

Abstract—Data-driven models used for predictive

classification and regression tasks are commonly computed

using floating point arithmetic preserving accuracy by

automatic scaling even in high non-linear functions. With

respect to distributed sensor networks like the IoT, sensor data

is acquired on low-resource embedded systems and delivered to

data servers characterized by big data volumes. In specific use

cases and domains, local predictive modelling on low-power

devices is desired or required. But heterogeneity of host

platforms and dynamic programming disables machine code

deployment. This work addresses Tiny ML on very low-

resource devices (microcontrollers, less than 32 kB RAM and

ROM) by using a stack-based Tiny Virtual Machine providing

core ML operations to implement Decision Trees (DT),

Artificial Neural Networks (ANN), and Convolutional Neural

Networks (CNN). VM program code is always provided in

textual format and compiled just-in-time to Bytecode to ensure

portability, servicability, and mobility. Two damage diagnostics

use-cases demonstrate the suitability of the VM approach, and

even time consuming computational tasks do not compromise

the overall responsiveness of the platform by using a real-time

approach. This work addresses the underlying integer

arithmetic operations required to implement efficient and fast

computable ML models on microncontrollers.

Index Terms—Tiny ML, Virtualization, Embedded Systems.

I. INTRODUCTION

O ADDRESS ubiquitous computing, edge computing,

and distributed sensor networks, driven by a significant

increase in device density and sensor deployment toward

smart and self-contained sensors, advanced and dependable

data processing architectures are required. Tiny machine

learning is a new and challenging field [1]. In order to calcu-

late ML models, high precision floating point arithmetic is

frequently used. Only integer arithmetic (8–32 bits) is offered

by low-resource tiny embedded systems, therefore direct

training using integer arithmetic [2] or model transformation

and freezing [3] are required, ideally on the target device itself

[4]. These issues are also addressed in our study. Ultra low-

power devices place additional restrictions on the computation

of deep learning (DL) models [5] and hardware designs are

becoming more popular [6]. An example for such a tiny low-

resource embedded system is shown in Fig. 1.

T

This work was supported by DFG Grant 418311604

Fig. 1. An example of a highly integrated and miniaturized sensor node

with a STM32 ARM Cortex microcontroller supplied entirely by an

RFID energy harvester (source with courtesy: IMSAS, B. Lüssem, Uni-

versity of Bremen).

In this study, a real-time capable and extendable applica-

tion-specific stack virtual machine (REXA-VM) with sev-

eral distinctive and unique features is introduced and ana-

lyzed, specifically addressing ML computations. In contrast

to common integer-based ML models using 8 bit scaled

arithmetic [2], this VM supports 16 and 32 bit operations.

The novelty of this work is the capability of a VM to process

common ML models delivered in text format. The program

text embeds model parameters as well the forward computa-

tion function for a specific already trained model. Virtualiza-

tion of services and data processing in embedded devices

play an important role in heterogeneous network environ-

ments [7].

Another problem involves non-continuous energy supply,

such as that delivered to the sensor node from external

sources utilizing RFID/NFC. This type of non-continuous

energy supply introduces severe power restrictions limiting

the set of usable microcontrollers (mainly without FPU) and

necessitates real-time data processing to the appropriate de-

gree. Running computationally expensive operations without

jeopardizing IO event handling (i.e., the device's responsive-

ness) requires the VM's real-time capability, which is not

covered in this work. It is anticipated that a REXA VM node

receives remote communications over wireless tech-

IoT and Edge Computing using virtualized low-resource integer

Machine Learning with support for CNN, ANN, and Decision Trees

Stefan Bosse
0000-0002-8774-6141

University of Bremen

Dept. Mathematics and Computer

Science, Bremen, Germany

Email: sbosse@uni-bremen.de

Proceedings of the 18
th Conference on Computer

Science and Intelligence Systems pp. 367–376

DOI: 10.15439/2023F7745

ISSN 2300-5963 ACSIS, Vol. 35

IEEE Catalog Number: CFP2385N-ART ©2023, PTI 367 Thematic track: Internet of Things – Enablers,

Challenges and Applications

nology. Direct transmission of program text code to the VM

for processing and compilation is possible.

II ARITHMETIC

Linear and moreover non-linear functions are commonly

computed using at least 32 Bit Floating Point (FP) arithme-

tic. FP bases on an exponential representation (and approx-

imation) of real numbers. Most ML models are linear or

non-linear functions. Deep neuronal networks with non-

linear activation functions can approximate highly non-

linear models. The dynamic scaling of FP values and opera-

tions enables the computation of functions with high gradi-

ents and large value interval spans. Although, there is 16 Bit

FP arithmetic, this reduced precision arithmetic commonly

have no advantages over fixed point arithmetics (XP) except

providing a higher dynamic range. The required dynamic

range depends on the value range of the input and output

variables as well as on latent (hidden) variables of interme-

diate functions, e.g., hidden nodes of an ANN. XP is often

used in hardware implementations of ANNs [8] and rely on

integer arithmetic that is the only available arithmetic on

low-resource computers, e.g., the STM32 ARM Cortex M

microcontroller series. XP arithmetic has the disadvantages

of underflow and the requirement of software post-

correction (multiplication) when used on microcontrollers,

lowering the arithmetic's performance.

