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Abstract—Algebraic Constructions of Extremal Graph Theory
were efficiently used for the construction of Low Density Par-
ity Check Codes for satellite communication, constructions of
stream ciphers and Postquantum Protocols of Noncommutative
cryptography and corresponding El Gamal type cryptosystems.
We shortly observe some results in these applications and present
idea of the usage of algebraic graphs for the development
of Multivariate Public Keys (MPK). Some MPK schemes are
presented at theoretical level, implementation of one of them
is discussed. Extended version of this article is available online
at [31].

I. INTRODUCTION

EXTREMAL algebraic graphs were traditionally used for

the construction of stream ciphers of multivariate nature

(see [19], [8] and further references). We introduce the first

graph based multivariate public keys with bijective encryption

maps. We hope that new recent results on algebraic construc-

tions of Extremal Graph Theory [16] will lead to many appli-

cations in Algebraic Cryptography which includes Multivariate

cryptography and Noncommutative Cryptography. Some graph

based algebraic asymmetrical algorithms will be presented in

this paper.

NIST 2017 tender starts the standardisation process of

possible Post-Quantum Public keys aimed for purposes to be

(i) encryption tools, (ii) tools for digital signatures (see [28]).

In July 2020 the Third Round of the competition started.

In the category of Multivariate Cryptography (MC) remaining

candidates are easy to observe. For the task (i) multivariate

algorithm was not selected, single multivariate candidate is

”The Rainbow Like Unbalanced Oil and Vinegar” (RUOV)

digital signature method. As you see RUOV algorithm is

investigated as appropriate instrument for the task (ii). During

Third Round some cryptanalytic instruments to deal with

ROUV were found (see [20] and further references]). That is

why different algorithms were chosen at the final stage. In July

2022 first four winners of NIST standardisation competition

were chosen. They all are lattice based algorithms. They all

are not the algorithms of Multivariate Cryptography.

This research is partially supported by British Academy Fellowship for
Researchers at Risk 2022 and by UMCS program UMCS Mini-Grants.

Noteworthy that all considered multivariate NIST candidates

were presented by multivariate rule of degree bounded by

constant (2 or 3) of kind

x1 → f1(x1, x2, . . . , xn),

x2 → f2(x1, x2, . . . , xn),

. . .,

xn → fn(x1, x2, . . . , xn).

Classical results of Multivariate Cryptography can find in

[25], [26] and [27].

We think that NIST outcomes motivate investigations of

alternative options in Multivariate Cryptography oriented on

encryption tools for

(a) the work with the space of plaintexts Fq
n and its

transformation G of linear degree cn, c > 0 on the level of

stream ciphers or public keys

(b) the usage of protocols of Noncommutative Cryp-

tography with platforms of multivariate transformations

for the secure elaboration of multivariate map G from

End(Fq[x1, x2, . . . , xn]) of linear or superlinear degree and

density bounded below by function of kind cnr, where c > 0
and r > 1.

Some ideas in directions of (a) and (b) are presented in [17].

We hope that classical multivariate public key approach i.

e. usage of multivariate rules of degree 2 or 3 is still able to

bring reliable encryption algorithms. In this paper we suggest

new cubic multivariate public rules.

Recall that the density is the number of all monomial terms

in a standard form xi → gi(x1, x2, . . . , xn), i = 1, 2, . . . , n of

multivariate map G, where polynomials gi are given via the

lists of monomial terms in the lexicographical order.

We use the known family of graphs D(n, q) and A(n.q) of

increasing girth (see [1]-[6] and further references) and their

analogs D(n,K) and A(n,K) defined over finite commutative

ring K with unity for the construction of our public keys.

Noteworthy to mention that for each prime power q, q > 2
graphs D(n, q), n = 2, 3, . . . form a family of large girth

(see [1]), there is well defined projective limit of these graphs

which is a q-regular forest. in fact if K is an integral domain

both families A(n,K) and D(n,K) are approximations of

infinitedimensional algebraic forests. The definitions of such
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approximations are given in Section 3 together with short

survey of their applications.

