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Abstract—Artificial Intelligence (AI) represents a highly inves-
tigated area of study at present and has already become an indis-
pensable component within an extensive range of business models
and applications. One major downside of current supervised AI
approaches lies in the need of numerous annotated data points to
train the models. Self-supervised learning (SSL) circumvents the
need for annotation, by creating supervision signals such as labels
from the data itself, rather than requiring experts for this task.
Current approaches mainly include the use of generative methods
such as autoencoders and joint embedding architectures to fulfil
this task. Recent works present comparable results to supervised
learning in downstream scenarios such as classification after
SSL-pretraining. To achieve this, typically modifications are
required to suit the approach for the exact downstream task.
Yet, current review works haven’t paid too much attention to the
practical implications of using SSL. Thus, we investigated and
implemented popular SSL approaches, suitable for downstream
tasks such as classification, from an initial collection of more
than 400 papers. We evaluate a selection of these approaches
under real-world dataset conditions, and in direct comparison to
the supervised learning scenario. We discuss SSL’s potential to
take up with supervised learning, as well as the influence of the
right training methods. Furthermore, we also introduce future
directions for SSL research, as well as current limitations in
real-world applications.

I. INTRODUCTION

S
ELF-supervised learning (SSL) has recently gained mas-

sive attention as a promising new learning paradigm in the

machine learning world. The main advantage over supervised

learning lies in SSL’s capability to reduce the amount of

required prior work of data scientists by avoiding manual

annotation. Recent work has shown that state-of-the-art results

can be achieved in downstream tasks, when using SSL as a

pretraining method. This includes classification scenarios, as

well as clustering.

Especially for medical and industry applications, where

annotations can only be created by highly trained, rarely avail-

able experts, this can possibly be a game-changer in bringing

Artificial Intelligence (AI) to a wider mass of companies.

Currently, however, SSL methods are typically evaluated on

large image datasets such as ImageNet [1], which compare

poorly to real-world data. The problem is that ImageNet and

comparable datasets consist of well-balanced, well-curated and

giant data collections. Real-world datasets, especially in the

industry and medical sector, on the other hand, typically only

feature a few 1000 to 10000 samples which contain systematic

label noise, defective images and imbalanced data. Addition-

ally, such datasets often contain obvious data properties and

fine-granular ones, whereas the latter ones need to be repre-

sented by the SSL-extracted features. Popular SSL methods

currently are only proven to work correctly if balanced data

[2] and large batch sizes are used [3]. For datasets and tasks

under real-world conditions, this is often unfeasible and thus,

the applicability and required modifications of SSL remain

unclear.

We thus reviewed the literature to find the most important

approaches for SSL in computer vision and summarize their

basic functions, as well as possible modifications. We focused

on practical implications of the presented approaches and

investigated possible application fields of different algorithmic

groups and their modifications. Additionally, we compared the

performance of SSL models and their supervised pendants. For

this, we evaluated the models using two datasets composed of

MNIST and Oxford-Flower+IIT-Pet data [4], [5], [6] with little

dataset size and different complexities of problems to address,

thus, with conditions that hold for real-world applications as

well.

To retrieve an extensive and representative collection of

SSL-approaches, various databases were queried, using the

system as described in Bramer et al. [7]. We identified ap-

propriate journals and conferences for the topic and selected

appropriate search engines that contain these. Several well-

recognized journals such as the “IEEE Transactions on Pattern

Analysis and Machine Intelligence” cover the scope of our

work. We selected 20 of the best-ranked journals that cover

our scope and picked an initial database according to the

best availability of these journals. Among other choices, such

as Cabi, Inspec and Web of Science, EBSCO had the best

availability and thus was selected. The EBSCO academic

search premier contains more than 3000 peer reviewed jour-

nals. In addition, we used the IEEE database directly, as

well as Google Scholar, to also include popular conference

proceedings such as the MICCAI, CVPR and NeurIPS, as
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well as publishers like ACM Digital Library and less popular

journals. EBSCO is also preferred because it offers the use of

thesauri terms, which are useful for filtering the search results.

From an initial collection of 1792 samples, we finally extracted

42 articles to be considered for our comparative study. The

detailed literature selection process is shown in Fig. 1.
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Fig. 1: Overview of the split search using EBSCO, IEEE

Explore and Google Scholar.