In contrast to common numerical approaches, in this

work, XP values are replaced by in-advance dynamically

scaled arithmetic (SA) using <value,scale> tuples. Scaling is

only applied after an aggregating operation was performed,

e.g., the computation of a vector product in an ANN layer,

as illustrated in Fig. 2. This is relaxed by the fact that N Bit

integer arithmetic (e.g., 32) is assumed at the core, but only

M=N/2 Bit integer values (e.g., 16 Bits) are used to represent

operands and result values. SA is used in this work to ap-

proximate complex (nested) functions. The scaling values

are computed from data for a particular function, e.g., an

ANN classifier. The relative approximation error increases

with decreasing (real) values. A scaling factor can be shared

by multiple values (e.g., vector elements), reducing memory

requirements.

┌───┬────────────┬──────────┐
│ s │ Mantissa │ Exponent │ Floating Point
└───┴────────────┴──────────┘

┌────────────┬────────────┐
│ Integer │ Fractional │ Fixed Point
└────────────┴────────────┘

┌────────────┐ ┌────────────┐
│ Integer │ │ Scale │ Scaled Integer
└────────────┘ └────────────┘

┌────────────┬────────────┬───────┐
│ Integer │ Scale │ Bias │ Interval Integer
└────────────┴────────────┴───────┘

Fig. 2. Comparison of different arithmetic classes

A function F is transformed to a an integer approximation

by:

1. Decomposing arithmetic expressions (and functions) in

scalable arithmetic functions;

2. Annotating original expressions and functions with

value intervals based on a representing test data set

(input and output values of the composed function);

3. Calculating the scaling factors based on the interval

annotations and pre-defined function value range anno-

tations, e.g., a pre-defined sigmoid function.

4. Calculating the approximation error for the test data

(eventually modifying the functional structure or

changing scaling factors to reduce the overall function

error).

The transformation process is not addressed in this work.

Values of function variables (input, output, latent) in a spe-

cific data context and application can lie in a small interval,

e.g., [0.11,0.12]. Pure scaling, e.g., with M=16 Bits), would

use k=250000, but the entire integer range would be only

[27500,30000], effectively reducing the resolution to 12 Bits

with significantly increased approximation error. To in-

crease the usable range for integer approximations of real

numbers, a bias offset can be introduced, approximating a

real number by a <bias,scale,value> tuple. But this kind of

arithmetic would require post-corrections and dedicated

arithmetics, and scaling factors and bias must be specified

for each particular value (in contrast, to pure scaling), in-

creasing memory storage.

A data-driven predictive model function is composed of

vector operations and transfer functions. The approximation

error in such a composed and chained functional system is

accumulative. Using linear transfer functions the error is

linear accumulative and show no exploding gradients. But

using non-linear functions, e.g., based on logarithmic func-

tions, the approximation error is non-linear with exploding

gradients and underflows, at consist of approximation based

on SA and approximation of non-linear functions itself, as

discussed in Sec. IV.F.

III VIRTUAL MACHINE

Details of the REXA VM architecture, features, capabili-

ties and the compiler can be found in the technical paper [9].

In the following section the ML-relevant features are sum-

marized only. The REXA-VM may be implemented in com-

pact embedded systems with a microcontroller and as little

as 8 KB of data RAM and 16 kB of code ROM. In large-

scale and heterogeneous networks, virtualization and Ma-

chine Learning (ML) are essential for unified sensor and

data processing [10]. A scriptable Tiny ML interface and

signal analysis numbers utilizing 16-bit scaled arithmetic are

two important features. This VM supports 16 and 32 bit op-

erations natively, preventing frequent arithmetic overflow

and underflow problems. In contrast to common integer-

368 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

based ML models using 8 bit scaled arithmetic [2], this VM

supports 16 and 32 bit operations.

The REXA VM was designed especially for the deploy-

ment on low-resource microcontrollers with less than 64 kB

RAM and low clock frequencies below 50 MHz. It utilizes a

freely programmable ISA, but the ISA of the VM used in

this work is closely related to the FORTH programming

language [11]. The VM is a pure stack processor, i.e., most

operations processing data via multiple stack memories with

a zero-operand instruction format. The VM instruction loop

processes Bytecode programs stored in a code segment

(CS).

