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Abstract—The proliferation of digital artifacts with various
computing capabilities, along with the emergence of edge com-
puting, offers new possibilities for the development of Machine
Learning solutions. These new possibilities have led to the
popularity of Federated Learning (FL). While there are many
existing works focusing on various aspects of the FL process, the
issue of the effective problem diagnosis in FL systems remains
largely unexplored. In this work, we have set out to artificially
simulate the training process of four selected approaches to FL
topology and compare their resulting performance. After noticing
concerning disturbances throughout their training process, we
have successfully identified their source as the problem of ex-
ploding gradients. We have then made modifications to the model
structure and analyzed the new results. Finally, we have proposed
continuous monitoring of the FL training process through the
local computation of a selected metric.

I. INTRODUCTION

F
EDERATED Learning (FL, [1], [2]) is a relatively novel

approach to Distributed Machine Learning (DML). It

allows a system to take full advantage of the data locality and

computing power of distributed devices. In a standard scenario,

the goal is to train a global model using local models trained

by the clients on their local data. Clients periodically send

parameter updates to an aggregator node. The new version of

the global model is established, communicated back to clients

and the process repeats until stopping criteria are met.

Currently, a common way to prepare for an FL training

process begins with the centralized construction and training

of an initial ML model. This preliminary phase allows the de-

veloper to utilize a plethora of already established techniques

in order to develop the best ML solution possible. The data

preprocessing steps, architecture and hyperparameters from

that solution are then used as a basis for the local models

trained by the FL clients. However, this approach also relies on

the existence of a global dataset with a distribution and format

that sufficiently resembles that of the client data. This global

dataset may sometimes be impossible to create due to the client

data being very localized, client-specific and inaccessible be-

cause of privacy concerns. Of course, such a model can also be

developed as an FL model from scratch by conducting multiple

The work of Karolina Bogacka and Anastasiya Danilenka was funded
in part by the Centre for Priority Research Area Artificial Intelligence and
Robotics of Warsaw University of Technology within the Excellence Initiative:
Research University (IDUB) programme.

FL training runs and selecting the best performing training

parameters and architectures. Unfortunately, the diagnosis of

problems such as vanishing or exploding gradients based

on the learning curve would necessarily be hindered by the

existence of other destructive factors, like client dropout and

differing local data distributions. The development of the

final model would therefore necessitate a large number of

completed FL training processes and as such be both very

resource and time consuming.

Additionally, many current research trends in FL result in

solutions that may undergo a very different training process

from the centralized baseline. For example, a common goal of

trying to achieve scalability while preserving the stability of

the training is often mitigated through the appropriate choice

of topology. Here, topology refers to the network topology of

the FL system, which indicates how clients communicate with

the server and with each other [3]. The additional communica-

tion on the global and local level may cause the training curve

to undergo periodic spikes and drops in accuracy, which can

then be hard to distinguish from other ML problems.

We have encountered the problems mentioned above

throughout our work on the Assist-IoT project 1. We were

conducting tests in order to select the FL topology best

suited to use in the Assist-IoT project in the pilots focusing

on: (1) construction workers’ health and safety assurance,

(2) vehicle exterior condition inspection [4]. The purpose of

the FL solution was effective fall detection of construction

workers in the case of (1) and automatic vehicle damage

detection in the case of (2). In an effort to determine the

best topology for the aforementioned use cases, we have

analyzed different approaches to the problem [5] and selected

4 most “promising” and representative to further test their

behaviour. Our experiments have revealed concerning insta-

bilities in the training processes of some of them. Through

additional trials and further examination of the existing result,

we have identified the source of the problem as exploding

gradients. The problem of exploding gradients here describes

a situation in which the gradient backpropagated through a

neural network grows exponentially during training, causing

the neural network performance to stall or even deteriorate [6].

1https://assist-iot.eu
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We have then modified the hyperparameters to avoid this

problem and achieve better results. We would like to share

our process as a case study, finishing it with a proposal of an

additional procedure that could enable easier identification of

the exploding gradient problem in FL systems.