In Section 2 we present the known mathematical definitions

of algebraic geometry for further usage of them as instruments

of Multivariate Cryptography. In particular definition of affine

Cremona semigroup of endomorphisms of multivariate ring

K[x1, x2, . . . , xn] defined over commutative ring K and affine

Cremona group nCG(K) are presented there.

The concept of trapdoor accelerator of the transformation

from affine Cremona semigroup nCS(K) is presented there as

a piece of information which allows computation of reimage

of the map in time O(n2).
This is a weaker version of the definition of trapdoor one

way function. The definition of the trapdoor accelerator is

independent from the conjecture P ̸= NP of the Complexity

theory. Section 2 also contains some statements on the exis-

tence of the trapdoor accelerator with the restrictions on the

degrees on maps and their inverses for families of elements of

the affine Cremona group nCG(K).
Section 3 is dedicated to infinite forests approximations

and their connections with Algebraic Geometry and Extremal

Graph Theory.

The description of linguistic graphs D(n,K) and A(n,K)
and some their properties are presented in Section 4, 5. These

sections contain the descriptions of subgroups and subsemi-

groups of nCS(K) defined via walks in graphs D(n,K) and

their extensions D(n,K[x1, x2, . . . , xn]) and graphs A(n,K)
and A(n,K[x1, x2, . . . , xn]) respectively. Some statements

about degrees of elements of these semigroups are given.

Section 6 contains examples of cryptographic applications

of graph based trapdoor accelerators in the form of cubic

multivariate public key.

Detailed description of multivariate public key related to

one of presented families is presented in in the Section 7.

Remarks on security level connected with girth studies of

tree approximations reader can find in section 8. Last Section

9 presents short conclusions.

II. ON ELEMENTS OF ALGEBRAIC GEOMETRY AND

TRAPDOOR ACCELERATORS

Let K be a commutative ring with a unity. We consider

the ring K ′ = K[x1,
x2, . . . , xn] of multivariate polynomials over K.

Endomorphisms δ of K ′ can be given via the values

of δ(xi) = fi(x1, x2, . . . , xn), fi ∈ K ′. They form the

semigroup End(K[x1, x2, . . . , xn]) =
nCS(K) of K ′ known

also as affine Cremona semigroup named after the famous

Luigi Cremona (see [29]). The map δ̃ : (x1, x2, . . . , xn) →
(f1(x1, x2, . . . , xn), f2(x1, x2, . . . , xn), . . . , fn(x1, x2, . . . , xn))
is polynomial transformation of affine space Kn. These

transformations generate transformation semigroup CS(Kn).
Note that the kernel of homomorphism of nCS(K)
to CS(Kn) sending δ to δ̃ depends on the choice of

commutative ring K.

Affine Cremona Group nCG(K) =
Aut(K[x1, x2, . . . , xn]) acts bijectively on Kn. Noteworthy

that some elements of nCS(K) can act bijectively on Kn

but do not belong to nCG(K). For instance endomorphism

x → x3 of R[x] acts bijectively on set R of real number

but the inverse x → x1/3 of this map is birational element

outside of 1CG(R).
Recall that degree of δ is the maximal degree of polynomials

δ(xi), i = 1, 2, . . . , n. The density of δ is a total number of

monomial terms in all δ(xi).
Assume that automorphism F from nCG(K) has constant

degree d, d ≥ 2. It is given in its standard form written

as x1 → f1(x1, x2, . . . , xn), x2 → f2(x1, x2, . . . , xn), . . .,
xn → fn(x1, x2, . . . , xn) where fi, i = 1, 2, . . . , n are

elements of K[x1, x2, . . . , xn] and used as public rule to

encrypt plaintexts from Kn.

The following definition was motivated by the idea to have

a weaker version of trapdoor one way function.

We say that family Fn ∈n CG(K) of bijective nonlinear

polynomial transformations of affine space Kn of degree ≤ 3
has trapdoor accelerator nT of level ≥ d if

(i) the knowledge of piece information nT (”trapdoor ac-

celerator”) allows to compute the reimage x for Fn in time

O(n2)
(ii) the degree of Fn

−1 is at least d, d ≥ 3.