Each VM program consists of data and instructions stored

in a code fragment in the CS. The main user program

memory is the code segment of the VM (CS), which is orga-

nized in byte cells and has a static fixed size. An important

feature of the CS is the direct embedding of program data

besides code instructions. The Bytecode is compiled just-in-

time by an integrated compiler. The VM and the compiler

operate both incrementally, i.e., the processing time of each

of them can be limited and scheduled, a primary feature re-

quired in single IO task programs with a main loop pro-

cessing IO events and performing computations. Since the

ISA of stack processors consists mostly of zero-operand

instructions, it supports fine-grained compilation at the to-

ken level. The source text can be directly stored in the code

segment (in-place) referenced by a code frame (or any other

data buffer, alternatively). Most instruction words can be

directly mapped to a consecutively numbered operation

code.

IV ML MODELLS

A Decision Trees

Decision trees, as lightweight predictor models well suit-

ed for tiny embedded systems, can be efficiently stored in

Linear Search Tables (LST), as introduced earlier for com-

piler parsing.

┌───┬────┬─────┬──────┬─────┬────┬───┐
│ x │ op │ len │ val1 │ bra │ .. │ x │...
└───┴────┴─────┴──────┴──┬──┴────┴───┘
 < │ ▲
 > │ │
 = └─────────┘
 ~

 ────┬─────┬──────┬─────┬───┬─────┐
.. op │ len │ val1 │ bra │ y │ val │ ..
 ────┴─────┴──────┴─────┴───┴─────┘

Def. 1. Format of a Linear Search Tree (LST) implementing a decision

tree

Decision trees consist of nodes associated with input vari-

ables xj or output variables yk (and specific outcomes of a

prediction). Directed edges connecting nodes are functional

evaluations of a node variable.

There are three basic operations: Binary relation (</>),

equality (=), and nearest value approximation (≈). The data

format is shown in Def. 1. Each slide starts with the input

variable to be evaluated (or target for output), the operation

applied to choices, a field specifying the number of choices,

and value-branch pairs. Decision tress can always approxi-

mated by integer arithmetic without error accumulation or

exploding gradient (and underflow) issues. Therefore, the

decision tree is here the gold standard for classifications

problems and compared with ANN implementations.

B Artificial Neural Network (ANN)

An ANN consists of two parts:

1. The data, i.e., for parameter, input, and output varia-

bles;

2. The structure and functions processing the data.

For the sake of simplicity, fully connected networks are

assumed, but any irregular network structure is a sub-set of a

fully connected structure and can be used with the following

operational architectures, too. In contrast to common ANN

software frameworks, REXA VM provides only core vector

operations, as discussed later on. The parameter data is em-

bedded in a code frame by using the initialized array con-

structor. Both parameter and input/output data can be stored

in the program code frame, shown in the next section.

ANN computations are decomposed in vector operations

provided by the VM platform, discussed below. It can be

shown that the complexity and memory requirement of this

(textual data) approach is low even for complex network

structures. Compiled code embedding data require typically

less than 1 kBytes of RAM.

The principle structure of an ANN model and its forward

computation using the vector operations discussed at next is

shown below. There are initialized parameter arrays

(weights, biases, and scaling factors) and latent variable

arrays (neuron output).

array input N
array wghtsL1 { 1 2 3 .. }
array biasL1 { 1 2 .. }
array scaleL1 { 1 2 .. }
array outL1 N
..
: fwd
 .. vecmul
 .. vecadd
 .. vecmap
 ..
;

C Convolutional Neural Networks (CNN)

The structure of a CNN consists of different layers. A

minimal basic layer architecture set consists of:

STEFAN BOSSE: IOT AND EDGE COMPUTING USING VIRTUALIZED LOW-RESOURCE INTEGER MACHINE LEARNING 369

1. A convolutional layer applying a kernel filter mask to

an input image (linear multiply-summation operation)

producing a filtered output image;

2. A pooling layer extracting relevant features from im-

ages by applying special filters (e.g., a maximum value

selection);

3. An ANN layer (commonly fully connected).

CNN computations are decomposed in vector operations

provided by the VM platform, discussed below. The com-

plexity and memory requirements is much higher than com-

pared with ANN implementations. Especially the ANN layer

is connected to all elements of the arrays of the pooling lay-

er. Memory requirement is typically more than 4 kBytes,

depending on the network structure, input dimension, and

layer sizes. More details and evaluations can be found in the

use-case sections.

The principle structure of a CNN model and its forward

computation using the vector operations discussed at next is

shown below (here the first convolution and the second

pooling layer are merged to save storage space). There are

initialized parameter arrays (kernel weights, biases, and scal-

ing factors) and latent variable arrays (intermediate images,

neuron outputs).

array input N
array kernL1p1 { 1 2 3 .. }
array kernL1p2 { 1 2 3 .. }
array kernL1p3 { 1 2 3 .. }
array cnvtmpL1 N
array poolL1p1 N
array poolL2p2 N
array poolL2p3 N
...
: fwd
 (conv & pool)
 .. vecconv
 .. vecmap
 .. vecconv
 .. vecconv
 .. vecmap
 .. vecconv
 ..
;

D ML Core Operations

ANN and CNN computations required efficient and ge-

neric vector operations crucial to implement ML on micro-

controllers. The REXA VM provides a core set of vector

operations that can be used for the computation of ANN and

CNN models. Training using classical error back-

propagation is currently not supported due to requirement of

storing a suitable training and test data set.

