the

process and minimize the errors in classification.

The objective of the present work is to perform a com-

parative analysis of the classification pipelines developed

using nine different word embeddings, two feature selection

techniques, and thirty-four classifiers. We believe this analysis

will help establish a strong foundation for future researchers

to select the techniques and pipelines resulting in the best

predictive ability of the developed models to identify the

purpose of messages in developer communications. For this

purpose, GitterCom dataset, which contains around 10,000

messages from various channels on Gitter has been adopted.
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Each message in it has three labels viz. Purpose, Category, and

Sub-Category, which the dataset creators curated manually.

The process of creation of classification pipelines started

by applying nine different word-embedding techniques to

vectorize the data into a numeric form for further analysis.

These word-embedding techniques generate an abundance of

features, not all of which are influential in the classification

task. Hence, two feature selection techniques, namely One-

Way ANOVA and PCA are employed to synthesize or extract

the most relevant and influential features to optimize the per-

formance of the models. Then to test the predictive ability of

the word-embedding and feature-selection techniques, we have

used seventeen different variants of classification techniques

with one-vs-one and one-vs-rest approaches. The classification

techniques are used by considering various ML and Neural

Network (NN) classification algorithms and ensemble learning

methods in association with them. The predictive ability of

these classifiers was validated using the 5-fold cross-validation

method. The SMOTE data sampling technique is also applied

to combat data imbalance, leading to incorrect and unreliable

results. Finally, the performance of the developed models has

been compared using evaluation metrics such as Accuracy,

Sensitivity, Specificity, and Geometric Mean, which are ex-

tracted using the Box-plot Visualization technique and the

Friedman Test.

II. RELATED WORK

The proposed research is based on classifying and analyzing

the purpose or rationale behind developer communications

on modern instant messaging and communication tools. The

developers use it for project coordination or technological dis-

cussions. This research also performs a comparative analysis

of various NLP models that best analyze the communications

on such platforms. In this work, we have used the ’GitterCom’

dataset introduced by Parra et al. [1], a manually created

dataset of 10,000 messages from developer discussions on the

Gitter Platform.

The related work is divided into two sub-sections. The first

sub-section focuses on the earlier works that have studied

developer communications on instant messaging platforms

such as Slack or Gitter. The second sub-section is dedicated

to the analysis of messages on other platforms such as Q&A

platforms (Eg: Stack Overflow), Social Media Platforms (Eg:

Twitter), etc. In both sections, we perform a critical compari-

son of the previous endeavors with our research approach.

A. Instant Messaging and Communication Tools for Software

Developers

Earlier research works performed an empirical study of

the properties of the communications on Gitter and Slack.

While some of these works focused on topics discussed

and problem resolution, others introduced certain classes to

classify the purpose or rationale of the messages in such com-

munications. The survey confirmed that various classification

techniques were used to identify the topic of discussion or

the purpose and rationale of the messages. Ehsan et al.[2]

performed an empirical study of developer discussions in

Gitter to understand the nature of developer discussions, the

type of questions developers ask, and the proposed solutions.

The authors proposed an approach for the automatic identi-

fication of discussion threads in developer chatrooms using

hierarchical clustering algorithms and other heuristics. They

identified four patterns of responses based on the response

length and complexity. The authors also created a taxonomy

of resolution types and discussed topics in the chatrooms. The

topics discussed were classified into five types - Installation

and configuration, Debugging and troubleshooting, Feature

requests and enhancements, Code review and feedback, and

General discussion.

Sahar et al. work focused on the analysis of how developers

discuss issue reports in Gitter chat rooms related to open-

source systems [3]. The authors proposed an approach involv-

ing clustering algorithms to identify issue report discussions

automatically. These discussions were classified into four types

based on the number of messages, participants, and duration of

the discussion. In our work, we employ various word embed-

ding techniques to assess which technique captures these key

patterns and strategies the best, aiding the classification perfor-

mance. The above two works broadly focus on identifying the

topics of discussion and defining a classification nomenclature

based on it. Our work focuses on a possible next step of their

research, which is to build and compare Machine Learning

pipelines that can automatically classify present and incoming

messages based on the considered classification nomenclature.

A study with a research methodology similar to ours was

done by Parra et al. [4]; their objective was built upon their

previously published paper (Parra et al.[1]) in which they

introduced the GitterCom dataset for the first time. The three

categories defined to classify each message in the developer

discussions based on its purpose in this paper (team-wide,

personal benefits, community support) were derived from the

work of Lin et al. for the Slack platform [5]. The authors

also analyzed the performances of nine supervised machine

learning and deep learning algorithms, such as SVM, Decision

Trees, AdaBoost, LSTM, etc., along with certain data sampling

techniques to classify the purpose of a given message as one

of the pre-defined categories. A key difference between our

work and theirs is the analysis of the benefits of various

word embedding techniques in better capturing the contexts

and patterns of the messages which aid the classification. We

also explore the possible effects of feature selection techniques

since they help reduce the complexity of the models while

retaining the key features of the data.

The analysis of the topics and discussion and purpose of

messages was also undertaken for Stack Overflow. Lin et al.

performed an empirical study to understand the purposes for

which developers use Slack [5]. Upon surveying 53 software

developers, the authors found that the developers self-reported

using Slack for various purposes. They broadly classified these

purposes into personal benefits, community support, and team-

wide purposes. Another such empirical study was undertaken

by Stray et al. [6]. The authors explored the use of Slack for
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communication and project coordination in virtual agile devel-

opment teams as they studied the communications of a group

of 30 software developers at a large software development

organization. They found that the messages could be broadly

classified into one of the following purposes: general in-

formation/coordination, general discussions, problem-focused

communication, technical communication, and socializing.

Alkadhi et al. performed an exploratory study to inves-

tigate the presence of rationales in chat messages during

software development [7]. They collected and analyzed chat

messages from three open-source software development teams

on GitHub comprising students working on capstone projects.

Based on this analysis, the authors defined a set of categories

for the types of rationale found in the messages - Design,

Functionality, Implementation, and Maintenance. Their find-

ings also indicate the usefulness of classification algorithms

such as SVM and Naïve Bayes and the data sampling tech-

niques for automatically identifying and classifying messages

based on the rational information they contain. Our work,

however, focused on recommending the best techniques and

pipelines for building such models to extract the best perfor-

mance out of them rather than just checking for feasibility.

In subsequent work, Alkadhi et al. presented a new approach

called REACT (Rationale Extraction from Chat Transcripts)

[8]. They considered five rationale elements for their work -

issues, alternatives, pro-arguments, con-arguments, and deci-

sions. The REACT approach enabled the developers to ex-

plicitly record the rationale in messages on the Slack platform

through manual annotation.

B. Other Communication Tools for Software Developers

Various other platforms facilitate software development

communication. The concept of such tools is based on Ques-

tion & Answer forums like Stack Overflow and social media

platforms like Twitter. Software developers spread out across

various geographic locations relied majorly on such platforms

for communication and coordination before the advent of

the modern instant messaging tools dedicated to facilitating

such discussions. Q&A platforms such as Stack Overflow

encourage efficient problem-solving, community support, and

knowledge sharing among its users across the globe. Social

Media sites like Twitter also help in this regard by provid-

ing real-time updates, networking opportunities, and crowd-

sourced solutions through hashtags and mentions to reach out

to relevant experts for assistance.

The current tags provided for questions on Stack Overflow

are based on the technologies used or being referred to in the

question. Classifying these questions based on the purpose or

context will serve the users better since it makes the process

of finding relevant posts quicker. Beyer et al. performed such

work where they obtained a taxonomy of seven question

categories: API change, API usage, Conceptual, Discrepancy,

Learning, Errors, and Review, and they manually curated a

dataset consisting of 500 posts classified into these categories

[9]. The authors then developed classification models using

the Random Forest and SVM algorithms along with data

sampling techniques and performed a comparative analysis

with 82 different configurations regarding the preprocessing

and representation of the input text data to analyze which

configuration captured the context and intricacies of the data

better. In place of such configurations, we explored word

embeddings for this reason since they offer better generaliz-

ability to out-of-vocabulary words as they provide continuous

representations of words by considering semantic equivalence,

something which pre-processing techniques might struggle

with.