Notice that if Fn are given by their standard forms and

degrees of Fn
−1 are equal to d then the inverse can be

approximated in polynomial time f(n, d) = O(nd2+1) via lin-

earisation technique. One can see that the approximation task

becomes unfeasible if d is ”sufficiently large” like d = 100.

Examples of cubic families Fn with trapdoor accelerator of

high level t are given in the case of special finite fields Fq in

the section 3.

III. ON ALGEBRAIC FOREST APPROXIMATIONS AND THEIR

APPLICATIONS

We define thick forest as simple graph without cycles such

that each of its vertex has degree at least 3. In probability

theory branching process is a special stochastic process cor-

responding to a random walk on a thick forest. A genealogy

of single vertex is a tree. One of the basic properties of finite

tree is the existence of a leaf, i. e. vertex of degree 1. Thus

each thick tree is an infinite simple graph.

Let K be a commutative ring and Kn be an affine space

of dimension n over K (free module in other terminology). A

subset M in Kn is an algebraic set over K if it is a solution

set for the system of algebraic equations of kind f = 0 or

inequalities of kind g ̸= 0 where f and g are elements of

K[x1, x2, . . . , xn]. There are several alternative approaches

to define dimension of M . In the case when K is a field

these approaches are equivalent and dimension of M can be

computed with the usage of Groőbner basis technique (see

[21], [22], [23]).

We say that graph Γ is algebraic over K if its vertex and

edge sets are algebraic sets over K
We investigate a possibility to define thick forest F by

system of equations over some commutative ring K, i.e.

construct F as a projective limit of algebraic over K bipartite
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graphs Γi, i = 1, 2, . . .. Noteworthy that the girth gi = g(Γi),
which is the length of minimal cycle in Γi tends to infinity

when i is growing. In this situation we refer to F as algebraic

forest over K.

We say that the family Γi is an algebraic forest approx-

imation over the ring K. In the case gi ≥ cni, where

ni are dimensions of the algebraic sets V (Γi) of vertices

of the graph Γi and c is some positive constant we use

term algebraic forest approximation of large girth. Note that

algebraic forest approximations of large girth over finite field

Fq , q > 2 are families of graphs of large girth in sense of

P. Erdős’(see [15] and further references). The first algebraic

forest approximation of a large girth was introduced by F.

Lazebnik and V. Ustimenko (see [1], [2]) in the case of

K = Fq .

The properties of trees of this algebraic forest and their

approximations over Fq were investigated in the paper[30].

In 1998 more general algebraic graphs D(n,K) defined

over arbitrary commutative ring K were introduced [4]. It was

stated that a girth of D(n,K) is ≥ n+5 in the case of arbitrary

integrity domain K. This inequality insures that D(n,K) ,

n = 2, 3, . . . is algebraic forest approximation of large girth.

The prove of the inequality reader can find in [5], simpler

prove of this fact the reader can find in [18].

Noteworthy that in the case of integrity domain K together

with D(n,K), n = 2, 3, . . . one can consider another thick

forest approximation D(n,K[x1,
x2, . . . , xm]) for each parameter m. Thus paper [5] opened

a possibility to use extremal properties of these graphs in the

Theory of Symbolic Computations and its various applications

to Cryptography.

The paths of even length t on trees and their approximations

can be used to induce multivariate transformations on varieties

Pi and Li of points and lines of V (Γi). These transformations

can serve as encryption maps acting on the potentially infinite

space Pi of plaintexts (see [7], [19], [8] and further references).

They form a group Gi = G(Γi) which can be a platform

for the protocols of Noncommutative Cryptography (see [9]-

[14]). Noteworthy that if t is at most half of the girth of Γi

then different paths produce distinct transformations. So, forest

approximations of large girth are preferable for cryptographic

applications.

Other tree approximation over the integrity domain K is

formed by graphs A(n,K) defined in [6]. In fact these graphs

were defined earlier [5] as homomorphic images E(n,K) of

graphs D(n,K) or their connected components CD(n,K).
As it was stated recently in short paper [24] for each integrity

domain K, K ̸= F2 graphs A(n,K) form a tree approxima-

tion of large girth.