All the basic operations you need to implement ANNs

and perform forward activation computations are:

1. Element-wise vector operations (e.g., vecmul: op1vec

op2vec dstvec scalevec);

2. Dot-product operation performing a sum of product

data fusion (vecprod: veca vecb scale → number);
3. A folding operation for node layer computations

(vecfold: invec wgtvec outvec scalevec);

4. A convolution operation for CNN computations (vec-

conv: invec wgtvec outvec scale inwidth kwidth stride

pad). This function also serves as a pooling operation;

5. A mapping operation applying a function elementwise

(vecmap: srcvec dstvec func scalvec);

6. A reduction operation applying a function to all ele-

ments returning an aggregate (vecred: vec vecoff veclen

op); Supported functions are min, max, sum, and aver-

age;

7. A vector reshape operation shrinking or expanding a

vector (vecshape: srcvec dstvec scale);

8. A generic scaling operations (vecscale: srcvec dstvec

scalevec).

Vector operations commonly operate on arrays embedded

in code frames, as shown in Def. 2. Scaling is typically ap-

plied after an aggregation operation (results of operation),

e.g., after computing a sum of products (using 2N arithmet-

ics), to avoid overflow. Some operations use one scaling

factor for all elements, discussed in the following section.

┌─────────────┐ ┌─────────────┐
│ array x 100 │ │ bytecode .. │
│ array y 20 │ │ │
│ array z { 1 │ │ <array z> │
│ 3 4 .. } │ │ │
│ ... │ => ├─────────────┤
│ ... │ │ <array x> │
│ ... │ │ <array y> │
└─────────────┘ └─────────────┘
<array>: [LEN:2][DATA:LEN*WORDSIZE]

Def. 2. Initialized arrays embedded in-place in code frames and non-

initialized arrays stored at the end of the compiled code frame

E Vector Operations

The core set of vector operations provided by the REXA

VM supporting integer arithmetic ANN computations is

summarized in Tab. 1.

Vector Operation

array <ident> <#cells>

Allocates a data array at the end of the code segment

array <ident> { v1 v2 .. }

Allocates an initialized data array inside the code segment.

vecload
(srcvec srcoff dstvec --)
Loads a data array into another array buffer. The source can be any

external data provided by the IOS or internal embedded data.

370 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

Vector Operation

vecscale
(srcvec dstvec scalevec --)
Scales the source data array with scaling factors from the scale

array and stores the result in the destination array. Negative scaling

values reduce, positive values expand the source data values.

vecadd,vecmul
(op1vec op2vec dstvec scalevec --)
Adds two vectors element-wise with an optional result scaling

(value 0 disables scaling). Both input and the destination vectors

must have the same size. Constant down-scaling of all elements is

provided by a negative scaling value (instead of vector reference).

vecfold
(invec wgtvec outvec scalevec --)

Performs a folding operation ivec × wgtvec with a given filter. The

weights vector wgtvec must have the size ||invec||*||outvec||.

vecconv
(invec wgtvec outvec scale inwidth wgtwidth
stride pad --)
Performs a two-dimensional kernel-based convolution operation

ivec ⊗ wgtvec. The width of the input and kernel matrix (still a

linear array) must be provided, the width of the output and the

heights are computed automatically from the vector lengths. If

wgtwidth is negative, a pooling operation is performed. The wgtvec

argument provides then the height of the filter and the operation to

be performed.

vecmap
(srcvec dstvec func scalevec --)
Maps all elements from the source array onto the destination array

using an external (IOS) or internal (user-defined word) function,

e.g., the sigmoid function.

vecred
(vec vecoff veclen op -- index value / valueL
valueM)
Reduces a vector to a scalar value. Supported operations are min

(1) and max (2) returning position and value, mean (4) and average

(8) returning a double word value.

TAB. 1. BASIC VECTOR ANN FUNCTIONS OPERATING ON EMBEDDED OR

EXTERNAL ARRAY DATA (E.G., THE SAMPLE BUFFER)

Vector operations always operate on single data words

(16 bit), but internally 32 bit arithmetic is used to avoid

over- and underflows. To scale to signed 16 bit integer,

some of the operations use a scale factor or scale factor vec-

tor (negative scale values reduce, positive expand the values

by the scale factor) to avoid overflows or underflows in fol-

lowing computations, similar to scaled tensors in [4,12].

Vector operations can access arrays stored in code frames or

provided externally by the host application (e.g., a signal

buffer).

The vecconv operation can be used for convolutional and

pooling layers (pooling is used if wgtwidth is negative and

the wgtvec value contains the weight matrix height com-

bined with the pooling function selector). The application of

an activation function must be done separately using the

vecmap operation, e.g., by applying a sigmoid function to all

elements of a vector.