II. RELATED WORKS

A. The state of FL diagnostic tools

There are few existing works concerning the design and de-

velopment of FL diagnostic tools. Some of them focus on sys-

tem monitoring through the identification of badly-performing

clients while maintaining security and privacy [7] [8]. This

approach to diagnostics is appropriate for FL systems, how-

ever, it is often unable to sufficiently recognize any problems

stemming from the model architecture or training configura-

tion. The most comprehensive attempt at providing systematic

problem diagnosis for FL, FedDebug, offers the possibility

of setting breakpoints and replaying previous rounds through

a continuous collection of metrics, such as response time,

training and validation loss as well as other performance indi-

cators. Those metrics are then used to construct a simulation

of the training, which enables easier identification of a faulty

client. Despite the narrow focus of this solution, the broad

functionalities of the system should be easily extended to other

problems [9].

One of the rare works to not focus on finding underperform-

ing clients but on mitigating issues concerning FL models is

Fed-DNN-Debugger [10]. It consists of two modules: one is

responsible for nonintrusive metadata capture (NIMC), which

produces data that is then used for automated neural network

model debugging (ANNMD). Local models are then repaired

through retraining on specially selected samples. However,

its main focus lies in training bugs, which are caused by

misconducted training processes, such as biased data, noisy

data or insufficient training. It does not enable easy identifica-

tion of structure bugs, which stem from inappropriate model

architecture or hyperparameters.

B. The exploding gradient problem

The exploding gradient problem describes a phenomenon in

which the gradient backpropagated through a neural network

grows exponentially from layer to layer [6]. Unfortunately, the

maximal depth of many popular ML architectures is limited

by the existence of this phenomenon. There are existing

techniques such as weight scaling or batch normalization

which can be used to mitigate these problems. However, they

are not always effective [6]. It is possible to use architectures

that avoid the exploding gradient problem [11] such as fully

connected ReLU networks. Nevertheless, due to the limited

functionality of those architectures, it is not a commonly

employed practice.

C. Advances in research on Topology of Federated Learning

Although a typical FL system follows a simple centralized

topology, with a single server node, often located in the cloud,

communicating directly with a federation of clients, this is not

necessarily the most optimal, or efficient, solution for many

use cases [3]. Interest in network topology in the context of FL

stems from the evidence that its impact can be extremely effec-

tive in mitigating data heterogeneity. Some types of topologies

can also either fully eliminate the need for a central cloud

server or greatly reduce its importance [12]. This is significant

since the main roadblock for the full production deployment of

many FL systems involves communication inefficiency. Other

works try to balance these two approaches, by combining

nodes in various ways, for example by organizing the clients

into groups [13].

A broad classification of current trends in FL topology-

related research can be found in [3], which classifies FL

topology types into centralized (referred to also as star) [2],

tree [14], hybrid [15], gossip [16], grid [17], mesh [3],

clique [12] and ring [18]. Classic Federated Averaging [2],

can be counted as an example of the centralized topology,

involving only a single server independently communicating

with each FL-participating client.

The TornadoAggregate algorithm, described in [15], com-

bines star and ring topologies to form STAR-rings and RING-

stars. One involves a central server performing periodic fed-

erated averaging combined with ring-based groups, while the

other consists of a ring with star-based groups. Surprisingly,

the first approach is significantly more successful, outperform-

ing the RING-stars with regard to performance, while main-

taining the same scalability as described in the aforementioned

paper. This process does not require the setup of additional

devices and so seems suitable for later reuse.

Many of the above-mentioned topologies use client group-

ing to manage the problems with heterogenous data. Moreover,

this kind of mitigation method can also be used in combination

with a centralized topology, in the form of centralized training

with dynamic clustering implemented as IFCA in [19]. IFCA

involves the simultaneous training of a given number of

clusters, allowing for the dynamic creation of client clusters

and models personalized for that cluster. However, some of the

reported results were subpar due to the necessity of beginning

the training with a warm start and accurate knowledge on

the number of clusters present in the dataset [20]. In order

to limit the occurrence of these issues, an improved version

was developed. The new algorithm, SR-FCA, periodically

reclusters the clients in a manner that leads it to be both more

robust and less resource-intensive for edge clients.