Some encryption algorithms (stream ciphers) based on

A(n,K) and D(n,K) were already introduced (see [7], [19],

[8], [16]).

IV. ON LINGUISTIC GRAPHS A(n,K), RELATED

SEMIGROUPS AND GROUPS AND SYMMETRIC CIPHERS

Regular algebraic graph A(n, q) = A(n, Fq) is an important

object of Extremal Graph Theory. In fact we can consider more

general graphs A(n,K) defined over arbitrary commutative

ring K.

This graph is a bipartite graph with the point set P = Kn

and line set L = Kn (two copies of Cartesian power of K
are used). It is convenient to use brackets and parenthesis to

distinguish tuples from P and L.

So, (p) = (p1, p2, . . . , pn) ∈ Pn) and [l] = [l1, l2, . . . , ln] ∈
Ln. The incidence relation I = A(n,K) (or corresponding

bipartite graph I) is given by the following condition.

pIl if and only if the equations

p2−l2 = l1p1, p3−l3 = p1l2, p4−l4 = l1p3, p5−l5 = p1l4,

. . ., pn − ln = p1ln− 1 hold for odd n and pn − ln = l1pn−1

for even n.

In the case of K = Fq , q > 2 of odd characteristic graphs

A(n, Fq), n > 1 form a family of small world graphs because

their diameter is bounded by linear function in variable n (see

[6]).

Recall that the girth of the graph is the length of its minimal

cycle. We can consider an infinite bipartite graph A(K) with

points (p1, p2, . . . , pn, . . .) and lines [l1, l2, . . . , ln, . . .] which

is a projective limit of graphs A(n,K) when n tends to

infinity. If K, |K| > 2 is an integrity domain then A(K)
is a tree and the girth gn of A(n,K), n = 2, 3, . . . is bounded

below by linear function cn for some positive constant c [24].

As a byproduct of this result we get that A(n, q), n =
2, 3, . . . for each fixed q, q > 2 form a family of large girth

in sense of Erdős’. In fact graphs A(n,K) were obtained in

[5] as homomorphism images of known graphs CD(n,K) of

large girth (see [1], [2], [3]).

Let K be a commutative ring with a unity. Graphs A(n,K)
belong to the class of linguitic graphs of type (1, 1, n − 1)
[19], i.e. bipartite graphs with partition sets P = Kn

(points of kind (x1, x2, . . . , xn), xi ∈ K) and L = Kn

(lines [l1, l2, . . . , ln], li ∈ K) and incidence relation I =
I(n,K) such that (x1, x2, . . . , xn)I[y1, y2, . . . , yn] if and only

if a2x2+b2x2 = f2(x1, y1), a3x3+b3x3 = f3(x1, x2, y1, y2),
. . ., anxn + bnxn = fn(x1, x2, . . . , xn), where ai and bi are

elements of multiplicative group K∗ of K and fi are multivari-

ate polynomials from K[x1, x2, . . . , xi−1, y1, y2, . . . , yi−1] for

i = 2, 3, . . . , n.

The colour of ρ(v) of vertex v of graph I(K) is defined as

x1 for point (x1, x2, . . . , xn) and y1 for line [y1, y2, . . . , yn].

The definition of linguistic graph insures that there is a

unique neighbour with the chosen colour for each vertex of the

graph. Thus we define operator u = Na(v) of taking neighbour

u with colour a of the vertex v of the graph. Additionally we

consider operator aC(v) of changing colour of vertex v, which

moves point (x1, x2, . . . , xn) to point (a, x2, x3, . . . , xn) and

line [x1, x2, . . . , xn] to line [a, x2, x3, . . . , xn].

Let us consider a walk v, v1, v2, . . . , v2s of even length 2s
in the linguistic graph I(K). The information on the walk is
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given by v and the sequence of colours ρ(vi), i = 1, 2, . . . , 2s.

