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Abstract—In Numerical Weather Prediction (NWP) models we
need to model the dynamics of the atmosphere and the physical
variables that take place in a moment. In grid point models
the temporal evolution of the model variables are calculated
in a 3D grid which covers the atmosphere from the surface
up to the model top. NWP models include two import routine
namely Runge-Kutta method and microphysics scheme WSM6.
This paper describes advances in the performance of the Runge-
Kutta method and WSM6 microphysics by exploiting multi-level
parallelism using CUDA-based GPU on hybrid parallel platform.
We applied pipeline parallelism technique, workload balancing
and asynchronous data exchange strategy each demonstrating be
useful to improve performance. Our experiments show that the
solution is scalable. We also realized an analysis of the accuracy
of our implementation with good results.

Index Terms—Runge-Kutta Method, WSM6 microphysics, Hy-
brid Parallel Algorithms, Multi-GPU Algorithms, High perfor-
mance Computing

I. INTRODUCTION

WEATHER prediction systems assess atmospheric
changes. They have diverse uses, from aiding agri-

culture, aviation, navigation, to assisting in natural disaster
prevention. Weather prediction, a complex system, requires
modeling atmospheric dynamics and physical variables such
as pressure, temperature, wind, water vapor, clouds, and
precipitation. Outputs typically include future temperature,
humidity, and rainfall based on initial conditions. Some small-
scale processes, like cloud formation, which can’t be resolved
numerically, are incorporated into models through parameter-
ization schemes.

There are several numerical prediction systems based on sets
of physics-based equations which weather can be predicted
from atmospheric data as temperature, radiation, air pressure,
wind speed, wind direction, humidity, and rainfall, and how
they behave in the atmosphere [1], [2].

Among them, Model for Prediction Across Scales
(MPAS) [3], Global/Regional Assimilation and PrEdiction
System (GRAPES) [4] and Weather Research Forecasting
(WRF) model [5] are popular tools used for both research
and operational purposes. The Runge-Kutta third order method
(RK3), used to time integration, and the Single-Moment 6-
Class Micro-physics (WSM6), which calculates several hy-
drometeors variables, are tasks present in important models

of weather prediction. Moreover, they are the most time-
consuming tasks in a weather forecasting system.

The main goal of this paper is to present some enhancement
for the RK3 and for the WSM6 using multi-level parallelism
and pipelining on hybrid parallel platform. Our tests show
that we achieved speedup ranging from 10 to 39 for the RK3
and from 5 to 26 for the WSM6 when compared to a 12-
thread CPU. The pipelining and asynchronous data exchange
strategies improved the runtime by up to 37%.

II. BACKGROUND AND RELATED WORKS

There are several works that implement RK3 method and
the WSM6 using parallel platforms. Korch and Rauber [6]
investigated the RK3 method They compare the RK3 imple-
mentation using MPI, Pthreads and Java on Sun SMP and
on Cray T3E. The speedup ranged from 3 to 10 with 8
processors. The authors of [7] show an enhancing of twelve-
fold of a CUDA RK4 implementation on a Tesla compared to
an OpenMP implementation. Murray [8] describes an OpenMP
RK4 implementation for physics simulation that achieved a
speedup of 2 on a 4-core CPU. Wo et all [9] achieve a
speedup of 2 on a Geforce GT450M. The authors of [10]
achieved a gain of 45 times on 2x Xeon Phi versus the same
implementation using OpenMP on 2x Intel Xeon.

An implementation of WSM6 on CUDA [11] obtained a
speedup of up to 246 using a K40 GPU and up to 295 using
two GPUs when compared to a single-threaded CPU. Kim et

al [12] implemented the WSM6 using OpenACC for Model
for Prediction Across Scales (MPAS) [1]. They achieved a
speedup of 5.7 running on a V100 GPU compared to a multi-
thread version executed on 48 CPUs. More recently, Silva et

al [13] improved those results and reached speedup of 371
using four V100 GPUs compared to single-thread CPU e 108
fold compared to 24-thread CPU.