Venigalla et al. undertook a similar study using the Latent

Dirichlet Allocation Algorithm to model six questions topics

based on their purpose [10]. The authors also came up with

names for those topics based on the taxonomy used in the lit-

erature. They also used various Machine Learning algorithms,

such as Linear SVC, Logistic Regression, Multinomial Naive

Bayes, Random Forest, etc., to develop classification models

for the questions on Stack Overflow.

Guzman et al. performed an analysis of the tweets on

Twitter related to software applications[11]. The intention

was to obtain tweets that could be useful for developers by

using classification algorithms. The purpose of these tweets

includes improvement suggestions, user needs, bug reports,

feature requests, etc. The authors introduced ALERTme, an

approach to automatically classify, group, and rank such

tweets. This approach relied on classification algorithms such

as Multinomial Naive Bayes and word-embedding techniques

such as TF-IDF for classification.

We preferred Gitter over such platforms because Gitter’s

data has been largely untapped for such analysis, and Git-

ter provides more intricate and essential details of software

development pipelines and requirements as developers use it

regularly to discuss such details.

III. STUDY DESIGN

This section presents the details regarding various design

setting used for this research.

A. Experimental Dataset

We plan to use the GitterCom dataset for this experiment,

the first manually labeled dataset of Gitter instant message

histories in open-source systems. It contains 10,000 messages

collected from 10 open-source software development Gitter

communities (1,000 messages per community). Each message

in this dataset was manually labeled to capture the purpose

of the communication expressed by the message. Each record

in the dataset consists of the following information: (i) The

channel of communication (ii) the Message ID (iii) The date

and time when the message was posted (iv) The author of

the message (v) The message in plain text (vi) Purpose of

the message (vii) The subclass of the purpose it belongs to -

category (viii) The subclass of the category it belongs to i.e.,

the sub-category.

In this experiment, we intend to predict the Purpose label

for any given message. There are three possible classes (labels)

of purpose:
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• Personal Benefits - Includes messages posted to satisfy

the developer’s personal needs.

• Team-wide activities - Includes messages related to the

discussion among the members of a team working on

software development activities related to the system they

are developing.

• Community Support - Includes messages posted for

general discussions among developers from communities

or special-interest groups who intend to explore new tools

and frameworks or brainstorm ideas.

B. Word Embeddings

The textual data of the dataset is to be represented in

numeric vector form for further analysis. To achieve this, nine

different word embedding techniques, including Continuous

Bag of Words (CBOW), Skip-Gram (SKG), Global Vectors

for Word Representation (GloVe) (with 50 dimensions, 100

dimensions, and 300 dimensions), Word2vec, fastText (FST),

Generative Pre-trained Transformer (GPT), and Generative

Pre-trained Transformer-2 (GPT-2), will be applied on the

dataset. These techniques help represent the textual data as

a vector in an n-dimensional space. All the stopwords, spaces,

and other bad symbols will be removed from the textual data

before applying the word embedding techniques. The gener-

ated vectorial representations will then be used to develop

models to determine a message’s purpose. [12].

C. Feature Selection Techniques

Since vectorial representations are used as inputs to de-

velop the classification models, and each of the vectorial

representations contains a lot of columns (features), some of

which may not be as influential as the others, optimization

of the data and selection of the influential features becomes

crucial to improve the performance of the models. To extract

the important features, we plan to use two different Feature

Selection Techniques - One-Way Analysis of Variance (One-

Way ANOVA) and Principal Component Analysis (PCA) to

discard irrelevant features and obtain the set of relevant and

influential features.

D. Training of Models from Imbalanced Data Set

Upon analysis of the dataset, if we observe the problem of

class imbalance in our dataset, i.e., the number of data samples

in each class is different, we resort to the data sampling

techniques to enhance the performance of the developed mod-

els. We propose to use the Minority Oversampling Technique

(SMOTE) on the dataset to balance the data in such a scenario.

E. Classification Techniques

We propose to develop thirty-four different classifiers to per-

form a comparative analysis of the developed models. For that,

classification algorithms such as Multinomial Naive Bayes

(MNB), Bernoulli’s Naive Bayes (BNB), Gaussian Naive

Bayes (GNB), Decision Tree Classifier, Logistic Regression,

K-Nearest Neighbours Classifier, Random Forest Classifier,

Extra Trees Classifier, Multi-Layer Perceptron with Limited-

memory BFGS, Stochastic Gradient Descent, and Adam Op-

timizers will be utilized along with ensemble modeling tech-

niques such as Bagging with KNN, Multinomial Naive Bayes,

Logistic Regression and Decision Tree Classifiers, Ada Boost

Classifier and Gradient Boosting Classifier. Each classification

technique mentioned above will be implemented using one-

vs-Rest and One-vs-One Multi-class classification strategies,

thus giving a total of thirty-four classifiers. These classification

strategies are defined below:

• One-vs-One classification: The model trains on pair-

wise comparisons between each possible combination of

classes. The final prediction is made by aggregating the

votes from all binary classifiers.

• One-vs-Rest classification: The model trains a binary

classifier for each class to distinguish between that class

and the rest of the classes combined. The item is assigned

to the class having the maximum probability of having

that item.

IV. RESEARCH METHODOLOGY

In this work, we started with pre-processing the dataset by

removing unnecessary punctuation, spaces, and stop-words.

We also had to manually delete some records that consisted

of messages with empty or unrecognizable symbols. After

obtaining the pre-processed dataset, We applied nine different

word embedding techniques to extract numeric feature vectors

from the messages on the Gitter platform. We considered these

features as inputs to develop models for predicting the purpose

label of a given message. After applying the word-embedding

techniques, we employed the One-Way ANOVA, and PCA to

obtain the best combination of relevant features. The One-Way

ANOVA test helps find features with equal variance between

groups, which means these features don’t impact the response

much and hence can be discarded. PCA considerably reduces

the number of features while trying to retain a significant

portion of the variance in the original dataset.

To make the computation of the models simpler and feasi-

ble, we sampled 3000 rows randomly from the dataset. Then,

we observed the presence of a class imbalance in the sampled

rows as the no. of messages with the ‘Team-wide’ purpose

label was much higher than other labels. To combat this issue,

we employed the Synthetic Minority Over-sampling (SMOTE)

technique, which creates synthetic data samples based on the

original data. The models obtained using the above techniques

were trained using 34 different classifiers developed using

various classification algorithms and ensemble methods and

implemented using both One vs. One and One vs. Rest Clas-

sification strategies. The predictive ability of these classifiers

was validated using the 5-fold cross-validation method. The

performance of the developed models was compared using

evaluation metrics such as Accuracy, Sensitivity, Specificity,

and Geometric Mean, which were extracted using the Box-

plot Visualization technique and the Friedman Test.

The detailed overview of the proposed framework is shown

in Figure 1. The initial glance of the figure suggests that the
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Fig. 1: Framework of proposed work

proposed framework is a multi-step process involving feature

extraction from text data using word embedding techniques,

removal of irrelevant features, handling class imbalance using

SMOTE and development of prediction model using seventeen

classification algorithms implemented using two multi-class

classification strategies. First, the messages in the GitterCom

dataset is pre-processed by removing unnecessary characters

and stopwords. Then as shown in Figure 1, these messages

are tokenized and nine different word embedding techniques

are applied to find the numeric vector representations of these

messages. Then the feature selection techniques of One-Way

ANOVA and PCA are employed to discard the non-influential

features of the numeric data. The next step involves applying

the SMOTE technique to handle the presence of class imbal-

ance in the dataset.Then, the prediction models are developed

using seventeen classification algorithms, implemented using

two multi-class classification strategies – One vs One and

One vs Rest. The performance of the models developed using

these two strategies is then evaluated using various evaluation

metrics.