The walk will not have edge repetitions if ρ(v2) ̸= ρ(v),
ρ(vi) ̸= ρ(vi−2) for i = 3, 4, . . . , n. Notice that v and v2s are

elements of the same partition set (P or L). For each vertex

v of I(K) we consider a variety of walks with jumps, i. e.

totality of sequences of kind v, v1 = a1C(v), v2 = Na2
(v1),

v3 = a3C(v2), v4 = Na4
(v3), . . ., v5 = a5C(v4), . . .,

v4s = Na4s
(v4s−1), v4s+1 = a4s+1C(v4s). Note that for each

s , s ≥ 0 vertices v, v1, v4s, v4s+1 are elements of the same

partition. Let u = (a1, a2, . . . , a4s, a4s+1) be the colours of

the walk with jumps.

We introduce the following polynomial transformations of

partition sets P and L. Firstly we consider the pair of linguistic

graphs I(K) and I(K[x1,
x2, . . . , xn]). These graphs are defined by the same equations

with coefficients from the commutative ring K. We look

at sequences of walks with jumps of length 4s + 1 where

s ≥ 0 starting in the point v = (x1, x2, . . . , xn) (or line

[x1, x2, . . . , xn]) of the graph K[x1, x2, . . . , xn] which uses

colors a1(x1), a2(x1), . . ., a4s+1(x1) from K[x1]. The final

vertex of this walk is v4s+1 with coordinates a4s+1(x1),
f2(x1, x2), f3(x1, x2, x3), . . ., fn(x1, x2, . . . , xn)). Let us

consider the transformations uTP and uTL sending starting

vertex to the destination point of the walk with jumps act-

ing via the rule x1 → a4s+1(x1), x2 → f2(x1, x2), . . .,
xn → fn(x1, x2, . . . , xn) on the partition sets P and L
isomorphic to Kn. It is easy to see that transformations of kind
uTP (or uTL) form the semigroup LSP (I(K)) (LSL(I(K))
respectively). We refer to this transformation semigroup as

linguistic semigroup of graph I(K).
Let us consider an algebraic formalism for the introduc-

tion of linguistic semigroups. We take the totality of words

F (K[x]) in the alphabet K[x] and define the product of u =
(a1(x), a2(x), . . . , ak(x)) and w = (b1(x), b2(x), . . . , bs(x))
as word = (a1(x), a2(x), . . ., ak(x)) × (b1(x), b2(x), . . .,
bt(x)) = (a1(x), a2(x), . . ., ak−1(x), b1(ak(x)), b2(ak(x)),
. . ., bt(a(x))).

Obtained semigroup F (K[x]) is slightly modified free prod-

uct of End(K[x]) with itself. Note that we can identify a(x)
from K[x] with the map x → a(x) from End(K[x]).

Let FK be a subsemigroup of words of length of kind 4s+1,

s ≥ 0.

PROPOSITION 1.

Let I(K) be a linguistic graph defined over commu-

tative ring K with unity. The map I(K)ηP : FK →
End(K[x1, x2, . . . , xn]) such that I(K)η(u) =u TP (or

η(u)L =u TL) is a semigroup homomorphism.

It is easy to see that I(K)ηP (FK) = LSP (I(K) and
I(K)ηL(FK) = LSL(I(K).

PROPOSITION 2. (see [19] and further references)

The image of u = (a1(x), a2(x), . . . , ak(x)) from FK

under the map I(K)ηP (or I(K)ηP is invertible element of

LSP (I(K) (or LSL(I(K) if and only if the map x → ak(x)
is an element of Aut(K[x]).

REMARK 1.

The transformations (I(K)ηP (u), P ) and (I(K)ηL(u), L)

are bijective if and only if the map x → b(x) is bijective.

ILLUSTRATIVE EXAMPLE.

Let K = R (real numbers) or K be algebraically closed

field of characteristic 0 and b(x) = x3. The inverse map

for x → x3 is birational automorphism x → x1/3 of K[x].

Thus gP =I(K) ηP (u) and g
I(K)
L ηL(u) do not have inverses

in End(K[x]). They have bijective birational inverses. Note-

worthy that gP and gL are transformations of infinite order.

