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Abstract—Gradient Boosting (GB) consistently outperforms
other ML predictors especially in the context of binary classifi-
cation based on multi-modal data of different forms and types.
Its newest efficient implementations, including XGBoost, LGBM
and CATBoost, push GB even further ahead with fast GPU-
accelerated compute engine and optimized handling of categorical
features. In an attempt to beat GB in both the performance
and processing speed we propose a new simple yet fast and
robust classification model based on predictive binning. At first all
features undergo massively parallelized binning into a unified or-
dinally compressed risk representation, independently optimized
to maximize the AUC score against the target. The resultant array
of summarized micro-predictors, resembling 0-depth decision
trees, directly expressing oridnally represented target risk, are
then passed through the greedy feature selection to compose a
robust wide-margin voting classifier, whose performance can beat
GB while the extreme build and execution speed along with highly
compressed representation welcomes extreme data sizes and real-
time applicability. The model has been applied to detect cyber-
security attacks on IoT devices within FedCSIS’2023 Challenge
and scored 2

nd place with the AUC ≈ 1, leaving behind all the
latest GB variants in performance and speed.

I. INTRODUCTION

THE RISE of AI to prominence in access and control of

just about everything is upon us and so is the expanding

infrastructure network of fixed and mobile sensing and com-

puting devices, capable of sending and receiving data, known

as the Internet of Things (IoT). In such digitized environment

security and integrity of every individual node as well as the

whole network is critical and hence the cyber-security against

the internal and external threats of different nature and scale

is of crucial importance. A survey presented in [1] offers a

thorough overview of different security threats IoT devices are

exposed to, reviews the current security mechanisms, trying

to address them, and identifies a continuous challenge in this

very fast evolving ecosystem, in which the evidence based

designed security solutions are always playing a catch-up game

and leave a lagged gap, in which new threats or attacks may

inflict a lot of damage before they are detected, analysed

and neutralized. Machine Learning (ML) has been growing

in parallel to these revolutionary changes and since the outset

offered methods for automated detection of security threats

based on data, both by learning from historically labelled

attack examples and by discovering and flagging anomalies

from normal operation of the IoT devices. Several reviews

of ML deployment in the IoT cyber-security environment

have been presented recently like in [2] assessing various ML

models while focusing further on the SVM application to smart

city traffic flows prediction, or in [3] where similar classifica-

tion, utility and suitability analysis of the most common ML

methods, applied in various aspects of IoT cyber-security, is

carried out with perhaps a deeper focus on deep learning.

To our surprise, however, gradient boosting methods devel-

oped around the start of our century by the pioneering work

in [4], [5], that have ever since consistently been winning

big data and ML competitions ([6]-[11]), have been rather

scarcely covered in the literature dedicated to cyber-security.

We can argue that in more practical realistic ML applications

to cyber-security like detecting threads based on complex

log-extracted data, the old favourite models like SVM are

simply not scalable enough [2], [11], while high-performing

deep learning networks cannot easily encode the multi-modal

unstructured data coming in a variety of forms and types, i.e. in

quite different form than regular images or time-series, deep

learning are performing well for. For such data GB models

appear much more suitable and easy to be applied.

In this paper, however, we attempt to go a step further

than a standard application of the optimized gradient boosting

models. Inspired by the essence of what makes GB work well

we propose the target guided binning (TGB) process that trans-

forms all input features into an array of independent AUC-

optimized and robust micro-predictors of the binary target with

which a simple voting can outperform the latest GB variants

both in terms of performance, transparency, data handling

overhead and the processing speed. While binned features

resemble somewhat 0-depth decision trees, they leave TGB

process already AUC-pre-optimized to maximally suppress

unnecessary complexities within the original feature domains

while maximally exposing and summarizing its predictive

power against the known binary target.

Neither optimising with respect to AUC [16], [17] nor

binning [17], [18] is new in the context of classification. Since

the advantages of AUC-optimized classifier design have been

widely exposed [16], there was a fast-paced evolution towards

AUC-optimized classification that eventually culminates with

the advent of CATBoost [17], and the ingenious way it handles

high cardinality categorical data utilising target statistic as

a robust form of feature re-engineering. We build up on

this direction by more explicit target guidance in a form of

predictive binning uniformly applied to both categorical and

numerical features, yet to guard against performance damaging

target-leakage, extensively investigated in [18], we simply
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build the cross-validation process into the binning process.