The computation of these operations are defined by the

following formulas:

() ()

()

()

()

() () () ()()

1 1 2 2

1

,1 ,2 ,

1 1 1

, ,

1, 1, 1 1

1 2

vecmul , , ,..,

dotprod ,

fold , , ,..,

conv ,

map , , ,..,

,

h w h w

T

n n

n

i i

i

T
n n n

i i i i i i n

i i i

a a c c

i k j l k l

i s j s k l

T

n

a b a b a b a b

a b a b

a c a c a c a c

a c a c

a f f a f a f a

n a b

=

= = =

+ +
= + = + = =

= ⋅ ⋅ ⋅

= ⋅

 = ⋅ ⋅ ⋅

= ⋅

=

= =

∑

∑ ∑ ∑

∑ ∑ ∑∑

c n m= ⋅

 (1)

F Activation Functions

There are different transfer (activation) that are used in

ANN and CNN modells, mosr prominent examples are:

• Linear function (linear) without x- and y-limits

• Logistic or sigmoid function (sigmoid) with y-limit=[-

1,1]

• Tangents hyperbsolic function (tanh) with y-limit=[-

1,1]

• Rectifying linear unit (relu) with one-side open y-

limit=[0,∞)

The linear and relu functions can be directly implemented

with integer arithmetic without loss of accuracy (except due

to integer discretizing). The highly non-linear sigmoid and

tanh functions require an appropriate approximation by us-

ing a hybrid approach of the usage of a (compacted) look-up

table (LUT) and interpolation. The tanh function can be

neglected since it can be replaced in most cases by the sig-

moid function without loss of generalization (of course, pri-

or to training).

Trigonometric functions and functions composed of trig-

onometric functions are implemented with segmented linear

and non-linear look-up tables. For example, the error of the

discrete sigmoid function is always less than 1%, while only

requiring 30 bytes of LUT space and less than 10 unit opera-

tions, as shown in Alg. 1. These software functions can be

immediately implemented in hardware, too. The LUTs are

computed with Alg. 2.

static ub1 sglut13[] = { <24 values> };
static ub1 sglut310[] = { <6 elements> };
// y scale 1:1000 [0,1], x scale 1:1000
sb2 fpsigmoid(sb2 x) {
 sb2 y;
 ub1 mirror=x<0?1:0;

STEFAN BOSSE: IOT AND EDGE COMPUTING USING VIRTUALIZED LOW-RESOURCE INTEGER MACHINE LEARNING 371

 if (mirror) x=-x;
 if (x>=10000) return mirror?0:1000;
 if (x<=1000) {
 y = 500+(((x*231)/1000));
 return mirror?1000-y:y;
 } else if (x<3000) {
 ub2 i10 = ((fplog10((x/5)|0)/2))-65;
 y = ((sb2)sglut13[i10])+731;
 return mirror?1000-y:y;
 } else {
 ub2 i10 = ((fplog10((x/10)|0)/10))-14;
 y = ((sb2)sglut310[i10])+952;
 return mirror?1000-y:y;
 }
 return 0;
}
static ub1 log10lut[] = { <100 values> }
// x-scale is 1:10 and log10-scale is 1:100
sb2 fplog10(sb2 x) {
 sb2 shift=0;
 while (x>=100) { shift++; x/=10; };
 return shift*100+(sb2)log10lut[x-10];
}

Alg. 1. Range-segmented and LUT-based implementation of the sig-

moid function with less than 1% approximation error (using approxi-

mated LUT-based log10 function)

The LUT tables can be computed as follows:

 10log10lut log 100 : ,0 99
10

i
int i i
 = ∈ ≤ ≤

 (2)

The fpsigmoid function LUTs are computed iteratively using

the fplog10 function, described by the following pseudo

code algorithm Alg. 2:

sglut13 := []
for x=1 to 2.95 step 0.05 do
 i10 := int(fplog10(int(x*1000/5))/2)-65
 if sglut13[i10] = undefined then
 sglut13[i10] := int(sigmoid(x)*1000)-731
 endif
done
sglut310 := []
for x=3 to 9.9 step 0.1 do
 i10 := int(fplog10(int(x*1000/10))/10)-14
 if sglut310[i10] = undefined then
 sglut310[i10] := int(sigmoid(x)*1000)-952
 endif
done

Alg. 2. Computation of the LUTs for the scaled integer sigmoid func-

tion

The accuracy (relative error) of the sigmoid approxima-

tion is plotted in Fig. 3 with an input and output scaling fac-

tor of 10000 (i.e., 1:10000). For x > -3 the error is below 5%

and decreases to 1% in average. Only for x < -3 the relative

error increases significantly due to the integer resolution.

Fig. 3. Relative discretization error of scaled integer LUT-interpolated

approximation of the sigmoid function

V EVALUATION

Computation time results for ANN and CNN models are

shown in Fig. 4 and 5. The code size required to store static

and dynamic model parameters are shown in Fig. 6 and 6.