V. EMPIRICAL RESULTS AND ANALYSIS

In this work, we applied nine different word embedding

techniques, two feature selection techniques, one class balanc-

ing technique, and thirty-four different classifiers to analyze

and classify the purpose of the messages posted on the Gitter

platform. Thus, a total of 1836 [1 dataset * 9 word-embedding

techniques * (2 sets generated using feature selection tech-

niques + 1 set of original data) * (1 set generated using a

class balancing technique + 1 original dataset) * 34 classifiers]

distinct predictive models were built. The predictive ability of

the developed models was evaluated using the Accuracy, Sen-

sitivity, Specificity, and Geometric Mean (G-Mean) metrics.

These models were validated using the 5-fold cross-validation

method.

Accuracy is the most commonly used metric for evaluating

the performance of a classifier. It is a measure of the proportion

of the correctly classified instances out of the total number

of available instances. While it is a useful metric, it can

give misleading results in the presence of a class imbalance

in the data. Hence, we also incorporate the Sensitivity and

Specificity metrics to deal with this issue. While sensitivity

is the measure of the proportion of the actual positive cases

correctly identified by the classifier, Specificity is the mea-

sure of the proportion of the actual negative cases correctly

identified by the classifier. Although these two metrics give

better predictions than Accuracy in the presence of imbalanced

data, there are some instances where these metrics fail, such

as when the classifier always predicts the majority class; the

models would get high sensitivity but low Specificity. To

deal with such cases, we also consider the Geometric Mean

metric, which is the geometric mean of both Sensitivity and

Specificity.

Tables I and II report the accuracies obtained for the

various models developed by applying different classifiers to

original data and sampled data on different sets of features. By

analyzing the information in the table, the following inferences

can be derived that the model with the highest accuracy is

obtained by applying the Random Forest Classifier using the

One vs Rest classification strategy on the data obtained from

the Word2Vec word embedding technique and employing the

SMOTE technique to address the class imbalance problem.

Similarly, Table I reports the Geometric Mean (G-Mean)

values obtained for the various models developed by applying

different classifiers to original data and sampled data on differ-

ent sets of features. By analyzing the information in the table,

the following inferences can be derived that the model with the

highest accuracy is obtained by applying the Random Forest

Classifier using the One vs Rest classification strategy on the

data obtained from the Word2Vec word embedding technique

and employing the SMOTE technique to address the class
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TABLE I: Accuracy and G-Mean