In summary, there are many approaches to FL topology

which result in different benefits and drawbacks. Some so-

lutions focus on providing additional robustness to the system

at the expense of decreased privacy and a more cumbersome

setup. Others accept a communicational and computational

overhead in exchange for the ability to use FL without

selecting a single centralized server.

D. Scalability in FL

In our experiments, we have concentrated on the systems

that are potentially easy to set up, scalable and able to

withstand perturbations present in edge environments. Here,
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a scalable FL system should be able to maintain high and

effective performance in an massively distributed environment,

that is, one with a very large number of clients [21]. Many

topologies achieve scalability through the creation of local

groups, which minimize the necessary frequency of the global

aggregation rounds and, by extension, the communicational

strain on the server [15].

III. EXPERIMENTAL SETUP

In order to determine the best topology (both in terms of

achieving the best possible performance and maintaining ro-

bustness to issues such as heterogenous data or client dropout)

for the Assist-IoT pilots, our tests have been conducted on

four potential solutions representative of the general trends.

Those solutions are described visually in Figure 1. Their short

summations can be found below.

1) Centralized: The centralized topology closely adheres to

the original process of FL training from [2]. The server sends

the model parameters to the clients, where they are trained for

multiple iterations and subsequently aggregated on the server.

We have decided to include this topology as a baseline for

comparison with other, more sophisticated methods.

2) Centralized with dynamic clusters: The structure in-

volves a server communicating with multiple clients. The

main difference between this approach and a classic, cen-

tralized topology lies in the existence of multiple models

(each of which is meant to be suitable just for a subset

of the clients). After a given amount of training rounds,

the server reclusters the clients based on the similarity of

their weights (here estimated using Euclidean distance). The

models are then aggregated separately for a given cluster [20].

Importantly, this implementation of SR-FCA (which stands for

Successive Refine Federated Clustering Algorithm) aggregates

the models using TrimmedMeanGD [22] instead of FedAvg,

which provides additional robustness to the training process

by removing outlier weights before aggregation. This method

does not necessitate any previous knowledge about the number

of clusters in the dataset nor additional computation on the

client. The dynamic nature of its clustering algorithm causes

this method to easily adapt to changes in client number

and distribution. Unfortunately, SR-FCA does not necessarily

increase the scalability of the solution in its current form.

3) Hierarchical: A hierarchical topology, known also as

a tree topology [23], introduces a third type of node, apart

from the client and server node to a centralized system: an

intermediate (edge) node. In this case, the FL process begins

with the server sending the model parameters to the edge

nodes, which in turn send them to their clients. The clients

train the model for a single iteration and send the results to

the edge node, which aggregates those intermediate results.

After this process repeats a set number of times, all the

aggregated parameters from all of the edge nodes are once

again aggregated on the main server [24]. As for the grouping

of the clients to a given edge node, this simulation follows

the heuristic introduced in [14] by spreading out groups of

clients with similar data distribution between various clients.

(a)

(b)

(c)

(d)

Fig. 1: A visualization of the FL system topologies investi-

gated in this work

KAROLINA BOGACKA ET AL.: DIAGNOSING MACHINE LEARNING PROBLEMS IN FEDERATED LEARNING SYSTEMS: A CASE STUDY 873



We have decided to test it as a more sophisticated and scalable

FL topology, that nevertheless does not need computationally-

intensive client clustering and does not introduce additional

aggregation algorithms to Federated Averaging.