Degree of polynomial transformations of gP
s and gL

s are at

least 3s.

So we have an algorithm of generation bijective polynomial

maps of arbitrary large degree on variety Kn.

We refer to subgroups GP (I(K)) and GL(I(K)) of invert-

ible elements of LSP (I(K)) and LSL(I(K)) as groups of

linguistic graphs I(K). They are different from automorphism

group of I(K).

Let us consider semigroup F̃K of words of kind u =
(x, f1, f1, f2, . . . , fs, fs). It is easy to see that for each lin-

guistic graph I(K) the transformations gP (u) =
I(K)ηP (u)

and gL
I(K)ηL(u) are computed via consecutive usage of

Nfi in the linguistic graph. Thus we refer to SWP (I(K) =
{gP (u)|u ∈ F̃K} and SWL(I(K) = {gL(u)|u ∈ F̃K} as

semigroups of symbolic walks on partition sets of I(K).
We refer to GWP (I(K) = SWP (I(K) ∪ GP (I(K)) and

GWL(I(K) = SWL(I(K)∩GL(I(K)) as groups of symbolic

walks.

Finally we consider the semigroup St(K) of words u =
(x + α1, x + α2, . . . , x + αk) where αi are elements of K.

We consider FK = FK ∩ StK F̃K = F̃K ∩ StK = ΣK and

introduce groups I(K)ηP (FK) = H̃P (I(K)), I(K)|ηP (F
′
K) =

H̃P (I(K)), I(K)|ηP (ΣK) = HP (I(K)), I(K)|ηP (ΣK) =
HP (I(K)).

We can change set P for the line set L and introduce
I(K)|ηL(ΣK) = HL(I(K)).

We refer to groups HP (I(K)), HL(I(K)) as groups of

walks on partition sets of linguistic graph I(K).

PROPOSITION 3.

If a linguistic graph I(K) is connected then groups

HP (I(K)) and HL(I(K)) are acting transitively on Kn.

THEOREM 1. (see [19])

For each commutative ring K groups HP (A(n,K)) =
GA(n,K) and HL(A(n,K)) = ∗GA(n,K) are totalities

of cubical automorphisms of K[x1, x2, . . . , xn].

COROLLARY 1.

Let us consider element u = (x, x+ a1, x+ a1, x+ a2, x+
a2, . . . , x+ ak−1, x+ ak−1x+ ak, x

t of FK for commutative

ring K with unity with finite multiplicative group of order

d, d > 2 where t = 2 or t = 3 and (d, t) = 1. Then

transformation A(n,K)η(u) is a cubical one.

THEOREM 2. (see [19]). For each commutative ring K
groups HP (D(n,K)) = GD(n,K) are totalities of cubical

automorphisms of K[x1, x2, . . . , xn].

COROLLARY 2. Let us consider element u = (x, x +
a1, x+a1, x+a2, x+a2, . . . , x+ak−1, x+ak−1, x+ak, x

t)
of FK for commutative ring K with unity with finite multi-

1182 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



plicative group of order d, d > 2 where t = 2 or t = 3 and

(d, t) = 1. Then transformation D(n,K)η(u) is a cubical one.

V. EXPLICIT CONSTRUCTIONS OF TRAPDOOR

ACCELERATORS AND THEIR APPLICATIONS

EXAMPLE 1

Let us consider general commutative ring K with unity

and Fn = T
A(n,K)
1 η(u)T2, where T1, T2 are elements of

AGLn(K) and the tuple (x, x+α1, x+α1, x+α2, x+α2,

. . ., x+α2,. . . , x+αs, x+αs) such that cn < s < n for some

constant c > 0. According to Theorem 2 the transformations

Fn and Fn
−1 are of degree 3. So T = {T1, T2, u} is a trapdoor

accelerator of Fn of degree 3 and level 3.

The following two constructions give families of cubic

multivariate map with trapdoor accelerator of rather large level.

Let us consider the implementation of public key based on

the trapdoor accelerator of Example 1.