Accuracy

ORG_DATA SMOTE_DATA

Embedding MNB DTC LRC MNBG LRBG DTBG RF ADB MLPB MNB DTC LRC MNBG LRBG DTBG RF ADB MLPB

One-Vs-One: AF

CBOW 96.97 90.10 96.97 96.97 96.97 96.87 96.77 96.93 96.43 60.86 93.21 69.41 60.55 67.68 97.01 98.04 80.92 52.07

SKG 96.77 90.67 96.97 96.97 96.97 96.97 96.93 96.80 95.70 63.07 93.69 80.72 62.79 76.06 97.83 98.54 84.06 98.72

GLOVE50 96.97 90.47 96.97 96.97 96.97 97.00 96.93 96.90 95.40 65.44 92.38 77.69 64.70 71.43 98.22 98.83 80.81 32.38

GLOVE100 96.97 89.83 96.97 96.97 96.97 96.93 96.93 96.73 95.70 64.65 91.99 88.01 64.83 81.41 98.68 98.99 82.31 87.65

GLOVE300 96.90 90.93 97.00 96.97 96.97 96.97 96.97 96.80 95.20 71.07 93.35 95.66 70.98 92.88 98.88 99.56 88.04 97.17

W2V 96.97 90.60 96.93 96.97 96.97 96.93 96.93 96.73 95.80 72.63 94.13 96.51 72.52 94.50 99.37 99.70 88.77 63.78

FST 96.67 90.27 96.97 96.97 96.97 96.87 97.00 96.67 95.27 61.98 94.00 76.82 60.62 73.79 97.79 98.58 84.04 91.84

GPT 92.93 95.43 96.97 94.60 96.97 96.83 96.53 96.90 96.97 46.11 94.86 81.24 46.01 75.42 96.10 96.24 79.34 95.36

GPT2 95.63 95.90 96.93 95.77 96.97 96.87 96.60 96.83 96.97 55.53 94.17 90.52 56.10 89.50 96.31 96.53 83.87 94.04

One-Vs-One: ANOVA

CBOW 96.97 90.67 96.97 96.97 96.97 96.77 96.83 96.93 96.93 60.77 92.96 69.51 60.32 67.61 97.00 97.88 80.18 91.93

SKG 96.93 91.13 96.97 96.97 96.97 96.93 96.90 96.93 96.07 63.56 93.92 80.07 62.91 75.67 98.01 98.52 84.24 95.89

GLOVE50 96.97 90.40 96.97 96.97 96.97 96.93 96.97 96.83 96.10 65.53 92.37 76.93 61.97 71.31 98.17 98.92 79.08 32.55

GLOVE100 96.97 90.03 96.97 96.97 96.97 96.93 96.93 96.83 95.33 64.67 91.98 86.67 65.36 80.76 98.40 99.16 80.84 96.31

GLOVE300 96.97 92.10 96.97 96.97 96.97 96.93 96.93 96.83 95.67 70.95 93.51 95.37 70.69 92.24 98.97 99.34 87.90 98.03

W2V 96.97 90.97 96.97 96.97 96.97 96.83 96.83 96.70 96.97 72.40 94.02 96.15 72.05 93.64 99.30 99.62 88.89 32.24

FST 96.77 90.60 96.97 96.97 96.97 96.83 96.80 96.60 95.87 61.71 93.62 76.83 61.36 72.77 97.88 98.53 82.30 98.25

GPT 93.17 95.43 96.97 94.67 96.97 96.87 96.50 96.93 96.97 47.90 94.47 79.03 47.12 73.83 96.07 96.46 79.16 49.48

GPT2 95.67 95.70 96.97 95.77 96.97 96.90 96.70 96.97 96.60 55.67 94.29 90.28 55.56 89.47 96.21 96.29 84.18 94.80

One-Vs-Rest: AF

CBOW 96.97 93.77 96.97 96.97 96.97 96.70 96.77 96.93 95.30 63.68 94.98 68.81 62.68 67.02 96.96 97.90 80.75 31.91

SKG 96.73 93.13 96.97 96.97 96.97 96.93 96.90 96.77 95.43 63.76 95.06 79.58 63.29 74.99 97.82 98.59 84.51 77.33

GLOVE50 96.97 93.40 96.97 96.97 96.97 96.97 96.97 96.60 94.67 65.89 94.36 79.13 64.64 72.90 97.97 98.68 80.66 32.38

GLOVE100 96.97 92.87 96.97 96.97 96.97 96.97 96.93 96.70 92.93 66.88 95.36 87.40 67.09 81.29 98.38 99.13 81.22 97.54

GLOVE300 96.47 93.13 97.00 96.97 96.97 96.93 96.93 96.40 94.50 73.92 95.39 96.07 73.89 93.22 98.73 99.43 86.51 46.02

W2V 96.97 93.27 96.93 96.97 96.97 96.97 96.93 96.47 93.73 74.60 96.38 96.92 74.55 95.10 99.06 99.53 89.19 52.53

FST 96.57 93.33 96.97 96.97 96.97 96.87 96.83 96.60 94.80 63.08 95.28 77.36 62.82 73.85 97.74 98.42 82.98 52.65

GPT 89.33 96.03 96.97 94.47 96.97 96.90 96.57 96.87 96.97 48.38 94.96 81.15 47.52 76.91 95.76 96.22 79.66 93.97

GPT2 95.50 96.23 96.90 95.77 96.97 96.93 96.73 96.83 96.97 56.14 95.27 90.60 55.60 89.68 96.04 96.39 84.36 95.94

One-Vs-Rest: ANOVA

CBOW 96.97 93.37 96.97 96.97 96.97 96.87 96.73 96.70 96.97 63.74 95.08 68.96 63.22 67.11 96.57 97.67 81.17 88.24

SKG 96.70 93.57 96.97 96.97 96.97 96.97 96.83 96.70 95.33 63.70 95.44 78.72 62.39 74.55 97.82 98.40 83.37 32.51

GLOVE50 96.97 93.73 96.97 96.97 96.97 96.93 96.93 96.57 95.27 65.67 94.76 77.80 64.76 71.62 98.04 98.87 80.12 32.55

GLOVE100 96.97 93.57 96.97 96.97 96.97 96.93 96.93 96.77 94.57 67.16 95.46 86.64 67.40 80.27 98.38 98.89 80.61 97.23

GLOVE300 96.40 93.57 96.97 96.97 96.97 96.87 96.93 96.27 94.13 73.35 95.86 95.61 72.95 92.49 98.79 99.43 86.97 58.38

W2V 96.97 93.67 96.93 96.97 96.97 96.97 96.93 96.37 93.57 74.36 96.00 96.52 74.18 94.34 99.13 99.63 88.75 32.24

FST 96.67 93.43 96.97 96.97 96.97 96.83 96.90 96.43 94.30 62.97 95.51 77.32 62.77 73.24 97.90 98.66 82.40 89.85

GPT 89.43 96.07 96.97 94.27 96.97 96.83 96.50 96.93 96.97 46.30 94.81 80.17 46.68 75.68 95.82 96.16 78.66 40.98

GPT2 95.50 96.30 96.97 95.77 96.97 96.70 96.77 96.87 96.33 54.97 94.90 90.50 55.30 89.60 95.89 96.28 84.67 91.68

G-Mean

One-Vs-One: AF

CBOW 0.17 0.42 0.17 0.17 0.17 0.20 0.17 0.17 0.17 0.70 0.95 0.77 0.70 0.75 0.98 0.99 0.86 0.63

SKG 0.17 0.38 0.17 0.17 0.17 0.20 0.22 0.20 0.33 0.72 0.95 0.85 0.71 0.82 0.98 0.99 0.88 0.99

GLOVE50 0.17 0.31 0.17 0.17 0.17 0.20 0.17 0.20 0.26 0.74 0.94 0.83 0.73 0.78 0.99 0.99 0.85 0.46

GLOVE100 0.17 0.32 0.17 0.17 0.17 0.17 0.17 0.22 0.28 0.73 0.94 0.91 0.73 0.86 0.99 0.99 0.87 0.91

GLOVE300 0.17 0.32 0.20 0.17 0.17 0.17 0.20 0.20 0.35 0.78 0.95 0.97 0.78 0.95 0.99 1.00 0.91 0.98

W2V 0.17 0.32 0.17 0.17 0.17 0.17 0.17 0.20 0.28 0.79 0.96 0.97 0.79 0.96 1.00 1.00 0.92 0.72

FST 0.22 0.35 0.17 0.17 0.17 0.20 0.22 0.22 0.32 0.71 0.95 0.82 0.70 0.80 0.98 0.99 0.88 0.94

GPT 0.43 0.24 0.17 0.42 0.17 0.17 0.20 0.17 0.17 0.58 0.96 0.86 0.58 0.81 0.97 0.97 0.84 0.97

GPT2 0.43 0.26 0.17 0.43 0.17 0.17 0.25 0.17 0.17 0.66 0.96 0.93 0.66 0.92 0.97 0.97 0.88 0.96

One-Vs-One: ANOVA

CBOW 0.17 0.40 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.70 0.95 0.77 0.70 0.75 0.98 0.98 0.85 0.94

SKG 0.17 0.46 0.17 0.17 0.17 0.17 0.22 0.20 0.20 0.72 0.95 0.85 0.72 0.82 0.99 0.99 0.88 0.97

GLOVE50 0.17 0.32 0.17 0.17 0.17 0.17 0.20 0.17 0.17 0.74 0.94 0.82 0.71 0.78 0.99 0.99 0.84 0.46

GLOVE100 0.17 0.29 0.17 0.17 0.17 0.17 0.17 0.20 0.24 0.73 0.94 0.90 0.74 0.85 0.99 0.99 0.85 0.97

GLOVE300 0.17 0.37 0.17 0.17 0.17 0.17 0.17 0.22 0.30 0.78 0.95 0.97 0.78 0.94 0.99 1.00 0.91 0.99

W2V 0.17 0.34 0.17 0.17 0.17 0.17 0.17 0.22 0.17 0.79 0.96 0.97 0.79 0.95 0.99 1.00 0.92 0.46

FST 0.27 0.43 0.17 0.17 0.17 0.20 0.20 0.28 0.33 0.71 0.95 0.82 0.70 0.79 0.98 0.99 0.87 0.99

GPT 0.43 0.22 0.17 0.42 0.17 0.17 0.22 0.17 0.17 0.60 0.96 0.84 0.59 0.80 0.97 0.97 0.84 0.61

GPT2 0.43 0.24 0.17 0.43 0.17 0.17 0.20 0.17 0.17 0.66 0.96 0.93 0.66 0.92 0.97 0.97 0.88 0.96

One-Vs-Rest: AF

CBOW 0.17 0.36 0.17 0.17 0.17 0.17 0.22 0.17 0.20 0.72 0.96 0.76 0.71 0.75 0.98 0.98 0.85 0.46

SKG 0.25 0.34 0.17 0.17 0.17 0.22 0.22 0.22 0.32 0.72 0.96 0.85 0.72 0.81 0.98 0.99 0.88 0.83

GLOVE50 0.17 0.19 0.17 0.17 0.17 0.20 0.20 0.25 0.31 0.74 0.96 0.84 0.73 0.79 0.98 0.99 0.85 0.46

GLOVE100 0.17 0.22 0.17 0.17 0.17 0.20 0.17 0.22 0.29 0.75 0.97 0.90 0.75 0.86 0.99 0.99 0.86 0.98

GLOVE300 0.27 0.30 0.20 0.17 0.17 0.17 0.20 0.24 0.34 0.80 0.97 0.97 0.80 0.95 0.99 1.00 0.90 0.58

W2V 0.17 0.26 0.17 0.17 0.17 0.17 0.17 0.27 0.40 0.81 0.97 0.98 0.81 0.96 0.99 1.00 0.92 0.63

FST 0.27 0.28 0.17 0.17 0.17 0.17 0.25 0.22 0.35 0.72 0.96 0.83 0.72 0.80 0.98 0.99 0.87 0.63

GPT 0.44 0.20 0.17 0.42 0.17 0.17 0.17 0.17 0.17 0.60 0.96 0.86 0.59 0.82 0.97 0.97 0.85 0.95

GPT2 0.43 0.24 0.17 0.43 0.17 0.17 0.25 0.17 0.17 0.66 0.96 0.93 0.66 0.92 0.97 0.97 0.88 0.97

One-Vs-Rest: ANOVA

CBOW 0.17 0.30 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.72 0.96 0.76 0.72 0.75 0.97 0.98 0.86 0.91

SKG 0.27 0.37 0.17 0.17 0.17 0.22 0.20 0.28 0.33 0.72 0.97 0.84 0.71 0.81 0.98 0.99 0.87 0.46

GLOVE50 0.17 0.26 0.17 0.17 0.17 0.17 0.17 0.20 0.24 0.74 0.96 0.83 0.73 0.78 0.99 0.99 0.85 0.46

GLOVE100 0.17 0.28 0.17 0.17 0.17 0.17 0.17 0.20 0.28 0.75 0.97 0.90 0.75 0.85 0.99 0.99 0.85 0.98

GLOVE300 0.22 0.24 0.17 0.17 0.17 0.17 0.17 0.30 0.34 0.80 0.97 0.97 0.79 0.94 0.99 1.00 0.90 0.68

W2V 0.17 0.22 0.17 0.17 0.17 0.17 0.17 0.28 0.40 0.81 0.97 0.97 0.80 0.96 0.99 1.00 0.92 0.46

FST 0.28 0.30 0.17 0.17 0.17 0.20 0.22 0.30 0.34 0.72 0.97 0.83 0.71 0.80 0.98 0.99 0.87 0.92

GPT 0.47 0.17 0.17 0.42 0.17 0.17 0.20 0.17 0.17 0.58 0.96 0.85 0.59 0.82 0.97 0.97 0.84 0.54

GPT2 0.43 0.17 0.17 0.43 0.17 0.17 0.17 0.17 0.20 0.65 0.96 0.93 0.66 0.92 0.97 0.97 0.88 0.94

imbalance problem. This model gives the highest classification

accuracy, sensitivity, and specificity, as mentioned in Table II.