III. WEATHER PREDICTION: RK3 AND WSM6

The dynamic core of an NWP is responsible for discretiza-
tion in space. Variables such as temperature, pressure, wind,
humidity are time integrated by this dynamic core model. RK3
method is responsible for this time integration. However, many
processes cannot be spatially discretized. Therefore, these pro-
cesses are parameterized in terms of other variables available

Proceedings of the 18
th Conference on Computer

Science and Intelligence Systems pp. 1137–1141
DOI: 10.15439/2023F7199

ISSN 2300-5963 ACSIS, Vol. 35

IEEE Catalog Number: CFP2385N-ART ©2023, PTI 1137 Thematic track: Scalable Computing



in the a model time-step state. Among these processes is the
microphysics scheme.

The equations of the Runge-Kutta are formulated using the
pressure vertical coordinate η = (Pp − Pht)/µ, where µ =
(Phs −Pht), Pp is the hydrostatic component of the pressure,
Phs and Pht are representing the pressure at surface and top
boundaries. The transport equations in the flux form can be
written as:

∂µdφ

∂t
= −∇η · µdvh −

∂µdωφ

∂η
(1)

The quantity µd is the mass of the dry-air column (between the
bottom and the top of the atmosphere for a vertical coordinate
of mass type s = [πd − (π)t]/µd, with µd = ∂πd/∂s.
Moreover, vh = (u, v, ω), which is the zonal, meridional and
covariant vertical velocities, respectively. φ = (u, v, w, θ, qm),
where w is the vertical movement, θ is the potential temper-
ature, and qm represents the scalar quantities, such as water
vapor, hydrometeors and aerosol mixing ratio.

The WRF use third order Runge-Kutta for temporally dis-
cretized [14], which can be described by the equations:
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−
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∗∗
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(4)

where Φ = µdφ.
Now, the WSM6 scheme is based on six classes of cloud

particles: water droplets, ice crystals, snow, hail, aggregates of
ice crystals, and raindrops. In an NWP system, the WSM6 is
a module that is coupled with other parameterization schemes
which are described by differential equations that can be seen
in more detail by Hong et al [15]. The WSM6 also considers
the interactions between the different classes of hydrometeors.

IV. HYBRID PARALLEL PLATFORM

A Hybrid Parallel platform consists of a set of computer
nodes which each node has a multi-core CPU and a many-core
GPU. Each CPU as well GPU in the set can be heterogeneous.
Under this model, we use MPI [16] to dispatch two threads
by nodes using massage passing. One of them containing
the code that will be executed on the multi-core CPU using
OpenMP [17] and another thread containing CUDA [18] code
that will be executed on GPU.

V. MULTI-LEVEL PARALLELISM

Our weather model enables to use various levels of par-
allelism. The first level employs the MPI for coordinating
various computer nodes. This level helps the task distribution
across several nodes and their intercommunication, allowing
concurrent execution of tasks. The second level is the division
of tasks between different CPUs using shared memory. The
last level is the use of CUDA-based GPUs to accelerate the

processing. Each GPU executes the pipeline, which allows the
model to run faster and more efficiently.

In our implementation of the method RK3 on CUDA, we
performed a reorganization of the original code due to the dif-
ferent features between the Fortran compiler and CUDA. The
first step in the implementation process involved consolidating
all the subroutines into a single subroutine. The main goal of
this initial stage is to identify sections that can be optimized
and subsequently translated into CUDA. This strategy also
helps avoid unnecessary copying of data from the CPU to the
GPU. Besides, the consolidation of subroutines contributes to
reducing the number of kernel calls.

Our CUDA WSM6 employs parallel optimization tech-
niques similar to those used in the RK3. However, there is a
distinction between the two implementations: WSM6 exhibits
lower dependency on its operations. This feature enables the
WSM6 to be executed in parallel over different portions of the
data. We leverage this inherent characteristic of microphysics
scheme to execute multiple WSM6 kernels simultaneously.
This facilitates a better workload balance, improving distri-
bution of tasks. Moreover, we distribute a workload to each
node proportionally to its computational power.