Two different host platforms were tested: A generic i5 x86

clocked @2900 MHz (during test) and a STM32F103C8

microcontroller clocked @72 MHz with 20 kB RAM. All

tests are processed by the operational same REXA VM. The

computation time was normalized to the CPU clock fre-

quency to enable comparison between different platforms.

The REXA VM provided a code segment with 6k words

capacity and a data stack with 256 words. The VM was

compiled with GNU CC (gcc version 7), and the ARM-

STM32 version was compiled with the Arduino software

toolkit. With the configuration described above, 3 kB RAM

remains for the VM program stack, which is sufficient. The

REXA VM allocates memory only statically on the heap,

there is no dynamic memory allocation during run-time.

The computational times were plotted against the number

of neurons (ANN) and cells (CNN). The number of cells of

a CNN is the sum of the static parameters and dynamic vari-

ables.

372 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

Fig. 4. Normalized computation times for ANNs of different size (with

two, three, and four layers) and two different host platforms (Generic i5

x86 @2900 MHz and STM32F103C8 @72MHz) as a function of neu-

rons. The computation time is approximately linear with the number of

neurons (independent of network layer structure)

.

Fig. 5. Normalized computation times for CNNs of different size (with

one and two convolution-pooling layer pairs) and two different host

platforms (Generic i5 x86 @2900 MHz and STM32F103C8 @72MHz)

as a function of cells (product of parameters and variables). The com-

putation time grows about O(n-log(n)) with the number of cells n.

Fig. 6. Code size of ANN as a function of the number of neurons.

Fig. 7. Code size of CNN as a function of the number of cells.

The performance test shows the suitability of a low-

resource microcontroller to store and compute small and

medium sized ANN and even smaller CNN models. The

forward (inference) computation time is always below one

Second, typically about 10-100 ms with 16 MHz clock fre-

quency. The required code space (including model data and

code) is below 10 kBytes, typically about 1-2 kBytes. The

ARM Cortex M processor under performs by a factor of 5

compared with a x86 processor, which is well known.

VI USE CASES

A Damage detection with an ANN

In this use-case, aggregated feature variables derived

from time-dependent Ultrasonic signals (Guided Ultrasonic

STEFAN BOSSE: IOT AND EDGE COMPUTING USING VIRTUALIZED LOW-RESOURCE INTEGER MACHINE LEARNING 373

Waves, GUW) from multi-path measurements were used to

predict a damage in a composite materials and to estimate its

location. Details can be found in [13]. The processing archi-

tecture is shown in Fig. 8.

Fig. 8. Multi-path GUW measurement and data processing for damage

detection (classification and location regression)

The feature variables were computed from the signal hull,

mainly by analyzing the first main maximum (position and

width). The hull signal was computed using (1) the analyti-

cal signal via the Hilbert transform (using FFT) and (2) by

applying a rectifier and low-pass filter. Only the second

method can be implemented on the STM32 microcontroller.

Assuming six measuring paths and the two most significant

feature variables normalized peak position and peak height,

additionally using a measure temperature and the base fre-

quency of the pitch signal, the feature vector consists of 14

variables in total. This scaled feature vector is the input for a

simple ANN (three layers, one hidden, typical layer struc-

ture [14,8,2], sigmoid activation functions). The output of

the ANN provided an estimation of the x- and y-coordinates

of the damage location (or close to 0 if there is no damage

detected). This is a hybrid classification and regression

model. If only classification is required, one output neuron

is sufficient.

The ANN with a [14,8,1] layer structure providing a bina-

ry damage classification was trained and transformed to the

proposed integer numerics requiring about 1k Bytes code

size, shown in Ex. 1.

(Layers: 14,8,2 #neurons:24)
array input 14
(Layer I)
array wghtsI { 329 -499 ... 10 400 }
array biasI { -764 389 ... -907 -405 }
array scaleI { -3 9 ... 5 9 }
array actI 14
(Layer H1)
array wghtsH1 { 622 -790 ... 708 248 }
array scaleH1 { 0 5 ... -4 7 }
array actH1 8
(Layer O)
array wghtsO { 869 939 ... 785 910 }

array biasO { 252 -565 }
array scaleO { 4 5 }
array output 2
(Input data is stored in input)
(Output data is stored in output)
: forward
 (Layer I)
 input wghtsI actI scaleI vecmul
 actI biasI actI 0 vecadd
 actI actI $ sigmoid 0 vecmap
 (Layer H1)
 actI wghtsH1 actH1 scaleH1 vecfold
 actH1 biasH1 actH1 0 vecadd
 actH1 actH1 $ sigmoid 0 vecmap
 (Layer O)
 actH1 wghtsO output scaleO vecfold
 output biasO output 0 vecadd
 output output $ sigmoid 0 vecmap
;

Ex. 1. REXA VM program for an ANN classifier for damage prediction

from 14 aggregate feature variables and two output variables (parame-

ter values are only for illustration)

The ANN requires only 620 Bytes in the CS memory of

the REXA VM. The computation time (prediction) is about

1 ms/MHz (Intel x86 i5, i.e. 0.5μs @2900 MHz) and about 5

ms/MHz (STM32 ARM Cortex).