We intend to comparatively demonstrate the advantages of

the proposed TGB over GB in an objectively evaluated Fed-

CSIS’2023 challenge dedicated to predicting cyber attacks on

IoT devices based on logs data files that the latest GB variants

should perform very well for. We specifically focus on and

optimise TGB for scalability utilizing massive parallelization

of the processing pipeline that can be deployed along multiple

dimensions to approach real-time readiness even for such large

scale problems as the cyber-security attacks prediction. For

that reason we deliberately leave, typically critical, feature en-

gineering aspects unexplored to great depths, instead focusing

on TGB algorithmics and comparative experimentation applied

to only one family of features, that nevertheless produced

excellent results that scored the 2nd place in the competition

after leading throughout the whole preliminary phase.

The remainder of the paper is organized as follows. The

FedCSIS’2023 Challenge is briefly described in Section II. The

critical element of the proposed target guided bining process

along with its fast, massively parallelized implementation are

discussed in Section III. The composition of wide-margin

voting classifier from TGB-binned features that includes im-

portant aspects of feature selection and the evaluation criteria

they use, are covered in Section IV, followed with the descrip-

tion, presentation and discussion of the experimental results in

Section V and the conclusions drawn in Section VI.

II. FEDCSIS’2023 CHALLENGE

The FedCSIS’20231 competition focused on detecting

cyber-security threats based on the behavior of IoT devices

captured in their detailed logs data. Over 20k of log files have

been provided to the competitors, each of which representing

a single data sample of timestamped variable-length sequence

of events capturing specific IoT device interaction/operation

over a fixed period of time. System calls, system and user

processes’ details, lists of open files and libraries, counts

of various events, errors, integrity checks are just some of

24 raw features included in the log files both in numerical

and categorical (text) format. Out of the total 20044 samples

the correct binary target label (ATTACK) was provided for

15027 training samples, leaving the remaining unlabeled 5017

examples for AUC testing on the KnowledgePit.ml platform,

hosting the competition. Before the final evaluation of the sub-

mitted full solutions, i.e. throughout the competition, Knowl-

edgePit.ml operated a leader-board of competitors’ solutions

evaluated based on the preliminary set of unknown 10% of

the full testing set. FedCSIS’2023 Challenge is sponsored by

the Łukasiewicz Research Network - Institute of Innovative

Technologies, EMAG and EFIGO sp. z o.o. companies.

III. TARGET-GUIDED BINNING (TGB)

Given the data examples are provided in a composite form

a variable-length table of time-ordered event features it was

imminent that any kind of feature engineering strategy would

1https://knowledgepit.ml/fedcsis-2023-challenge

involve some form of aggregation over the whole log table

of typically thousands of records. Moreover given relatively

large number of unique values observed for several categorical

features it is expected that potential number of possible derived

features could be large. In an attempt to extract possibly

fullest predictive value form such evidence we decided to

reduce feature engineering to measuring the per-log-frequency

of all observed unique feature values and simultaneously

transform these frequencies into summarized ordinal target-

risk levels monotonically increasing with the target likelihood

conditioned on the intervals or subsets contained within each

risk level. Such predictive TGB transforms all feature space

irrespective of their form or data type into unified, numerically

stable and additive micro-predictors of the target.

Target-guided binning focuses on a single, very simple goal:

how to exploit the guidance of the binary target to bin the

input feature in a way that maximally improves its generalized

predictive power over the target. An objective, scale- and

threshold- invariant measurement of feature predictive power

in binary classification is the area under the receiver-operator

curve (AUC). Denoting by x and y(x) = yx our input variable

and the binary target, respectively, and by AUC(yx, x) the

empirical AUC between yx and x, the target-guided binning

process can be formally defined by the transformation function

T that maps all values of x into xT ∈ {1, 2, .., k} such that

the AUC(yx, xT ) is maximized:

T : xT = T (x, yx), xT = argmax
xT

AUC(yx, xT ) (1)