A. Parallel Runge-Kutta

Take as input a grid of nx×ny×nz of points which are the
starting points of RK3, a function f ′(x, y) and a timestamp h.
Moreover, it is given the computational power of each node
and an integer N representing the total number of steps.

1. - Let Tf be the total of Gflops of the platform and let Ti

be the computational power of the compute node i. Send
to node i (nz ∗ zy ∗ nz) ∗ ( Ti

Tf
) points.

2. - If node i is a CPU then perform the following steps:

2.1. Suppose we have t threads so that each thread com-
putes ((nz ∗ zy ∗ nz) ∗ (T i/Tf ))/t elements:
Compute the new x and y based on Eq. 2, 3, and 4.

3. - If node i is a GPU then perform the following steps:

3.1. Let v be an array of points attributed to i. Transfer
array v to global memory of the device.

3.2. Invoke the kernel RK3 with ((k1 + k2 + 4k3)/6)/32
blocks and 32 threads per block.

3.3. Set e = blockIdx.x ∗ blockDim.x+ threadIdx.x;
3.4. For ni from 0 to N − 1 do:

Compute the new x and y based on Eq. 2, 3, and 4.

B. Parallel WSM6

We developed the CUDA WSM6 to support multi-level
parallelism and pipelining. Each equation responsible for
calculating the transition from one hydrometeor to another (as
described in details by [15]) can to be computed in parallel.

Let p be a partition of the domain points with x × y × z
points according to Fig. 1.

1. For i = 0 to x, do:

1.1. Let the set of blocks B = (b0, b1...by) be such that
each bi ∈ B has z threads.
Each thread t ∈ bi computes the hydrometeors droplets
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Fig. 1. GPU memory access of the M(k, i): (A) GPU blocks organized in
two dimensions; (B) Matrix M(k, i), (C) A threads block of the (A) where
each block thread accesses the matrix den with coalesced memory access.

(qc), ice particles (qi), rain droplet (qr), snow crystal
(qs), graupel (qg) and water vapor (qv) as folows:
Let k be the thread index and j the block index.
For each (qc, qi, qr, qs, qg, qv) in p(k, i, j) compute the
transition considering the variables of that point.

VI. PIPELINE PARALLEL

Pipelining is extensively utilized by hardware designers.
Enhancement is accomplished by dividing each processed
instruction into multiple stages. Below we describe how we
apply the pipeline technique at the software layer, where the
domain to be computed on the GPU is divided into partitions.
Each partition represents a stage, allowing parallel processing.

We note that there are two main tasks of system working
alternately, namely the dynamic RK3 and the microphysics
WSM6. Each task is implemented in a different kernel. In this
approach, as soon as a kernel finishes its job another kernel is
launched. Hence, during some time the GPU is idle or wasting
time with data exchange and, as result, reducing efficiency.

Firstly we identify data used by both RK3 and WSM6
and that may remain within the GPU memory during two
consecutive call of different kernels avoiding data exchange.

Additionally, we noted that the idle GPU is the most
important bottleneck to achieve better performance. To solve
this problem the pipeline parallelism could be a interesting
strategy. So, each part of the domain attributed to a GPU is
divided into small partitions such that can be processed in
parallel by the pipeline stages. Once a stage completes the
WSM6 processing for its partition, that partition can start the
task RK3 on it corresponding to the next stage in the pipeline.
Similarly, as the next stage completes its RK3 processing for
its partition it starts the WSM6 processing.

Each GPU executes its own pipeline independently. For
clarity of presentation let us assume we have a two-stage
pipeline. In this version we split the domain points given as

input in two partitions p1 and p2: The RK3’s and WSM6’s
kernels were implemented in such a way as to allow splitting
the entry points into two partitions. Thus, we are able to
execute RK3 with input p2, while simultaneously, on the same
GPU, we execute WSM6 with input p2.

VII. MULTI-STAGES PIPELINE RK3 WSM6

Using the same ideas of the previous section we may
divide the domain in n blocks. Hence, we can generalize the
pipelining for 2n stages considering n partitions of points.