II. RELATED WORK

Various works have been proposed in the past that demon-

strate impressively the value of SSL for clustering and clas-

sification tasks. Generally, two major approaches with five

possible modification types can be found in the literature,

among preliminary, less generalizable works. Fig. 2 provides

an overview of SSL and its configuration possibilities.

Autoencoders (AEs) are the possibly most prominent ar-

chitecture, and already gained attention for several years. The

core principle is simple: Input data (i.e., images) is processed

using a CNN encoder and a feature vector (:= embedding

or latent) is created. Afterwards, the inverted CNN is used

as a decoder to reconstruct the input. The supervision signal

is then generated from the distance of the generated and

input image. Thus, an optimization can be done, whereas

reconstruction will improve with more meaningful latents

that capture significant properties of the input data. A first

application of this architecture was denoising, as proposed

by Vincent et al. [8], followed by variants that make use

of Gaussian inference [9] and additional classification tasks,

called adversarial learning [10]. Even though AEs can achieve

remarkable results for, e.g., clustering with smaller and simple

image datasets (such as the MNIST dataset), they have known

limitations when working with more complex data.

Thus, another class of SSL algorithms, joint embedding

architectures (JEA), have gained attention recently. In JEA,

the input will be processed using at least two CNNs (whereas

weights may be shared), sent through a bottleneck to re-

duce dimensions, and then passed through a projection head,

which is typically a fully connected network. As for the AE,

backpropagation is the last step in JEA training. JEA uses

a contrastive loss function [11] or an entropy-based function

[12] that keeps the vectors of augmented and non-augmented

image versions consistent. Very early works of Noroozi et al.

[13] show that suitable SSL signals for JEA may be easy

and intuitive to implement, e.g., by splitting or solving jigsaw

puzzles. Even though such works didn’t directly combine

latents, and thus technically aren’t JEAs, they share the idea

and can be seen as close relatives of JEA. As the model needs

to understand contextual information before solving the task,

representative features will be learned as a side effect. Similar

results can be achieved using image rotation [14], pseudo-

classification [15] or combining multiple augmentations [11].

JEA’s representative feature extraction capabilities can even

improve if historical examples are used from a memory bank

[16].

The major groups of AE and JEA can be divided further

according to the following six modification types:

• Input variations: Input data is directly modified before

being processed.

• Backbone variations: Other architectures than a single

CNN are used.

• Latent variations: The features created by the bottleneck

are processed in a parallel or preceding path to projec-

tion/decoding.

• Projection variations: A more sophisticated model than,

e.g., an MLP is used as projection head.

• Temporal component: Time-dependent information is

captured.

The following sections contain information about AE and

JEA basic and modified approaches.

A. AE with Input Variations

The proposed basic principle of the AE as of Vincent et

al. [8], as well as the ones of Kingma et al. and Makhzani

et al. [9], [10], may be modified such that the input is pre-

processed in a certain way, before feeding it to the AE. Such

modifications may include augmentations, such as stretching,

rotation and jitter, that will or will not be part of the target

image. That way, the training can be guided to pay particular

attention, or ignore certain properties of the input data, and

thus to learn more robust features. This can be of value, e.g., in

single-cell cytometric imaging, where AEs may be vulnerable

to trivial features such as cell rotation [17]. Generally, an AE

approach with input variations is seemingly mostly feasible,

if obvious data properties should be ignored, as the typical

application of this architecture often comes with little to no

knowledge about important input data properties. This is not
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Fig. 2: Overview of the discovered SSL training elements and their respective order. The default configurations for JEA (red)

and AE (blue) are marked. Note that not all elements are necessarily used.

only limited to examples in the research field of life sciences.

Another application in the industry context could, e.g., be

the extraction of different features than build-part size in 3D-

print classification. As the build-parts are printed layer after

layer and hence their size differs throughout the print job,

the most simple property is to learn exactly this varying size.

This will, however, have almost no implications for, e.g.,

quality measurements. Using augmentations such as scaling

and stretching, particular attention for anomalies can likely be

created that enables extracting more meaningful latents that,

e.g., correlate with the print quality.

B. AE with Backbone Variations

Another approach to increase the AE’s performance lies

in changing the encoder backbone from a simple CNN to a

more sophisticated architecture. This includes using multiple

backbone branches, or an encoder ensemble, whereas each

model receives different input (i.e., augmented versions of the

original). Furthermore, features from different model depths

can be concatenated as the latent, to consider different mor-

phological complexities in the vector representations. By mod-

ifying the backbone that way, a better weighting of global and

local features may be achieved [18], as well as multiple views

that carry different information may be considered for feature

extraction, e.g., as in the case of analysing spectral bands in

hyperspectral imaging (HSI) classification [19]. The concept

can also be adapted to applications that leverage information,

e.g., from audio and text data. Even though this variant may

cause the trained models to be significantly more memory-

intensive or slower, their feature extraction capabilities also

may improve remarkably, when compared to a basic AE.