A. COMPARATIVE ANALYSIS

In this section, we examine and compare the efficacy of

the models created through a diverse set of word-embedding
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TABLE II: Sensitivity and Specificity

Sensitivity

ORG_DATA SMOTE_DATA

Embedding MNB DTC LRC MNBG LRBG DTBG RF ADB MLPB MNB DTC LRC MNBG LRBG DTBG RF ADB MLPB

One-Vs-One: AF

CBOW 0.97 0.90 0.97 0.97 0.97 0.97 0.97 0.97 0.96 0.03 0.20 0.03 0.03 0.03 0.04 0.03 0.03 0.03

SKG 0.97 0.91 0.97 0.97 0.97 0.97 0.97 0.97 0.96 0.03 0.16 0.03 0.03 0.03 0.04 0.05 0.04 0.12

GLOVE50 0.97 0.90 0.97 0.97 0.97 0.97 0.97 0.97 0.95 0.03 0.10 0.03 0.03 0.03 0.04 0.03 0.04 0.07

GLOVE100 0.97 0.90 0.97 0.97 0.97 0.97 0.97 0.97 0.96 0.03 0.11 0.03 0.03 0.03 0.03 0.03 0.05 0.08

GLOVE300 0.97 0.91 0.97 0.97 0.97 0.97 0.97 0.97 0.95 0.03 0.11 0.04 0.03 0.03 0.03 0.04 0.04 0.13

W2V 0.97 0.91 0.97 0.97 0.97 0.97 0.97 0.97 0.96 0.03 0.11 0.03 0.03 0.03 0.03 0.03 0.04 0.08

FST 0.97 0.90 0.97 0.97 0.97 0.97 0.97 0.97 0.95 0.05 0.14 0.03 0.03 0.03 0.04 0.05 0.05 0.10

GPT 0.93 0.95 0.97 0.95 0.97 0.97 0.97 0.97 0.97 0.20 0.06 0.03 0.19 0.03 0.03 0.04 0.03 0.03

GPT2 0.96 0.96 0.97 0.96 0.97 0.97 0.97 0.97 0.97 0.19 0.07 0.03 0.19 0.03 0.03 0.06 0.03 0.03

One-Vs-One: ANOVA

CBOW 0.97 0.91 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.03 0.18 0.03 0.03 0.03 0.03 0.03 0.03 0.03

SKG 0.97 0.91 0.97 0.97 0.97 0.97 0.97 0.97 0.96 0.03 0.23 0.03 0.03 0.03 0.03 0.05 0.04 0.04

GLOVE50 0.97 0.90 0.97 0.97 0.97 0.97 0.97 0.97 0.96 0.03 0.11 0.03 0.03 0.03 0.03 0.04 0.03 0.03

GLOVE100 0.97 0.90 0.97 0.97 0.97 0.97 0.97 0.97 0.95 0.03 0.09 0.03 0.03 0.03 0.03 0.03 0.04 0.06

GLOVE300 0.97 0.92 0.97 0.97 0.97 0.97 0.97 0.97 0.96 0.03 0.15 0.03 0.03 0.03 0.03 0.03 0.05 0.09

W2V 0.97 0.91 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.03 0.13 0.03 0.03 0.03 0.03 0.03 0.05 0.03