Fig. 2. GPU Memory access of the M(x, y, z): The thread (x, y, z) accesses
the rank (x, y, z) of the M such that if the rank in the global memory of the
element (x, y, z) is m, the rank of the element (x+ 1,y, z) will be m+1.

The second step in implementing involves properly model-
ing the data structures to ensure coalesced access to the GPU’s
memory. This step is performed both in loops operating on
three-dimensional (3D) portions of the domain and in two-
dimensional (2D) portions. The way to map threads and blocks
depends on the type of loop and its interaction with the data
structure. In general, the structures are mapped as follows.

For 3D loops, threads in a block are mapped to a contiguous
subset of elements in a specific dimension as can be seen in
Figure 2, blocks are mapped to different portions of the 3D
domain and for 2D loops, threads in a block are mapped to a
contiguous rectangular region of the data in two dimensions,
blocks are mapped to different sections of the 2D domain. The
goal is to maximize coalesced access to the GPU’s memory,
allowing threads to simultaneously access data, taking advan-
tage of the CUDA architecture.

We employed an optimization involving the use of constant
memory and texture memory to variables and small arrays
that remain constant during the execution. By storing these
constant values in dedicated memory, we can benefit from
their optimized access and reduce the memory traffic.

Shared memory is a valuable resource on GPUs. It is notably
more limited than GPU global memory and is visible to threads
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within the same block. Due to this feature, we chose to rub
this implementation with a configuration that prioritizes a
wider cache over shared memory. Shared memory is firstly
used for some loops that allow for blocking optimizations.
Moreover, it is used to store some intermediate results and,
when possible, loop invariants. This strategy maximizes the
efficiency of shared memory utilization.

Our second implemented optimization is loop fusion. Since
loops often iterate over the same data, they can be combined
into a single loop without compromising the accuracy, depend-
ing on the operation. Along with loop fusion, we also strive
to organize memory accesses to the same structure as closely
as possible in the code whenever feasible.

Another optimization we used involved rewriting code
snippets related to floating-point operations. It’s important to
exercise caution when applying this type of optimization to
avoid introducing discrepancies between the CPU and GPU
code. Taking care, we ensure that our CUDA implementation
is both accurate and efficient.

Our last optimization creates a pipeline that splits RK3
processing into up to four stages. It works as follows: initially,
a CPU thread is assigned for each stage and a master thread
oversees operations. At the start, all threads are blocked. The
master selects the thread responsible for processing the initial
data and enters a busy-wait state. Once the kernel signals that
more data can be processed, the master unblocks a thread. This
process continues until no CPU threads are blocked. When a
thread finish, it chooses a new data block and blocks itself,
waiting for the master to unblock it.

A. WSM6-RK3-Pipeline

The joint execution of the RK3 pipeline and the multi-
kernel implementation of WSM6 enables the creation of an
integrated pipeline that performs the combined computation
of both tasks. This implementation resembles the thread man-
agement described in the RK3 pipeline. Each of these stages
is assigned to a thread on CPU. This mechanism has a similar
principle to the RK3 pipeline. This case requires monitoring
two distinct CUDA streams, one for RK3 and another for
WSM6. Moreover, it is crucial to check for dependencies
that arise between the stages of WSM6, thus ensuring proper
synchronization between stages.

VIII. EXPERIMENTAL RESULTS

We performed a two-domains WRF simulation for March
4th of 2021, starting at 00UTC with duration of 12h. See
Fig. 3 for details. The set of physical parameterization used
in the simulation was: (a) WSM6 microphysics [15]; (b)
longwave and (c) shortwave radiation schemes of Community
Atmospheric Model 3 (CAM) [19]; (d) planetary boundary
layer scheme of Yonsei University [20]; and, (e) Kain-Fritsch
for cumulus parametrization [21].

A. Experiments

In our tests we first measured the time of the RK3 and
WSM6 separately. After that, we measured the overall system
performance considering both the stages.