C. AE with Latent / Loss Variations

Similar to the approach of Makhzani et al. [10] the learning

signal can be supported by not only formulating the cost

functions as a reconstruction problem, but rather adding an

auxiliary learning signal, such as the adversarial problem.

Recent work shows that different learning signals than the

adversarial discriminator, such as clustering, may be of value

to assist the training process. They are included as a multi-

loss cost function. Possible applications include the direct

consideration of the extracted features clustering probabilities,

e.g., in tasks where clustering of different cell lines is the

goal [20]. Popular approaches to achieve better clustering

capabilities include the use of Gaussian mixtures rather than

a single Gaussian for the feature space [21]. The advantage

of this modification is that it successfully extracts more robust

features and thus is more suited against data distribution drift

and noise. Typical application fields could also lie in life-

science imaging, where artefacts are likely to arise and confuse

trained models.

D. JEA with Backbone Variations

In contrast to the generative AE models, JEA enables one

to train without the need for image generation. State-of-the-art

results have recently been achieved in different downstream

tasks of models pretrained with JEA. There are, however,

applications, where the standard architecture needs to be

modified analogous to the generative AE methods.

A first approach is to change the backbone or combine

multiple architectures. The influence of different backbone

models has been shown by Guerin et al. [22], who con-

clude that different architectures have different strengths/target

domains and thus combining them helps to increase model

performance. They use multiple pretrained architectures to

perform clustering using JULE [23].

Another variant of backbone modifications is the use of

Vision Transformers (ViTs) that could be shown to achieve

comparable or even better results than CNNs that process

images as a whole, while also, e.g., offering better properties

when it comes to interpretability (c.f. [24]). They are thus

a promising alternative to, e.g., residual networks [25]. In

contrast to convolutional networks, ViTs show better prop-

erties regarding the weighting of local and global features,
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which can be advantageous in imaging domains that require

context for each object, such as polarimetric synthetic aperture

radar image classification [26]. For applications such as remote

sensing imaging, where images are inherently very similar

even though they may show different objects (e.g., a town

house vs. a barn), ViTs also can be combined with knowledge

distillation [27]. The imposed teacher vs. student asymmetry

then improves fine-granular feature extraction capabilities.

The distillation approach furthermore offers the possibility to

reduce the network’s parameters within the student model, and

thus to decrease memory usage and processing times. JEAs

backbone may also be modified, when multiple domains need

to be unified, e.g., 2D and 3D images [28], or if special

downstream tasks such as object detection are the training

target [29].

E. JEA with Latent Variations

Directly modifying the latents may be of value to enable the

model to, e.g., perform fine-grained clustering. This includes

rearranging, normalization and regularization of the latents

before processing them with the projection head and triggering

the backpropagation. Additionally, created latents may also be

used, to generate an auxiliary training signal that improves

properties such as drift-resistance. This can be of interest, e.g.,

where slight changes between images have no meaning as in

the case of scene classification, and thus the model needs to be

robust against changes in poses, part configurations, as well

as to relative motion between objects, and scene structures.

Possible methods to implement such latent variations are

spatial assembly [30] or the use of adversarial training for

resistance against perturbations [31]. The use of an adversaria

task also allows adapting JEA for image hashing problems

[32].

Recent works as Masked Siamese Networks (MSN) or Joint

Embedding Predictive Architectures (JEPA) randomly mask

parts of the latents [33], [34], to simulate masking of the input

images while maintaining asymmetry between, e.g., a student

and teacher network. That way, the JEA scenario can be used

with significantly less computation time, as no computation

expensive augmentations need to be performed.

Modifications to, and further auxiliary processing of latents

is advantageous where slight image changes have a significant

impact on the data domain they refer to. This can, e.g., be

the case in quality control, where small deviations from the

standard can have a significant impact on product quality, in

representation learning scenarios or in security applications.