4) Hybrid: Tornadoes, or STAR-rings, is an especially

promising approach presented in [15]. It combines a central-

ized solution with the existence of local, ring-based client

groups. After the global server supplies the clients with starting

parameters, the clients train the model and pass it on to the

next client in their ring. In the next iteration, they accept

an appropriate model from the previous client in the chain,

train it for a given iteration on their own data and pass

it on to the next client. After a set amount of inter-node

iterations, all the model parameters from all of the clients are

aggregated by the centralized server. Interestingly, since ring-

based groups can be very susceptible to catastrophic forgetting

in groups with high variance [15], a specialized clustering

algorithm has been proposed by the authors. This algorithm

requires access to client data distributions to compute the

most optimal arrangement of ring groups, which may not

be suitable for more private use cases. Additionally, it tends

to be quite resource-intensive and frequently returns rings

with significantly unequal numbers of nodes, which in some

cases may complicate system maintenance. Although this FL

topology requires using both an exhaustive client grouping

algorithm and a more elaborate communication schema, the

reported scalability of this method in environments with a large

number of nodes is promising enough that we have decided

to examine it further in our research.

A. Experiment Design

The experiments were conducted using the German Traffic

Sign Recognition Benchmark Dataset [25], developed for

a multi-class, single-image classification challenge held at

the International Joint Conference on Neural Networks in

2011. The dataset incorporates 43 distinct classes divided

into batches of size 16. The data was thoroughly shuffled

and divided equally between the clients. Later, 80% of that

dataset was used as the training data and 20% as the testing

data. Independently of the local datasets, a global test set

was placed on the server containing 12630 out of all the

examples, with the remaining 39209 being divided between all

the clients. In order to minimize the computations necessary

for the simulation, the dataset has been rescaled to the size of

32 by 32 pixels.

The model used for the experiments consisted of 2 convo-

lutional layers and a single dense layer. It was initially trained

using the Adam optimizer with categorical cross-entropy loss

without any gradient clipping. After the analysis of first experi-

ments, gradient clipping was introduced for weights exceeding

the value of 1.0. The clients were trained for 25 global rounds

with 20 local iterations (the exact manner of conducting local

iterations differed from topology to topology).

1) Client Grouping and Communication Schema: For the

centralized training, no grouping of the clients was involved.

Instead, the clients locally trained the model for one epoch on

their own data and then sent those models to the server for

aggregation, which constituted a full round. 25 of such training

rounds have been conducted, with metrics such as aggregated

loss, aggregated accuracy, global test set loss, and global test

set accuracy being gathered after each of those rounds.

In the case of the centralized topology with dynamic clus-

ters, the threshold λ of 5, size parameter t of 3 and β of 0.1

have been used. The Euclidean distance served as a metric

to compute the differences between local weights. The clients

have trained for 20 local iterations before each global round,

and every 4 global rounds the clients were reclustered.

For the training of hierarchical FL a total of 5 intermediate

nodes have been simulated, each managing 20 clients assigned

to it. To sum up, the training was conducted on a 100 FL

clients. Hierarchical FL involves a more intense communi-

cation protocol in the relation between the clients and the

intermediate nodes: FedSGD [14]. For this reason, while the

global communication schema between the edge nodes and the

server has been maintained, the communication between the

clients and edge nodes was much more frequent. Although this

schema does increase the intensity of communication between

nodes, it does not additionally overwhelm the server and,

instead, maintains constant contact with edge nodes, which

are presupposed to be much closer geographically located to

the clients than the server.

Finally, for the hybrid topology, the number of 33 clusters

was determined to be the most appropriate. This decision was

influenced mainly by the suggestion placed in the original

paper, highlighting the importance of small rings [15]. The

original paper was also the source of the algorithm used for

grouping the clients into clusters. The lengths of the resulting

clusters vary from 1 to 8 clients per cluster. Additionally, the

decision to conduct the experiments using a larger number

of clusters did not influence the computational intensity of

the process for the clients. It also did not add any overhead

to the necessary communications between the clients and the

server. Similarly to the hierarchical FL, the schema used here

maintained a set number of global rounds with a set number of

local rounds of training in between, here involving the clients

accepting a new model, training it for one batch, and then

passing it down the chain.

IV. RESULTS AND THE DIAGNOSTIC PROCESS

First tests conducted on IID data can be seen in Figure 2.