At the first glance, this task seems trivial given the relation

of AUC and the Wilcoxon-Mann-Whitney statistic [14], [15],

that gives an AUC a simple interpretation of the probability

of a random positive x+ = {xi : y(xi) = 1} being larger than

the random negative x− = {xj : y(xj) = 0}:

AUC(y, x) = P (x+ > x−) (2)

It is trivial to show that to maximize such probability it is

sufficient to simply transform x to the ranking of target rates

along all unique values of x. The recipe for (y) target-guided

binning of x that maximizes AUC(y, x) seems, therefore, to

be just finding unique values of x: xu, computing target rates

yxu for all xu, and replacing x with the positions they appear

in xu sorted by yxu. Assuming Matlab coding syntax, finding

xT becomes straightforward:

[∼,j]=sort(yxu); [∼,xT]=ismember(x,xu(j));

Although such logic is in principle correct it ignores a

fundamental property of a good predictor: the generalization

ability and would likely fail on two accounts. First, the binning

for numerical variable has to provide the mapping for the entire

domain, not just unique values observed in the training set,

otherwise the binning is unable to allocate previously unseen

values of x into any bin. Second, a feature binned as described

above essentially over-fits the observed data with the degree

dependent on the the number of unique inputs xu. In the

extreme case of (almost) all unique values, that is typical

for continuous floating point features, the target rates will be
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extremely unreliable as computed on the basis of just a single

or a few examples and would wildly differ in the unseen testing

set, on which the binning should be designed to perform well.

To address these two cases our target guided binning would

operate on the intervals (subsets) that at all times span the

entire domain (universal set) of numerical (categorical) feature

and attempt to efficiently and optimally define their numbers,

edges (set members) and label-permutation that maximises

AUC, but not over the training data (xu, yxu), on which the

bins are built and merged, but on the previously unseen valida-

tion set (vu, yvu). The bottom-up approach is proposed for our

TGB algorithm, which starts from singleton intervals (subsets)

exclusively covering all unique values xu and then greedily

merge to maximise AUC(yx, xT ) but only until monitored

validation set performance AUC(yv, vT ) starts falling.

A. Massively parallelized TGB implementation

Target guided binning has been developed with extreme

efficiency and scalability in mind. Each feature is binned

independently and in parallel using the same binary target

as a guidance in such a way that the AUC score of its

binned representation against the target is maximized in a

generalization sense, i.e. AUC is measured via cross-validation

on different data partitions than those on which the bin

definitions were built.

TGB starts from building singleton intervals (or subsets

for categorical features) containing all unique values and

reordering them along the rising likelihood of positive target.

Then the intervals/subsets proceed to greedy merger process

which continues until no further gain in validation AUC can

be achieved through further mergers. Figure 1 illustrates a

sample TGB process for numerical feature which starts from

individual singleton intervals and then proceeds through the

greedy neigboring interval merger until no more validation

AUC improvement is possible, which in the depicted sample

scenario converges to 6 intervals. The AUC-optimized inter-

vals are then mapped to ordinal bin labels calibrated or scaled

according to user preferences yet always monotonic with

the conditional positive target rate. Feature 1 also illustrates

readiness for massively parallelized implementation of the

TGB process which could be efforlessly applied along the

feature level, cross-validation partitions or testing for optimal

merger along running pairs of neighboring intervals.

The missing data (NaNs) are mapped to a bin that has the

closest posterior target probability as the one observed for

missing data. Similarly previously unseen data are provisioned

to receive bin that has the target posterior probability the

closest to the target prior. Greedy interval merger follows

very fast vectorized test of the impact of the decomposed

AUC score implemented on matrix formulation that allows

to compute all simulated pairs merger in a single step per

round resulting in tabular formatted bin definitions mapping all

original feature domain into optimised incrementally summa-

rized intervals/subsets labelled with target-monotonic ordinal

risk levels. Given the final bin definitions, transforming any

new data into bins is equally lightning fast and, importantly,

represented by uint8 data type reducing the binned data

complexity to just 1 byte per value. Compared to the original

data typically coming in double precision or text format, TGB

typically reduces the size of the memory required to hold the

data around 100-fold, while obfuscating the original values

behind ordinal risk mask.