FST 0.97 0.91 0.97 0.97 0.97 0.97 0.97 0.97 0.96 0.07 0.20 0.03 0.03 0.03 0.04 0.04 0.08 0.12

GPT 0.93 0.95 0.97 0.95 0.97 0.97 0.97 0.97 0.97 0.20 0.05 0.03 0.19 0.03 0.03 0.05 0.03 0.03

GPT2 0.96 0.96 0.97 0.96 0.97 0.97 0.97 0.97 0.97 0.19 0.06 0.03 0.19 0.03 0.03 0.04 0.03 0.03

One-Vs-Rest: AF

CBOW 0.61 0.93 0.69 0.61 0.68 0.97 0.98 0.81 0.52 0.80 0.97 0.85 0.80 0.84 0.99 0.99 0.90 0.76

SKG 0.63 0.94 0.81 0.63 0.76 0.98 0.99 0.84 0.99 0.82 0.97 0.90 0.81 0.88 0.99 0.99 0.92 0.99

GLOVE50 0.65 0.92 0.78 0.65 0.71 0.98 0.99 0.81 0.32 0.83 0.96 0.89 0.82 0.86 0.99 0.99 0.90 0.66

GLOVE100 0.65 0.92 0.88 0.65 0.81 0.99 0.99 0.82 0.88 0.82 0.96 0.94 0.82 0.91 0.99 0.99 0.91 0.94

GLOVE300 0.71 0.93 0.96 0.71 0.93 0.99 1.00 0.88 0.97 0.86 0.97 0.98 0.85 0.96 0.99 1.00 0.94 0.99

W2V 0.73 0.94 0.97 0.73 0.94 0.99 1.00 0.89 0.64 0.86 0.97 0.98 0.86 0.97 1.00 1.00 0.94 0.82

FST 0.62 0.94 0.77 0.61 0.74 0.98 0.99 0.84 0.92 0.81 0.97 0.88 0.80 0.87 0.99 0.99 0.92 0.96

GPT 0.46 0.95 0.81 0.46 0.75 0.96 0.96 0.79 0.95 0.73 0.97 0.91 0.73 0.88 0.98 0.98 0.90 0.98

GPT2 0.56 0.94 0.91 0.56 0.90 0.96 0.97 0.84 0.94 0.78 0.97 0.95 0.78 0.95 0.98 0.98 0.92 0.97

One-Vs-Rest: ANOVA

CBOW 0.61 0.93 0.70 0.60 0.68 0.97 0.98 0.80 0.92 0.80 0.96 0.85 0.80 0.84 0.98 0.99 0.90 0.96

SKG 0.64 0.94 0.80 0.63 0.76 0.98 0.99 0.84 0.96 0.82 0.97 0.90 0.81 0.88 0.99 0.99 0.92 0.98

GLOVE50 0.66 0.92 0.77 0.62 0.71 0.98 0.99 0.79 0.33 0.83 0.96 0.88 0.81 0.86 0.99 0.99 0.90 0.66

GLOVE100 0.65 0.92 0.87 0.65 0.81 0.98 0.99 0.81 0.96 0.82 0.96 0.93 0.83 0.90 0.99 1.00 0.90 0.98

GLOVE300 0.71 0.94 0.95 0.71 0.92 0.99 0.99 0.88 0.98 0.85 0.97 0.98 0.85 0.96 0.99 1.00 0.94 0.99

W2V 0.72 0.94 0.96 0.72 0.94 0.99 1.00 0.89 0.32 0.86 0.97 0.98 0.86 0.97 1.00 1.00 0.94 0.66

FST 0.62 0.94 0.77 0.61 0.73 0.98 0.99 0.82 0.98 0.81 0.97 0.88 0.81 0.86 0.99 0.99 0.91 0.99

GPT 0.48 0.94 0.79 0.47 0.74 0.96 0.96 0.79 0.49 0.74 0.97 0.90 0.74 0.87 0.98 0.98 0.90 0.75

GPT2 0.56 0.94 0.90 0.56 0.89 0.96 0.96 0.84 0.95 0.78 0.97 0.95 0.78 0.95 0.98 0.98 0.92 0.97

Specificity

One-Vs-One: AF

CBOW 0.97 0.94 0.97 0.97 0.97 0.97 0.97 0.97 0.95 0.03 0.14 0.03 0.03 0.03 0.03 0.05 0.03 0.04

SKG 0.97 0.93 0.97 0.97 0.97 0.97 0.97 0.97 0.95 0.06 0.13 0.03 0.03 0.03 0.05 0.05 0.05 0.10

GLOVE50 0.97 0.93 0.97 0.97 0.97 0.97 0.97 0.97 0.95 0.03 0.04 0.03 0.03 0.03 0.04 0.04 0.06 0.10

GLOVE100 0.97 0.93 0.97 0.97 0.97 0.97 0.97 0.97 0.93 0.03 0.05 0.03 0.03 0.03 0.04 0.03 0.05 0.09

GLOVE300 0.96 0.93 0.97 0.97 0.97 0.97 0.97 0.96 0.95 0.07 0.09 0.04 0.03 0.03 0.03 0.04 0.06 0.13

W2V 0.97 0.93 0.97 0.97 0.97 0.97 0.97 0.96 0.94 0.03 0.07 0.03 0.03 0.03 0.03 0.03 0.07 0.17

FST 0.97 0.93 0.97 0.97 0.97 0.97 0.97 0.97 0.95 0.07 0.08 0.03 0.03 0.03 0.03 0.06 0.05 0.13

GPT 0.89 0.96 0.97 0.94 0.97 0.97 0.97 0.97 0.97 0.22 0.04 0.03 0.19 0.03 0.03 0.03 0.03 0.03

GPT2 0.96 0.96 0.97 0.96 0.97 0.97 0.97 0.97 0.97 0.19 0.06 0.03 0.19 0.03 0.03 0.06 0.03 0.03

One-Vs-One: ANOVA

CBOW 0.97 0.93 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.03 0.09 0.03 0.03 0.03 0.03 0.03 0.03 0.03

SKG 0.97 0.94 0.97 0.97 0.97 0.97 0.97 0.97 0.95 0.07 0.15 0.03 0.03 0.03 0.05 0.04 0.08 0.12

GLOVE50 0.97 0.94 0.97 0.97 0.97 0.97 0.97 0.97 0.95 0.03 0.07 0.03 0.03 0.03 0.03 0.03 0.04 0.06

GLOVE100 0.97 0.94 0.97 0.97 0.97 0.97 0.97 0.97 0.95 0.03 0.08 0.03 0.03 0.03 0.03 0.03 0.04 0.08

GLOVE300 0.96 0.94 0.97 0.97 0.97 0.97 0.97 0.96 0.94 0.05 0.06 0.03 0.03 0.03 0.03 0.03 0.09 0.13

W2V 0.97 0.94 0.97 0.97 0.97 0.97 0.97 0.96 0.94 0.03 0.05 0.03 0.03 0.03 0.03 0.03 0.08 0.17

FST 0.97 0.93 0.97 0.97 0.97 0.97 0.97 0.96 0.94 0.08 0.09 0.03 0.03 0.03 0.04 0.05 0.09 0.13

GPT 0.89 0.96 0.97 0.94 0.97 0.97 0.97 0.97 0.97 0.24 0.03 0.03 0.19 0.03 0.03 0.04 0.03 0.03

GPT2 0.96 0.96 0.97 0.96 0.97 0.97 0.97 0.97 0.96 0.19 0.03 0.03 0.19 0.03 0.03 0.03 0.03 0.04

One-Vs-Rest: AF

CBOW 0.64 0.95 0.69 0.63 0.67 0.97 0.98 0.81 0.32 0.82 0.97 0.84 0.81 0.84 0.98 0.99 0.90 0.66

SKG 0.64 0.95 0.80 0.63 0.75 0.98 0.99 0.85 0.77 0.82 0.98 0.90 0.82 0.87 0.99 0.99 0.92 0.89

GLOVE50 0.66 0.94 0.79 0.65 0.73 0.98 0.99 0.81 0.32 0.83 0.97 0.90 0.82 0.86 0.99 0.99 0.90 0.66

GLOVE100 0.67 0.95 0.87 0.67 0.81 0.98 0.99 0.81 0.98 0.83 0.98 0.94 0.84 0.91 0.99 1.00 0.91 0.99

GLOVE300 0.74 0.95 0.96 0.74 0.93 0.99 0.99 0.87 0.46 0.87 0.98 0.98 0.87 0.97 0.99 1.00 0.93 0.73

W2V 0.75 0.96 0.97 0.75 0.95 0.99 1.00 0.89 0.53 0.87 0.98 0.98 0.87 0.98 1.00 1.00 0.95 0.76

FST 0.63 0.95 0.77 0.63 0.74 0.98 0.98 0.83 0.53 0.82 0.98 0.89 0.81 0.87 0.99 0.99 0.91 0.76

GPT 0.48 0.95 0.81 0.48 0.77 0.96 0.96 0.80 0.94 0.74 0.97 0.91 0.74 0.88 0.98 0.98 0.90 0.97

GPT2 0.56 0.95 0.91 0.56 0.90 0.96 0.96 0.84 0.96 0.78 0.98 0.95 0.78 0.95 0.98 0.98 0.92 0.98

One-Vs-Rest: ANOVA

CBOW 0.64 0.95 0.69 0.63 0.67 0.97 0.98 0.81 0.88 0.82 0.98 0.84 0.82 0.84 0.98 0.99 0.91 0.94

SKG 0.64 0.95 0.79 0.62 0.75 0.98 0.98 0.83 0.33 0.82 0.98 0.89 0.81 0.87 0.99 0.99 0.92 0.66

GLOVE50 0.66 0.95 0.78 0.65 0.72 0.98 0.99 0.80 0.33 0.83 0.97 0.89 0.82 0.86 0.99 0.99 0.90 0.66

GLOVE100 0.67 0.95 0.87 0.67 0.80 0.98 0.99 0.81 0.97 0.84 0.98 0.93 0.84 0.90 0.99 0.99 0.90 0.99

GLOVE300 0.73 0.96 0.96 0.73 0.92 0.99 0.99 0.87 0.58 0.87 0.98 0.98 0.86 0.96 0.99 1.00 0.93 0.79

W2V 0.74 0.96 0.97 0.74 0.94 0.99 1.00 0.89 0.32 0.87 0.98 0.98 0.87 0.97 1.00 1.00 0.94 0.66

FST 0.63 0.96 0.77 0.63 0.73 0.98 0.99 0.82 0.90 0.81 0.98 0.89 0.81 0.87 0.99 0.99 0.91 0.95

GPT 0.46 0.95 0.80 0.47 0.76 0.96 0.96 0.79 0.41 0.73 0.97 0.90 0.73 0.88 0.98 0.98 0.89 0.70

GPT2 0.55 0.95 0.91 0.55 0.90 0.96 0.96 0.85 0.92 0.77 0.97 0.95 0.78 0.95 0.98 0.98 0.92 0.96

techniques, classification algorithms, feature selection, and

data sampling techniques. To evaluate the models devised for

classifying the purpose of the messages in Gitter communi-

cations, we have employed evaluation metrics for statistical
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analysis, box plots for visual representation, and the Friedman

test to identify the significant differences among the models.

The Friedman test is a non-parametric test used to determine

if there is a significant difference in the average ranks of

multiple related samples. In our research, this test was used

to test the validity of the following hypothesis:

• Null Hypothesis - The predictive abilities of the mod-

els developed using the combination of various word-

embedding techniques, classifiers, feature selection, and

data sampling techniques are similar.

• Alternate Hypothesis - The models’ predictive abili-

ties developed using various word-embedding techniques,

classifiers, feature selection, and data sampling tech-

niques significantly differ.