F. JEA with Projection Variations

After latents have been extracted by the backbone, features

typically are projected to a fixed-size vector, e.g., using fully

connected layer and average pooling. Different methods allow

for improving this projection compatible to later downstream

applications such as clustering. For medical imaging, typically

images need to be split into patches, and thus separate modules

need to be created, that keep features consistent through the

global image scope [35]. Furthermore, clustering capabilities

of the extracted features may be improved, by assigning the

features to cluster prototypes according to an optimal transport

problem [36], which advantageously also avoids trivial solu-

tions (mode collapse). Thus, using different projections heads,

one can not only control the level of granularity in information

extraction, but also adapt the model to special application

scenarios, as in the case of histopathological whole-slide-

imaging.

G. JEA with Temporal Component

In many scenarios, important information is time-dependent

and thus can’t be extracted from a single data point. Therefore,

additional components need to be integrated, such that the

model can capture the time-information. This can also enable

a model to be suitable for streaming scenarios. Including

temporal information can be done using distillation procedures

[37], or memory bank approaches [38]. While distillation has

the advantage of imposing asymmetry, which helps to find

more robust features, memory banks can reduce the calculation

efforts in terms of GPU-usage. Integrating a temporal compo-

nent into the JEA learning setup further extends the possible

application scope, e.g., to include quality monitoring, where

slight data distribution changes are expected and need to be

captured by the model to represent all data classes correctly

[39]. This modification is, however, more of interest for time-

series or video-based scenarios, than for imaging.

H. Preliminary Works

In addition to the presented groups and subgroups, further

approaches have been discovered that show preliminary re-

sults or, as of now, fail to achieve state-of-the-art results on

real-world data. They are presented for completeness here.

Modifications to the default JEA scenario may also include

recoupling of the model’s output, e.g., by leveraging the Grad-

Cam approach for sharpening the area of interest in the input

image [40]. To ensure a higher probability of finding a global

minimum during CNN parameter optimization, dropout is

known as a useful measure, especially as it helps to avoid over-

fitting. Thus, advanced dropout methods such as biologically

inspired ones [41] may be a good choice to add to the JEA or

AE model. The right choice of pre-text tasks also heavily influ-

ences the training. Thus, popular works often investigate how

different augmentations contribute to the training results [42].

Other approaches show that methods typically used in JEA,

such as the one of He et al. [43], are also of value for AEs.

Examples include the mapping of AE features to dictionaries

rather than simple keeping them for further processing [44] or

combining AE and JEA architectures [45]. In special cases,

selecting specific training variants, such as evolutionary [46]

or sparse kernel network training, as well as solutions inspired

by biological processes such as associative learning [47] may

be of value to the JEA pipeline as well. A promising approach

for future SSL directions lies in the usage of energy-based

models (EBMs). These models may be capable of more fine-

granular analysis of data distributions, and are thus in the focus

of various visionary works, such as the one of Yann LeCun
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[48]. Restricted Boltzmann Machines are one very rudimentary

implementation of such EBMs and have been studied in the

literature, even though their capabilities in computer vision

are very limited, as they model the data distribution, which

is rarely feasible for images of a real-world size [49], [50].

Similar as with RBMs, self-organizing maps [51] are a popular

choice, especially in life sciences and genetics, but have come

unfashionable due to their poor scalability.

III. QUALITATIVE AND QUANTITATIVE MODEL

EVALUATION

To get a more profound understanding of the similarities

and differences of SSL vs. supervised training, we analysed the

observations and findings, and collected implications for SSL’s

applicability to real-world problems. We compared eleven

different models, as depicted in Table I using three of the

classes taken from the MNIST dataset, as well as various

thousands images of cats, dogs, and flowers taken from the

Oxford IIT-PET and Oxford IIT-Flower dataset. Note that

each custom data set contains an obvious task and a more

challenging task, as well as a slightly imbalanced data amount

between the classes (e.g., more flowers than pets). For the

MNIST data set, these are the separation of the digit four from

eight and zero, and the separation of the similar digits zero

and eight itself. Analogous, the Oxford-based data needs to

be categorized into flowers and pets, as well as cats and dogs.

The parameters for each training have been optimized in a

grid search. For the qualitative analysis, the extracted latents

TABLE I: Overview of implemented approaches and the

subcategories. We implemented the particular methods as

suggested in the referenced literature.