IV. WIDE-MARGIN VOTING CLASSIFIER COMPOSITION

Constructing a robust classifier based on TGB-transformed

(binned) data is straightforward and in its simplest form can

be executed by a simple voting i.e. by adding up all feature bin

values (risk votes). Further AUC-measured performance gains

can be achieved by more or less sophisticated feature selection

strategies, which for the voting classifier simply translates into

finding a sum of binned features that maximises AUC against

the binary target. Two highly scalable heuristic optimisation

methods have been developed to execute such robust additive

selection of binned features and both can deal with hundreds

of thousands of features in seconds if supported by multi-core

parallel processing and/or dedicated capable GPU.

A. Greedy forward selection (GFS)

Greedy forward selection of binned features starts from the

strongest feature and keeps adding features that maximally

improve the appended sum’s AUC against the target in each

round until this is no longer possible. The process of testing

for optimal addition is fast since the current best subset is

constantly retained in the form of collapsed running sum and

stored indices of selected members, while testing the AUC

improvement when adding another binned feature is vectorized

and massively parallelized with additional speedups possible

when executed on the GPU. In practical applications, when

faced with tens to hundreds of thousands of features, each

round of finding a binned feature that maximally improves

the pool’s AUC usually takes around 1s. In the latest imple-

mentation this greedy search was additionally improved by

reducing the data type of vectors holding the sums to uint16

and allowing each feature to be added multiple times - thereby

equipping the method with a fast feature weighting capability.

B. Fast probability based incremental learning (FPBIL)

Probability based incremental learning (PBIL) is a simple

population based heuristic optimization that is perfectly suited

for simple evaluation functions based on binary encoded

feature selection. Beyond that fit, PBIL has been chosen to

help with feature selection also for two other reasons. Its

critical operation is constant sampling from the probability

vector that involves generation of random number matrices

of enormous sizes that can be massively accelerated on the

GPU. Moreover, evaluation of the population of solutions at

each generation involves preparation of the intermediate voting

sums corresponding to binarized selection vectors sampled

from the evolving probability vector, all of which has been

very efficiently vectorized and passed on to equally optimized

and parallelized evaluation of the AUC. Operating such PBIL

on the GPU with the Philox based random number generator
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Fig. 1. An annotated example of the target guided binning (TGB) for numerical feature x. In the orginal domain (− inf,+ inf) first all unique values:
{x1 : xn} are found and wrapped within singleton intervals: (− inf : x1], (x1, x2], .., (xn : + inf). Then neigboring intervals are greedily merged along
multiple cross-validation partitions until the validation sets AUC against the target no longer improves leaving the final optimised intervals ordinally labelled
to represent target-monotonic risk levels. The process is ready for massive parallelization along multiple dimensions: independent features, cross-validation
partitions and the neigboring pairs of intervals examination for optimal merger. Distinct colors are representing the conditional target rate heatmap and the
effect of its aggregation after mergers.

on a population of 1000 100k-elements solutions with a

learning rate of 0.5-1 typically converges after a couple of

hundreds of generations at the pace of multiple generations

per second. Compared to the greedy forward selection which

normally converges with up to 200 out of 100k features,

accelerated PBIL-based selection converges with thousands of

features and typically better AUC-score

C. Criteria for feature selection evaluation

Ideal evaluation criterion for feature selection is the actual

classifier performance for the selected features. The only

reason why much simpler proxy measures are normally used

is that evaluating the classifier with different set of features is

expensive and normally requires a rebuilt of the whole model

from scratch to extract new classifier output. For our case,

however, the voting classifier only needs to add the newly

selected feature values to the cumulative sum from features
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already in the pool to update the classifier output, hence it

follows an online update process and is therefore very fast.

For this reason TGB with voting enables us to use directly

the powerful threshold independent classifier performance

measures like AUC as a feature selection criterion which

supports classifier robustness while keeping it simple and fast.