B. Word-Embedding Techniques

The text messages present in the dataset were converted to

a numeric vector representation to develop classification mod-

els. The nine-word embedding techniques employed for this

purpose are Continuous Bag of Words (CBOW), Skip-Gram

(SKG), Global Vectors for Word Representation (GloVe) with

50 dimensions (GLOVE50), 100 dimensions (GLOVE100),

and 300 dimensions (GLOVE300), Word2Vec (W2V), fast-

Text (FST), Generative Pre-trained Transformer (GPT), and

Generative Pre-trained Transformer-2 (GPT2).

Comparison of Word-embedding techniques using Box Plots:

Figure 2 provides a graphic representation of the values of the

evaluation metrics - Accuracy, Sensitivity, Specificity, and G-

Mean of different word embedding techniques applied in the

form of Box-plots. While we can observe that the average

G-Mean is highest for models based on the GPT-2 word-

embedding technique with a value of 0.54, followed by GPT

with 0.49, the highest maximum G-Mean is for the models

developing using Word2Vec word embeddings with a value

of 0.9978, followed by GloVe 300d with a value of 0.9972.

The Q3 G-Mean is highest for models with GPT-2, followed

by GloVe 300d. Comparing the accuracies of the models

provides more stable results as models built using Word2Vec

and GloVe 300d emerge as the best-performing models in

terms of maximum, Q3, and median accuracy values, while

models using GPT and GPT-2 lag behind in this analysis. Since

the box plots for the G-Mean values don’t paint a clear picture,

we rely on the Friedman Rank Test to draw inferences.

Comparison of Word-embedding techniques using the

Friedman Test:

The study also employs the Friedman test to evaluate the

performance of the models developed using various word

embedding techniques. This test aims to test the validity of the

null hypothesis, which states that “the different word embed-

ding techniques do not significantly impact the performance

of the classification models developed.” The test was carried

out at a significance level of 0.05 and with nine degrees

of freedom. Table III displays the Friedman mean ranks of

the G-Mean metric obtained for the various word-embedding

algorithms. A lower mean rank indicates a better-performing

technique. GloVe 300d has the lowest mean rank of 3.77,

followed by Word2Vec, which has a mean rank of 4.05. CBoW

has the highest mean rank of 6.2, followed by GPT, which

has a mean rank of 6.01. From these observations, it can be

inferred that models developed using GloVe and Word2Vec

have the highest predictive ability, while the models that use

CBoW or GPT suffer the most. Another inference that can be

drawn is that models developed with word embeddings with

generic pre-trained vectors perform superior for the Gitter-

Com dataset compared to those developed with other word-

embedding techniques, even those that are domain-specific to

software systems.
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Fig. 2: Performance of Nine Word Embedding
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TABLE III: Friedman: Nine Word Embedding

Accuracy G-Mean Specificity Sensitivity

CBOW 6.11 6.2 6.06 6.11

SKG 4.72 4.25 4.25 4.72

GLOVE50 5.22 5.6 5.63 5.22

GLOVE100 4.57 4.96 4.98 4.57

GLOVE300 3.89 3.77 3.83 3.89

W2V 3.74 4.05 4.12 3.74

FST 5.31 4.71 4.65 5.31

GPT 6.04 6.01 6.01 6.04

GPT2 5.39 5.45 5.47 5.39

C. Feature Selection Techniques

In this work, we have employed two different feature

selection techniques - the One-way analysis of variance test

and Principal Component Analysis. These techniques were

applied to reduce the complexity of the models by retaining or

generating the relevant features and discarding the rest. This

gave us three different sets of features to compare, the original

feature set and the feature seats generated using the feature

selection techniques.

Comparison of the Different Sets of Features using Box

Plots:

Figure 3 provides a graphic representation of the values of the

evaluation metrics - Accuracy, Sensitivity, Specificity, and G-

Mean of the models trained using selected sets of features and

all features in the form of Box-plots. From the figure, we can

draw the inference that the models developed by considering

all the features have a marginally better predictive ability for

the GitterCom dataset. The average G-Mean of the models

developed using the original data is 0.483, with a maximum

G-Mean of 0.998 and a Q3 G-Mean of 0.879. The mean G-

Mean of the models that use the ANOVA test (0.471) and

PCA (0.461) is also quite close to the mean G-Mean of the

original data, with ANOVA performing better than PCA for

the GitterCom dataset. This is also backed up by the box-

plots of accuracies of the models where the models built with

all the features slightly out-performs the ANOVA test-based

models, which in turn perform much better than models built

by considering PCA.

Comparison of the Different Sets of Features using the

Friedman Test:

This study also considers the Friedman test to compare the

performance of the models using the set of all features or the

sets of features generated by the feature selection techniques.

This test aims to test the validity of the null hypothesis, which

states that "there is no significant difference in the performance

of models trained on the data with different sets of features."

Table IV displays the Friedman mean ranks of the G-Mean

metric obtained for models trained on the original and selected

set of features. The models trained using the original feature

set have the lowest mean rank of 1.76. The models trained

using the feature set generated from the One-way ANOVA

test have a slightly higher mean rank of 1.87, and the models

trained using PCA have the highest mean rank of 2.37. This

analysis indicates that introducing feature selection techniques

depreciates the model’s performance and that the model works

best with all the original features. However, the One-Way

ANOVA test models only perform slightly worse than the

models with all the features since the mean G-Mean and the

mean Friedman ranks are quite close. Hence, if certain word-

embedding techniques generate a large number of features

for the GitterCom dataset, the One-Way ANOVA test can be

considered for feature selection.

TABLE IV: Friedman: Feature Selection Techniques

Accuracy G-Mean Specificity Sensitivity

AFV 1.86 1.76 1.75 1.86

ANOVA 1.94 1.87 1.88 1.94

PCA 2.2 2.37 2.37 2.2

D. Class Balancing Technique

The Synthetic Minority Oversampling Technique (SMOTE)

was used to rectify the class imbalance problem of the dataset,

as this technique synthesized data points for the minority

classes of the “personal benefits” and “community support”

classes.

Comparison of original data and SMOTE synthesized data

using Box Plots:

Figure 4 provides a graphic representation of the values of

the evaluation metrics - Accuracy, Sensitivity, Specificity, and

G-Mean in the form of Box-plots for the models developed

using original data and the balanced data obtained from the

SMOTE technique. From the figure, we can draw the inference

that the models developed by applying the SMOTE technique

have a much better predictive ability for the GitterCom dataset

compared to the models relying on the original data. The

average G-Mean of the models developed using SMOTE is

0.857, with a maximum G-Mean of 0.998 and a Q3 G-Mean

of 0.956, which indicates that 25% of the models created

using SMOTE have a G-Mean greater than 0.956. Since the
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Fig. 3: Performance of Feature Selection Techniques
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Fig. 4: Performance Class Balancing Technique

original data is highly class-imbalanced, accuracy is not a

reliable metric for this analysis since it projects the models

with original data to perform better than models with the

SMOTE synthesized data.

Comparison of original data and SMOTE synthesized data

using the Friedman Test:

This study also employs the Friedman test to compare the

performance of the models developed using the original im-

balanced dataset and the SMOTE-synthesized dataset. This test

aims to test the validity of the null hypothesis, which states that

“there is no significant difference in the performance of models

trained with dataset having balanced or imbalanced classes,

and the algorithm used to balance classes has no significant

impact on their performance.” Table V displays the Friedman

mean ranks of the G-Mean metric obtained for models trained

on the original and the SMOTE-balanced dataset. While the

latter models have a mean rank of 1, the former models have

a mean rank of 2. This is in accordance with the inference

obtained from the box plots, thus declaring the use of the

SMOTE data sampling technique to improve the performance

of the models trained on the GitterCom dataset. The mean

ranks of Accuracy provide a different picture where the models

trained using the original data have a mean rank of 1.2 which

is lower than the mean rank of the models trained using the

SMOTE balanced dataset (1.8). This shows the unreliability of

the accuracy metric in the presence of class-imbalanced data,

thus establishing the G-Mean as the dependable metric in such

circumstances.