B Damage detection with a CNN

Similar to the previous use-case, single-path Ultrasonic

time-dependent measuring signals are used to predict a dam-

age in a composite material. In contrast to the previous ex-

ample, no strong aggregate feature variables could be identi-

fied. Instead, a discrete wavelet transform using high- and

low-pass filters are used to decompose the sensor signal into

wavelet coefficients (first 5 levels were chosen). The output

of the filters (detail and approximation) are decimated by a

factor of two, retaining only the even samples, since each

filter output contains half of the frequency content, but an

equal amount of samples as the input signal. With increasing

level the number of data elements decreases by a factor 2.

To provide the output of multiple levels in matrix form, the

higher levels are expanded. Here, we shrink the lower levels

to the number of elements of the highest level (5). The orig-

inal signal window contained about 2000 samples, finally

providing only 50 data points for the fifth DWT decomposi-

tion layer. All DWT vectors are combined into a 50 × 5 el-

ements matrix, treated as a two-dimensional spectogram

image. The processing architecture is shown in Fig. 9.

A simple CNN was used to classify signals and predict

damages. The CNN consists of one convolution layer with

three filters (3 × 3 pixel), striding and padding set to two,

output applied to a relu function, followed by one max-

pooling layer (striding=2, padding=0). Finally, a soft-

max/fully connected two-neuron layer performs the classifi-

cation (sigmoid activation function). The REXA VM pro-

gram is shown in Ex. 2.

374 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

Fig. 9. Single-path GUW measurement and data processing using a

CNN for damage detection

(Layers: conv,pool,fc)
array input 250
(Layer 1 conv)
array cK0L1 { -612 -692 ... 962 -467 }
array cK1L1 { -214 832 ... -644 -455 }
array cK2L1 { 764 -275 .. 978 600 }
array cSL1 { 817 390 572 }
array cOL1 104
(Layer 2 pool)
array pO0L2 12
array pO1L2 12
array pO2L2 12
(Layer 3 fc)
array fW0L3P0 { -468 -905 ... -632 518 }
array fW0L3P1 { -147 -932 ... -275 872 }
array fW0L3P2 { -327 -798 ... -61 -621 }
array fW1L3P0 { -126 894 ... -818 -870 }
array fW1L3P1 { 488 -408 ... 963 -887 }
array fW1L3P2 { -519 963 .. 895 -170 }
array fAL3 12
array fBL3 { -746 -776 }
array fSL3 { 1 3 }
array fOL3 2
array output 2
(Input data is stored in input)
(Output data is stored in output)
: forward
 (Layer 1 conv)
 (merged with Layer 2 pool)
 input cK0L1 cOL1 cSL1 0 cell+ @ 50 3 2 2 vec-
conv
 cOL1 cOL1 $ relu 0 vecmap
 cOL1 256 3 + pO0L2 0 26 -3 2 0 vecconv
 input cK1L1 cOL1 cSL1 1 cell+ @ 50 3 2 2 vec-
conv
 cOL1 cOL1 $ relu 0 vecmap
 cOL1 256 3 + pO1L2 0 26 -3 2 0 vecconv
 input cK2L1 cOL1 cSL1 2 cell+ @ 50 3 2 2 vec-
conv
 cOL1 cOL1 $ relu 0 vecmap
 cOL1 256 3 + pO2L2 0 26 -3 2 0 vecconv
 (Layer 3 fc)
 pO0L2 fW0L3P0 fAL3 0 vecmul
 fAL3 0 12 8 vecreduce
 pO1L2 fW0L3P1 fAL3 0 vecmul

 fAL3 0 12 8 vecreduce
 pO2L2 fW0L3P2 fAL3 0 vecmul
 fAL3 0 12 8 vecreduce
 2+ 2+ fSL3 0 cell+ @ 2ext 2/ 2red sigmoid
 fOL3 0 cell+ !
 pO0L2 fW1L3P0 fAL3 0 vecmul
 fAL3 0 12 8 vecreduce
 pO1L2 fW1L3P1 fAL3 0 vecmul
 fAL3 0 12 8 vecreduce
 pO2L2 fW1L3P2 fAL3 0 vecmul
 fAL3 0 12 8 vecreduce
 2+ 2+ fSL3 1 cell+ @ 2ext 2/ 2red sigmoid
 fOL3 1 cell+ !
;

Ex. 2. REXA VM program for a CNN classifier for damage prediction

from 50 × 5 feature variables (DWT spectogram) and two output varia-

bles (parameter values are only for illustration)

The CNN requires only 1500 Bytes in the CS memory of

the REXA VM, fitting into a STM32F103C8 (20 kBytes

RAM). The computation time (prediction) is about 30

ms/MHz (Intel x86 i5, i.e. 10µs @2900 MHz) and about 150

ms/MHz (STM32 ARM Cortex).