1) Area under the ROC curve (AUC): AUC measure has

already been discussed above as the prime threshold-less

indicator of the overall predictive power of a feature x against

the binary target y. In the context of target guided binning

for the reason of being AUC-optimized and also due to the

fact that computing AUC for binned features likely involves

fewer unique bin-label ordinal values, we have introduced

a dedicated summarized representation of the relationship

between x and y for the purpose of AUC computation called

feature predictive structure P = [u, c, v] that contains a sorted

list u of unique values of x, and the corresponding lists of

their counts c as well as the counts of the positive targets

v =
∑

(y|x). For simplicity we will replace the original

x and y with their summarized representation in P such

that P = [x, c, y]. Note that such summarized representation

significantly reduces the sizes of both the feature x with

respect to the target y down to the essential statistics sufficient

to evaluate its full predictive power. Given P , the cumulative

true and false positive vectors can be readily computed for

multiple features or targets by this vectorized Matlab code:

tp=[0;cumsum(flipud(y))];

fp=bsxfun(@minus,[0;cumsum(flipud(c))],tp);

tp=bsxfun(@rdivide,tp,sum(y));

fp=bsxfun(@rdivide,fp,sum(y));

such that the AUC can be accurately and rapidly computed

for multiple features or targets using a 1-liner:

auc=sum(diff(fp).*(tp(1:end-1,:)+tp(2:end,:))/2);

2) Kolmogorov-Smirnov Distance (KSD): Kolmogorov-

Smirnov distance, test or statistic in our context expresses

simply the maximum absolute difference between the cu-

mulative rate of positive targets and the cumulative rate of

negative examples along the sorted unique inputs x. Given

our compact predictive structure P = [x, c, y] KSD can be

rapidly computed for multiple inputs/targets using:

y=cumsum(y); s=y(end); c=cumsum(c)-y; n=c(end)-s;

ksd=bsxfun(@rdivide,y,s)-bsxfun(@rdivide,c,n);

ksd=max(abs(ksd));

3) Classification Impurity Score (CIS): This new measure

utilizes the specificity of working with binned feature votes

and is designed to stimulate stable wide margin classifier espe-

cially for very high performance close to AUC=1. The measure

works on the sorted predictor outputs (sums of bin votes) and

focuses on the interval, within which samples are not classified

100% correctly. For every sample falling within this interval

it then simply adds up distances between the prediction (sum)

for these samples and the interval boundary that if reached

would eliminate the misclassification for any threshold. Since

our voting classifier simply holds the sum of selected binned

features, the logic of this measure is to evaluate how many

votes need to be added (for false negative) to or subtracted

(for false positive) from the current sum of votes such that

the sample would be correctly classified irrespective of the

applied threshold. Formally, assuming sorted classifier outputs

xi, i = 1, .., n, the corresponding binary targets yi and the

interval of indices j = k, .., l such that 1 ≤ k < l ≤ n and

∀
s:xs≤xk

ys = 0

∀
s:xs≥xl

ys = 1
(3)

then the CIS can be defined by:

CSI =
∑

j

(xl − xj)yj +
∑

j

(xj − xk)ȳj (4)

Using Matlab code the above definition can be readily

captured as follows:

i=find(x<x(find(y,1,’first’)),1,’last’);

if isempty(i) i=1; end

j=find(x>x(find(˜y,1,’last’)),1,’first’);

if isempty(j) j=numel(x); end

l=i:j;

cis=sum(x(j)-x(l(y(l)))) + sum(x(l(˜y(l)))-x(i));

Note that in case of 100% accurate classification the im-

purity measure could be adjusted to receive negative values

proportional to the gaps or margins in votes that needed to be

bridged to observe classification impurity, hence such measure

can be very effective for very high performance wide-margin

classification with AUC scores very close to 1, which happens

to be the case of the FedCSIS’ 2023 Challenge.

V. EXPERIMENTAL RESULTS

All features have been generated in the exactly same form

capturing the frequency (counts) of unique values observed

within the log files. For the datetime and other continuous

numerical variables the domain has been split into 100 equi-

percentile intervals and the derived features measured de-

facto frequencies of observed percentile values. For features

listing all open filenames and libraries with paths the two

variants of unique elements were applied: the whole unique

paths separated by commas and, in the second variant, all the

unique path sub-strings separated by \ character. Such feature

engineering process resulted in over 300k 1-hot-encoded style

features that after reduction by eliminating duplicates and

constant features shrunk to a set of about 40k of unique raw

features. These features have then been passed on to the TGB

process allowing up to 20 (and later 100) unique bins applied

only on the training set of 15027 labelled samples and resulted

with bin definitions re-applied on both the training and testing

sets to achieve the final transformed training and testing sets

taking ordinal values from 1 to 20 (100).