TABLE V: Friedman: Class Balancing Technique

Accuracy G-Mean Specificity Sensitivity

OD 1.2 2 1.99 1.2

SMOTE 1.8 1 1.01 1.8

E. Classification Techniques

In this work, we have used seventeen different classifica-

tion algorithms such as Multinomial Naive Bayes (MNB),

Bernoulli’s Naive Bayes (BNB), Gaussian Naive Bayes

(GNB), Decision Tree (DTC), Logistic Regression (LRC), K-

Nearest Neighbours (KNN), KNN with Bagging (KNBG),

Multinomial Naive Bayes with Bagging (MNBG), Logistic

Regression with Bagging (LRBG), Decision Trees with Bag-

ging (DTBG), Random Forest (RF), Extra Trees (EXTC), Ada

Boost (DBG), Gradient Boosting (GRB), Multi-Layer Percep-

tron with Limited-Memory BFGS (MLPB), SGD (MLPS) and

ADAM (MLPA).

Comparison of Classification Techniques using Box Plots:

Figure 5 provides a graphic representation of the values of

the evaluation metrics - Accuracy, Sensitivity, Specificity, and

G-Mean of different classification algorithms applied in the

form of Box-plots. From the figure, we can observe that

while tree-based classifiers generally perform better than the

rest, the Naive Bayes-based classifiers lag behind in their

performance. Random Forest and Extra Trees Classifiers have

the highest maximum and Q3 G-Mean values, while Bernoulli

and Multinomial Naive Bayes classifiers have the least values.

The median G-Mean values paint a slightly different picture as

Gaussian Naive Bayes has the highest value, followed by the

Decision Tree classifier. The accuracy box plots suggest that

Random Forest and Extra Trees classifiers are best performing,

followed by Decision Trees with Bagging, while Gaussian

Naive Bayes lags behind. Since we can’t zero in on the best-

performing classifier using the Box Plots, we rely on the

Friedman Rank test.

Comparison of Classification techniques using the Friedman

Test:

The study also employs the Friedman test to evaluate the

performance of the models developed using various classifica-

tion algorithms. This test aims to test the validity of the null

hypothesis, which states that “the choice of the classification

algorithms does not significantly impact the performance of

the classification models developed.” The test was carried out

at a significance level of 0.05 and with seventeen degrees of

freedom. Table VI displays the Friedman mean ranks of the G-

Mean metric obtained for the various classification algorithms.

A lower mean rank indicates a better-performing algorithm.

We can observe that the Decision Tree classifier has the lowest

mean rank of 4.53 among all classifiers, followed by the Extra

Trees Classifier at 4.81 and the Random Forest Classifier at

5.46. Bernoulli’s Naive Bayes Classifier has the highest rank

of 14.13, followed by the Multinomial Naive Bayes classifier

with Bagging, with a mean rank of 12.09. Thus, we can

infer that the Decision Tree Classifier is the best-performing

classification algorithm for the GitterCom dataset, followed by

Extra Trees and Random Forest Classifiers, while Bernoulli’s

Naive Bayes classifier performs the worst for the dataset.

F. One-vs-One and One-vs-rest multi-class classification:

The above-mentioned classification algorithms were imple-

mented using one-vs-one and one-vs-rest multi-class classifi-
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TABLE VI: Friedman: Class Balancing Technique

Accuracy G-Mean Specificity Sensitivity

MNB 10.95 11.3 11.3 10.95

BNB 13.73 14.13 14.13 13.73

GNB 14.52 6.69 6.69 14.52

DTC 10.36 4.53 4.53 10.36

LRC 7.18 10.16 10.16 7.18

KNN 8.6 9.79 9.79 8.6

KNBG 6.23 9.25 9.25 6.23

MNBG 10.45 12.09 12.09 10.45

LRBG 7.87 10.89 10.89 7.87

DTBG 5.85 8.04 8.04 5.85

RF 5.75 5.46 5.46 5.75

EXTC 5.54 4.81 4.81 5.54

ADB 10.34 9.54 9.53 10.34

GRB 11.26 7.45 7.45 11.26

MLPB 10.19 8.95 8.95 10.19

MLPS 6.61 9.63 9.63 6.61

MLPA 7.57 10.31 10.31 7.57

cation strategies, thus generating thirty-four different classi-

fiers for this analysis.

Comparison of the two classification strategies using Box

Plots:

Figure 6 provides a graphic representation of the values of the

evaluation metrics - Accuracy, Sensitivity, Specificity, and G-

Mean of the two classification strategies applied in the form

of Box-plots. From these figures, we can observe that the

One-vs-Rest slightly out-performs the one-vs-one strategy as

the models developed using the former have a maximum G-

Mean of 0.9977 and a Q3 value of 0.86 as compared to its

counterpart’s values of 0.9974 and 0.85. The accuracy box

plot also gives similar results as one-vs-rest has slightly higher

maximum and median accuracies as compared to models using

one-vs-one classification.
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Fig. 6: Performance One-vs-One and One-vs-rest multi-class

classification

Comparison of Classification strategies using the Friedman

Test:

The study also employs the Friedman test to evaluate the

performance of the models developed using the two classifi-

cation strategies. This test aims to test the validity of the null
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hypothesis, which states that “the choice of the classification

strategy does not significantly impact the performance of

the classification models developed.” The test was carried

out at a significance level of 0.05 and with two degrees

of freedom. Table VII displays the Friedman mean ranks

of the G-Mean metric obtained for the various classification

algorithms. We can observe that the models using one-vs-one

classification have a slightly lower Friedman mean Rank of

1.47 as compared to the one-vs-rest models’ rank of 1.53.

This trend is also followed by the mean ranks of accuracies

of the two strategies. Thus, the Friedman Rank test concludes

that the one-vs-one classification is slightly better than the

one-vs-rest classification.

TABLE VII: Friedman: One-vs-One and One-vs-rest

Accuracy G-Mean Specificity Sensitivity

OVO 1.49 1.47 1.48 1.49

OVR 1.51 1.53 1.52 1.51

VI. CONCLUSION

Analyzing and classifying the purpose of the messages on

software messaging and collaboration platforms such as Gitter

provides various benefits, such as analyzing the present open-

source development trends and understanding why develop-

ers prefer such platforms. Automated message classification

can save time and labor and reduce misclassification errors.

This paper aims to improve the classification accuracy of

the purpose of the messages in the GitterCom dataset by

finding the right combination of ML and NLP techniques for

the best performance. Various word-embedding techniques,

feature selection techniques, classification algorithms, and a

data sampling technique were employed in this work. The

comparative analysis helps analyze each technique’s merits

and demerits for analysis of the GitterCom dataset. The key

conclusion obtained in this work are:

• Models trained using GloVe 300d and Word2Vec perform

superior to models trained with other word-embedding

techniques, even the ones that are domain-specific to

software systems.

• The application of feature selection techniques slightly

degrades the performance of the classifier models. How-

ever, the ANOVA test is still a viable alternative in case

the computational complexity of the models needs to be

improved.

• The class-balancing technique (SMOTE) improved the

performance of the models by addressing the class im-

balance problem.

• The tree-based classification algorithms outperformed

others as the Decision Trees classifier emerged as the

best, followed by Random Forest and Extra Trees classi-

fiers.

• The one-vs-one multi-class classification strategy per-

formed better than the one-vs-rest classification for the

GitterCom dataset message purpose classification.

While our research focuses on the purpose of the messages,

future research could look into insights that can be drawn

from messages of each type of purpose. The team-wide pur-

pose messages can be used to analyze collaboration patterns

and geographical trends influencing the development projects.

Similarly, the personal benefit messages can be used to analyze

the commonly faced issues and the extent of help being

provided to these users on the platform. Topics of discussion

can be analyzed to identify the latest trends and popular

technologies in software development. These insights help

update the platforms to suit the needs of the developers better,

attracting more users and promoting collaboration. Developing

such models also helps users understand these trends, which

they can incorporate into their own development practices,

making them more efficient. Future research to draw insights

from the data of such developer communication platforms can

be made easier by adapting the techniques and pipelines shown

to be more effective and hence recommended by the paper.
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