Each one was conducted three times and averaged in order

to obtain a smoother, more informative curve. Although two

topologies, centralized (yellow) and centralized with dynamic

clusters (blue), seem to be converging smoothly, there are

suspicious perturbations that can be spotted both in the case of

the hybrid topology (green) and hierarchical topology (purple).

A potential explanation of the similar results of the centralized

topology and centralized with dynamic clustering may stem

from the fact, that in highly IID environments centralized

topologies with dynamic clustering form just a single cluster

and therefore are reduced to a simple centralized topology.

Further examination reveals that each drop in the aggregated
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accuracy for the hierarchical topology happened in a different

run.

Fig. 2: The accuracy training curves for initial experiments

The issue has been further investigated in Figure 3a. The

figure shows the mean aggregated loss measured for the clients

belonging to a given cluster (differentiated with a color) after

each local iteration and shown on a logarithmic scale. A

cluster in our implementation of hierarchical FL includes all

the clients performing their local aggregation on the same

edge node, which means that all of the clients involved in

the simulation are divided into 5 clusters with 20 clients

each. The rise in aggregated test loss starts in iteration 201

with a global aggregation round (marked as a pink cross on

the figure), and begins to drop after 221, so after another

global aggregation round. It can be then observed that the

sudden rise in aggregated was correlated with the adherence

to a given cluster. Perhaps the frequent local aggregation

rounds in hierarchical FL minimize the effectiveness of the

Adam optimizer and cause gradient explosions to spread more

effectively.

Figure 3b shows a makeshift metric, measuring the sum

of the differences between obtained and trained weights for

each client after each local iteration. The colors differentiating

the adherence to a given node are maintained. The sudden

increases in the weight differences correlate with the rise in

aggregated loss both in the cluster affiliation and the iteration.

These results confirm the existence of a gradient explosion

problem.

After diagnosing the issue, an additional precaution of

gradient clipping was applied to the model. New trials were

then conducted to see if the learning curve improved. Figure 4a

shows improvement in the form of a significantly smoother

training process. Analogously, the difference in weights as

shown on Figure 4b has stabilized and decreased significantly.

Repeating the first trial yields on Figure 5 slightly better,

significantly smoother performance for all of the already

mentioned FL topologies. An especially significant difference

is visible for the hierarchical FL performance (purple), which

suggests it to be an especially vulnerable topology to gradient

explosions.

V. DISCUSSIONS

Based on the usefulness of the additional metrics collected

throughout the training in the diagnostic process, we propose

continuous monitoring of the gradient scale of the local

(a) Mean cluster aggregated loss for hierarchical FL

(b) Client weight differences for hierarchical FL

Fig. 3: Initial experiments

(a) Mean cluster aggregated loss for hierarchical FL

(b) Client weight differences for hierarchical FL

Fig. 4: Improved experiments (after the addition of gradient

clipping)
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Fig. 5: The accuracy training curves for improved experiments

models through the regular computation of the gradient scale

coefficient on the clients. The gradient scale coefficient is

defined as follows.

GSC(k, l, f, θ, x, y) =
||J l

k||qm||fk||2
||fl||2

(1)

It measures the relative sensitivity of layer l with regards to

random changes in layer k, measuring the size of the gradient

flowing background relative to the size of the activations

growing forward. A detailed explanation of this metric and

how to use it to can be found in [6]. Its usefulness stems from

robustness to network scaling, which introduces the possibility

of result standardization.

We would like to measure the GSC of each of the client

models after every iteration in order to use it to detect

large, sudden shifts on the global level. These sudden shifts

could then indicate the possibility of gradient explosion and

prompt the developer to quickly recognize the problem without

wasting needless resources for unsuccessful ML training.

VI. CONCLUSIONS

Although FL system and algorithm design remain popular

research areas, the question on how to effectively enable the

debug and maintenance of those systems is still largely unan-

swered. Our case study presents how a problem commonly

encountered in classical ML may present in more complex

FL topologies. We have also proposed a potential monitoring

method for the early detection of such problems. All in

all, we would like to stress the importance of the inclusion

of such tools in distributed environments, where issues like

client dropout or diverging distributions may be masking more

fundamental problems.
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