Feature selection process followed on the binned training set

in all combinations of the presented feature selection methods

and evaluation metrics, however, we only show the results for

AUC and CIS since KSD produced the results similar to AUC.

The feature subset sums obtained as a result of all the

selection-evaluation combinations along with outputs from

many other variants of restricted feature subsets and gradient
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boosting models applied for comparison have been normalized

within (0,1) interval and submitted for evaluation on the pre-

liminary testing set containing only 10% of all testing samples.

The feedback received was in line with the results received

from the validation sets with the top scored model variants,

notably achieving leaderboard’s top AUC=1.0 submitted as

final solutions for the evaluation on the full testing set.

Comparative AUC performance results of our target guided

binning (TGB) with gradient boosting (GB) variants classifiers

and various combinations of feature-selection and evaluation

criteria are presented in Table I. For both the training and

validation sets we have observed GFS performing slightly

better with AUC than CIS criterion however the opposite was

observed for FPBIL selection method. The FPBIL applied

with CIS metric typically returned solutions of a couple of

thousands of features with the final converged impurities of

just about 50-500, while starting from impurities in the order

of millions. On the other hand the GFS typically converged

with about only 100-200 features, for which the added score

produced the AUC reaching extremely close to 1. What

produced the best results, however, was sequentially applied

GFS interchangeably with AUC and CIS criteria, until no

further improvement in the validation AUC could be achieved.

Although results for 100-bin TGB appear to show slightly

better validation results than for TGB with up to 20 bins, final

testing revealed later that 20-bin TGB could have performed

better, i.e. 100-bin TGB appeared to be slightly over-fitted with

too fine granularity and the best results could be expected

somewhere in between for example 50-bin TGB. Although

in our validation TGB on its own i.e. with simple voting

outperforms all GB model variants, final testing revealed that

CATBoost could climb to similar performance levels if applied

on top of the 20-binned rather than raw features and could

most likely have improved our final combined testing score

thanks to a significant diversity with TGB-generated results.

TABLE I
COMPARATIVE PERFORMANCE OF GB/TGB VARIANTS COMBINED WITH

DIFFERENT FEATURE SELECTION/EVALUATION CRITERIA.

AUC Score

Classifier FSelection Criterion VAL TST

XGBoost ALL-LogLoss 0.9992 0.9980

LGBM ALL-LogLoss 0.9967 0.9954

CATBoost ALL-LogLoss 0.9994 0.9983

TGB20-SUM

GFS AUC 0.9996 0.9985
GFS CIS 0.9994 0.9982

FPBIL AUC 0.9992 0.9981
FPBIL CIS 0.9994 0.9983
GFS AUC-CIS 0.9997 0.9991

TGB100-SUM
GFS AUC-CIS 0.9997 0.9989

FPBIL CIS 0.9998 0.9979

XGB-BIN20 ALL-LogLoss 0.9992 0.9985
CATBoost-BIN20 ALL-LogLoss 0.9994 0.9993

MEAN(TOP5(TGB)) NA 1 0.9997

VI. CONCLUSION

Presented target guided binning rapidly transforms any input

evidence into a robust array of 1-feature micro-predictors of

the binary target and offers readily available, high quality

classification by voting with ordinal-risk represented binned

feature outputs in near-real time. Further performance gains

are available through fast parallelized gready feature selection

and gpu-optimized FPBIL features selection methods utilizing

both AUC and newly introduced CIS as evaluation criterion

to achieve stable high margin perfomance. In the competitive

setup of detecting cyber-security attacks on the IoT devices

based on log files data the presented methodology appears to

consistently beat gradient boosting models in all aspects: the

speed of building the model, the classification performance,

simplicity, transparency and added security layer, topping

the preliminary evaluation on the leader-board of the FedC-

SIS’2023 Challenge with the score of AUC=1 and eventually

scoring the 2nd place with AUC=0.9997 in the final testing.
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