Due to the high integration level and the minimization of

components the measuring data is characterized by noise

(analog and digital sources), drift, and a superposition by

environmental signals (main AC line, e.g.). Despite the data

quality limitations, a damage prediction accuracy about 95%

can be achieved by the CNN. Considering the low complexi-

ty of the CNN, the results showing the suitability of even

simple data-driven classifier models processed directly by a

material-integrated sensor node with a low-resource micro-

controller.

VII CONCLUSION

The stack-based REXA VM was introduced targeting

CPUs with integer arithmetic only and providing virtualiza-

tion and a unique set of vector operations used to compute

Artificial and Convolutional Neural Networks under high

resource constrains. It could be shown that even with less

than 20 kBytes of RAM memory (simple) CNNs can be

computed. The VM has a built just-in-time text-to-Bytecode

compiler. A ML model is provided on programming level

with a mix of data and computational statements. The VM

uses a shared code segment for program text and compiled

Bytecode with embedded data without necessity to have a

dynamic memory management (heap). The computational

times for medium sized ANNs and small CNNs are about 1-

300 ms/MHz, reasonable for sef-powered sensor networks.

The source code of the REXA VM can be downloaded from

github [14].

REFERENCES

[1] Guo, S., Zhou, Q. , Machine Learning on Commodity Tiny Devices,

Taylor & Francis, 2023

STEFAN BOSSE: IOT AND EDGE COMPUTING USING VIRTUALIZED LOW-RESOURCE INTEGER MACHINE LEARNING 375

[2] Ray, P. P., A review on TinyML: State-of-the-art and prospects, Jour-

nal of King Saud University-Computer and Information Sciences,

2021, pp.1595-1623, https://doi.org/10.1016/j.jksuci.2021.11.019

[3] Wang, X., Magno, M. , Cavigelli, L., Benini, L., FANN-on-MCU: An

Open-Source Toolkit for Energy-Efficient Neural Network Inference

at the Edge of the Internet of Thing, arXiv:1911.03314v3, 2022

[4] Banner, R. , Hubara, I., Hoffer, E., Soudry, D., Scalable Methods for

8-bit Training of Neural Networks, arXiv:1805.11046, 2018

[5] Alajlan, N. N., Ibrahim, D. M., TinyML: Enabling of Inference Deep

Learning Models on Ultra-Low-Power IoT Edge Devices for AI Ap-

plications, micromechanics, vol. 13, no. 851, 2022,

https://doi.org/10.3390/mi13060851

[6] Jain, V., Giraldo, S., Roose, J. D., Linyan, Mei, B. B., Verhelst, M. ,

TinyVers: A Tiny Versatile System-on-chip with State-Retentive eM-

RAM for ML Inference at the Extreme Edge, arXiv:2301.03537,

2023,

[7] Heiser, G., The role of virtualization in embedded systems, In Pro-

ceedings of the 1st workshop on Isolation and integration in embedded

systems, 11-16 April, 2008,

https://doi.org/10.48550/arXiv.2301.03537

[8] Zhang, L., Implementation of fixed-point neuron models with thresh-

old, ramp and sigmoid activation functions, In IOP Conference Series:

Materials Science and Engineering (Vol. 224, No. 1, p. 012054). IOP

Publishing, 2017

[9] Bosse, S., Bornemann, S., Lüssum, B., Virtualization of Tiny Embed-

ded Systems with a robust real-time capable and extensible Stack Vir-

tual Machine REXAVM supporting Material-integrated Intelligent

Systems and Tiny Machine Learning, arXiv:2302.09002 [cs.OS],

2023,

https://doi.org/10.48550/arXiv.2302.09002

[10] Bauer, M., IoT Virtualization with ML-based Information Extraction,

in IEEE 7th World Forum on Internet of Things 2021,

https://doi.org/10.1109/WF-IoT51360.2021.9595119

[11] Hayes, J. R. Fraeman, M. E., Williams, R. L. Zaremba, T., An archi-

tecture for the direct execution of the Forth programming language,

ACM SIGARCH Computer Architecture News, 15(5), 1987, pp. 42-

49. https://doi.org/10.1145/36177.36182

[12] Ghaffari, A.,. Tahaei, M. S., Tayaranian, M., Asgharian, Vahid, M.,

Nia, P., Is Integer Arithmetic Enough for Deep Learning Training?,

Advances in Neural Information Processing Systems 35. 2022: 27402-

27413.

[13] Bosse, S., Polle, C., Fast Temperature-Compensated Method for Dam-

age Detection and Structural Health Monitoring with Guided Ultra-

sonic Waves and Embedded Systems, Eng. Proc. 2021, 10(1), 78;

https://doi.org/10.3390/ecsa-8-11283

[14] https://github.com/bsLab/rexavm, REXA VM repository, on-line, ac-

cessed 31.7.2023

376 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