As usually name Alice corresponds to owner of the public

key and name Bob corresponds to public user of the cryp-

tosystem. Alice has to select size of finite field and dimension

of the space V of plaintexts. Assume that she takes field F232

and dimension n = 256. Additionally Alice has to identify

vector space V with point set P or line set L. Assume that

she select L. It means that her plaintext is the tuple [x0,1,

x1,1, x12, x22, . . . , x127,128, x128,128]. Additionally Alice has

to select parameter s corresponding to length of the path in

the graph A(256, F232). For proper selection of this parameter

one can investigate cycle indicator Cind(v) of the vertex v of

the graph, i. e minimal length of the cycle through v and

evaluate maximal value of Cind(v) via all possible vertexes

v (cycle indicator A(256, F232) of the graph). Accordingly

[Archive] cycle indicator of the graph A(n, Fq) is at least

2n+ 2. In fact Cind(A(n, Fq)) = 2n+ 2 for infinitely many

special parameters q. There are q[n/2] lines [l] ∈ L such that

Cind([l]) ≥ 2n + 2. Let [l] = [x01, x11, . . . , x[n/2],[n/2]] be

one of the lines with written above property where param-

eter n is even integer. The trapdoor accelerator uses path

p(t1, t2, . . . , ts) of even length s starting in [l] given by colours

of vertexes x01, x01 + t1, x0,1 + t2, . . ., x0,1 + ts where

t2 ̸= 0, ti ̸= ti−2, for i = 3, 4, . . . , s. Let us assume that

s ≤ n and u be the last vertex of the path. Lower bound

for Cind([l]) insures that destination lines of p(t1, t2, . . . , ts)
and p(t′1, t

′
2, . . . , t

′
s), t1 ̸= t′1 are different. The accelerator

uses destination line [y] of path of A(n, Fq[x01, x11, . . . , xn,n]
with colours x01, x01 + t1, x0,1 + t2, . . . x0,1 + ts starting

in [l]. Assume that [y] = [x01 + ts, g11, g1,2, g2,2, . . ., gn,n],

where g11 , g1,2, . . ., gn,n are cubical or quadratic multivariate

polynomials in variables x01, x11, . . ., xn,n. The trapdoor

accelerator uses cubical transformation F (t1, t2, . . . , ts) of

L = Fq
n of kind x01 → x1,0 + ts,

x1,1 → g1,1,

. . .,

xnn → gn,n.

It is important that the map F (t1, t2, . . . , ts) differs from

each of (q − 1)s transformations F (t′1, t
′
2, . . . , t

′
s), t

′
1 ̸= t1 if

s ≤ n. So Alice can take s = 256 and select one of q(q−1)255

sequence t1, t2, . . ., t256.

To construct trapdoor accelerator Alice has to generate two

bijective linear transformations 1T and 2T of L of kind

x01 →i l01(x01, x11, . . . , x128,128)
x11 →i l11(x01, x11, . . . , x128,128)
x128,128 →i l11(x01, x11, . . . , x128,128) where i = 1, 2. In

a spirit of LU factorisation Alice can generate each iT as

a composition of lower triangular matrix iL, i = 1, 2 with

nonzero entries on diagonal and upper triangular matrices iU
with unity elements on diagonal. For selection of the tuple

ti, i = 1, 2, . . . , 256, iL and iU , i = 1, 2 Alice can use

pseudorandom generators of field elements or some methods

of generating genuinely random sequences (usage of existing

implementation the quantum computer, other Probabilistic

modifications of Turing machine, quasi-stellar radio sources

(quasars) and etc).

Alice takes tuple of variables [x] = (x0,1, x11, . . . , x128,128)
and conducts the following steps.

Step 1.

She compute a product of [x] and 1T . The output is a

string [1l01(x0,1, x11, . . . ,
x128,128),

1l11(x0,1, x11, . . . , x128,128), . . .
1l128,128(x0,1, x11, . . . , x128,128)] = [1u]. Alice treats the out-

put as the line of graph A(256, F232 [x01, x11, . . . , x128,128])
Step 2.