Fig. 3. Domains of the WRF simulation with 12 km of horizontal resolution:
X-axis and Y-axis represent latitude and longitude, respectively. The 4 km
horizontal resolution domain is represented by the highlighted square in the
center of the 12-km resolution domain. The model is set to 34 vertical levels.
Colors represent the vertical levels sum for qc, qi, qr, qs and qg .

TABLE I
TIME AND ACCELERATION OF THE RK3 AND WSM6

RK3 WSM6 WRF
Hardware time(s) speedup time(s) speedup Total
12-thread-CPU 1335 - 2956 - 6156
1xP100 125 10.2 520 5.6 2857
1xP100+1xk80 96 13.9 436 6.7 2532
1xP100+2xk80 77 17.3 280 10.5 2410
2xP100 71 18.8 225 13.1 2337
1xP100+4xk80 53 25.2 169 17.4 2009
2xP100+4xk80 34 39.3 112 26.3 1776

With the CUDA-RK3, we achieved a speedup of 10.6 using
one GPU P100 and 39.2 using 2x P100 + 4x k80 when
compared to 12 thread version (see Table I). we also see
the run-time and speedup of the CUDA-WSM6. We achieved
speedups ranging from 5.6 on one GPU P100 to 26.3 on the
2x P100 + 4xk80 set. We note we obtained increasing speedup
consistently with the growth of computational power.

TABLE II
TIME (IN SECONDS) OF THE RK3+WSM6 WITH PIPELINE STAGES

stages RK3+WSM6 1 2 4 8 16
12-Thread-CPU 6156 6156 6156 6156 6156
1x P100 3023 2802 2525 2420 2318
1x P100 + 1xk80 2736 2445 2212 2116 2048
1x P100 + 2xk80 2614 2343 2114 2022 1979
2x P100 2535 2214 1998 1911 1828
1x P100 + 4xk80 2213 1892 1707 1633 1502
2x P100 + 4xk80 1980 1698 1523 1463 1448

Table II show the overall performance when we increase
the computational power(in each column). Besides, we notice
the time gain when varying the number of pipeline stages.

Besides we apply the technique of overlapping transfer and
processing through the use of asynchronous transfers. This
enabled performance gains as can be seen in the Table III.
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TABLE III
TIME (IN SECONDS) OF THE WSM6+RK3 WITH OVERLAPPING

stages RK3+WSM6 1 2 4 8 16
Ryzen 1600 12 Ths 6156 6156 6156 6156 6156
1x P100 2857 2613 2315 2216 2079
1x P100 + 1xk80 2532 2242 2009 1913 1844
1x P100 + 2xk80 2410 2140 1909 1818 1774
2x P100 2337 2014 1869 1728 1612
1x P100 + 4xk80 2009 1690 1502 1430 1300
2x P100 + 4xk80 1776 1493 1319 1260 1246

Implementation
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Fig. 4. Runtime of the implementation on platform 2xP100 + 4xK80.

Fig. 4 show the result using our load balance heuristic. We
see that with each new device added, we have a performance
gain nearly proportional to the increase in computational
power, so that our implementation proves to be scalable.

B. Accuracy Analysis

Fig. 5. The bias of the vertical profile in relation to the CPU simulation for
mixing ratio of rain droplets (qr) and ice particles (qi) from 00UTC on March
4th to 00UTC on March 6th, 2021. The x-axis is in g kg−1 and the y-axis is
in σ vertical coordinate. The blue and red markers are related GPU arithmetic
optimizations off and GPU arithmetic optimization on, respectively.

To measure the accuracy of our GPU implementation, we
used the results of the CPU implementation as a reference and
analyzed the deviations of the GPU solution. We examined the
results of the solution with the configuration 2xP100+4xK80.

The Fig. 5 show the time biases. We illustrate the output
hydrometeors ice particles and rain droplets to compare the
optimization levels. We can note a deviation between the GPU
and the CPU implementation. We analyzed a version of the

GPU implementation with enabled optimizations and another
without optimizations. Note that when these optimizations
are disabled, the deviation from the CPU implementation
is negligible. When they are enabled, some points show a
reasonable deviation compared to the CPU.
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