She computes the destination line [2u] of path with starting

line [1u] and colours 1u0,1, 1u0,1+ t1, 1u0,1+ t2, . . ., 1u0,1+
t256.

Step 3.

Alice takes the tuple [2u] = [1u0,1 +
t256,

2 u1,1,
2 u1,2, . . . ,

2 u128,128] of elements

F232 [x01, x11, . . . , x128,128] and forms the line 3u =
[1u0,1)

2, 2u1,1, . . . 2u128,128] of the vector space L.

Step 4.

She computes the composition of the tuple 3u and the

matrix of linear map 2T . So Alice has the tuple of cubic

multivariate polynomials 4u = (f01, f11, . . . ,
f128,128). She presents coordinates of 4u via their

standard forms, i. e sums of monomial terms

taken in the lexicographical order and writes the

public rule F x0,1 → f0,1(x01, x11, . . . , x128,128),
x1,1 → f1,1(x01, x11, . . . , x128,128), x1,2 →
f1,2(x01, x11, . . . , x128,128), . . . x128,128 →
f128,128(x01, x11, . . . , x128,128).

Finally Alice announces this multivariate rule for public

users. Noteworthy that for the development of this private key

Alice use only operations of addition and multiplication in the

commutative ring F232 [x01, x11, x1,2, . . . , x128,128].
ENCRYPTION PROCESS.

Public user Bob creates her message p =
(p0,1, from the space (F232)

m, m = 256.

He computes tuple (f0,1(p01, p11, . . . , p128,128),
f1,1(p01, p11, . . . , p128,128), f1,2(p01, p11, . . . , p128,128),
. . ., f128,128(x01, x11, . . . x128,128)) of the ciphertext c.

Theoretical estimation of the execution time is O(m4). Let
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D(m) be the density of the public rule F , which is a total

number of monomial terms in all multivariate polynomials

f01, f11, f12, . . .. Execution time is cD(m) where constant

c is time of the computation of single cubic monomial

term. This constant depends on the choice of the computer.

The following parameters can be useful. D(16) = 5623,

D(32) = 62252, D(64) = 781087, D(128) = 10826616,

D(256) = 138266164.

We can speed up the encryption process via reduction

of parameter s. If we take twice shorter of the path of

the graph, i.e. select s = m/2 then the values of D(m)
would be the following. D(32) = 5623, D(64) = 62252,

D(128) = 781087, D(256) = 10826616.

This numbers disclose an interesting remarkable coinci-

dences.

We can encode each character of F232 by four symbols of

F28 . Thus we can identify plaintext and the ciphertext with the

tuple of binary symbols of length 1024. So we can encrypt files

with extensions .doc, .jpg, .avi, .tif, .pdf and etc.

DECRYPTION PROCEDURE.

Alice has the private key which consists of the sequence

t1, t2, . . ., t256 and matrices 1T and 2T . Assume that she

got a ciphertext c from Bob. She computes 2T−1 × c =1 c
and treats this vector as line [1l] = [c01, c11, c12, . . .,
c128,128]. Alice computes parameter d = c01

31. She changes

the colour of [1l] for d + t256 and gets the line [l] =
[d + t256, c11, c12, . . . , c128,128]. Alice has to form the path

in the graph A(256, F232) with the starting line [l] and further

elements defined by colours d+ t255, d+ t254, d+ t253, . . .,
d+ t1 and d. So she computes the destination line [1l] = [d,

d1,1, d12, . . ., d128,128]. Finally Alice computes the plaintext

p as [1l]×2 T−1.

VI. CONCLUSIONS

In [31] we describe several trapdoor accelerators defined

with described above approach in selected cases of finite

fields and arithmetical rings Zm, where m is a prime power.

They can be used for the constructions of multivariate public

keys which is able to serve as tools for the encryption or

construction of digital signatures. In this paper we consider

the important case of finite fields of characteristic 2. Computer

simulations of several variants of implementation of this public

keys are presented in [31] where time evaluation and numbers

of monomial terms are given. In [31] the reader can find

heuristic arguments on security of suggested public rules.
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