Approach Group Subgroup References

AE Baseline AE - [9]
AE + clustering AE Latent Variations [21]
AE + ensemble AE Backbone Variations [17], [19]
AE + input variations AE Input Variations [17]
JEA baseline (SimCLR) JEA - [11]
JEA + distillation JEA Backbone Variations [27] w.o ViT
JEA + spatial transforms JEA Input Variations [30]
JEPA JEA Latent Variations [34]
MSN JEA Latent Variations [34]
SwAV JEA Projection Variations [52], [36]
Dino JEA Temporal Component [53]

were further reduced using a principal component analysis

(PCA) and inspected. Similar results could be achieved for all

models, except for the model using spatial transformations, as

it struggled in finding a suitable solution. Fig. 3 shows the

results of the highest accuracy models, as referred in Table II,

for the MNIST dataset. It’s evident that both models captured

expressive filters and can successfully separate all the three

digit types. The features extracted with the baseline model

(SimCLR), however, seemed to use the latent space more

efficiently, as they are denser. For the remaining models except

the one with spatial transforms, distinguishable classes could

be observed as well, while clusters were more entangled than

in the presented examples.

(a) AE with clustering. (b) SimCLR.

Fig. 3: Features of a selection of MNIST samples (red – 0,

black – 4, blue – 8), when converted to a three-dimensional

space using the PCA.

For the Oxford datasets, qualitative results could be found

to be worse than the ones for the MNIST dataset. This was

not surprising, given the fact that the data contains far more

complex objects. As shown in Fig. 4, the significant difference

of flowers vs. pets could generally be recognized in the latent

space’s clusters, while the pets’ features themselves yield only

strongly entangled clusters. It’s noteworthy to say that further

compression through PCA possibly amplified the entangling,

especially in the case of SimCLR. The remaining approaches

showed similar behaviour for the Oxford datasets’ qualitative

analysis. The main difference was the amount of entangling.

From the qualitative analysis, three major observations

could be made about SSL’s capabilities. First, more complex

datasets very likely require a higher number of samples, to

guarantee finding a minimum on the error surface during

training. Furthermore, fine-granular distinction of different

data point classes, such as “cat” and “dog”, may be challenging

for both the AE and JEA setup. In addition, no significant

difference between AE and SSL models could be observed in

qualitative analysis, opposing to the results presented in further

sections of this paper. The differences among the reviewed

(a) AE with clustering. (b) SimCLR.

Fig. 4: Features of a selection of Oxford-Pets+Oxford-Flowers

samples (red – cat, black – dog, blue – flower). In contrast to

the MNIST data, the fine-grained task couldn’t be solved.
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modification types were investigated deeper, by evaluating

model linear classification performance on the dataset’s test

cohorts, after pretraining with SSL. For the MNIST dataset,

similar to the qualitative results, all approaches, except the

spatial transforms, achieved results comparable to state-of-

the-art models. The spatial transforms likely fail to achieve

a good result, as the learned augmentations do not contribute

to finding similar vector representations in the JEA setups.

This effect is similar to the one observed by Li et al. [42]

who conclude that only certain augmentation techniques are

suited for their training task.

Overall, the AE with auxiliary (i.e., clustering) task per-

formed best, in terms of absolute accuracy, with 99.87%

(c.f. Table II). The JEA approaches achieved similarly good

results, whereas SwAV even had the highest improvement

compared to the supervised pendant of 1.37%. The results of

the quantitative performance analysis thus matched the ones

of the qualitative analysis. As the MNIST dataset could even

be learned by linear machine learning models such as support

vector machines, this finding can only be seen as proof of

concept for the implemented approaches. For the Oxford data,

TABLE II: ∆Acc. (Accuracy – Supervised Accuracy) of

different models on the MNIST and Oxford datasets, within

a 5-fold cross-validation downstream test, when trained using

SSL and in a supervised fashion.

Dataset Approach Acc. (%) ∆Acc. (ppt.) t·s−1

epoch

AE baseline 99.46 0.03 29
AE + clustering 99.87 1.29 36
AE + ensemble 91.89 -6.87 87
AE + input variations 99.31 1.21 153

MNIST JEA + distillation 87.82 -8.65 47
JEA + spatial transforms 50.44 -46.43 66
SimCLR 99.72 1.36 58
JEPA 91.45 -6.22 30
MSN 93.21 -5.12 103
SwAV 97.40 1.37 90
Dino 90.36 -9.20 260

AE Baseline 49.44 -20.26 17
AE + clustering 55.82 -16.25 17
AE + ensemble 56.27 -24.98 32

Oxford AE + input variations 59.01 -21.1 46
JEA + distillation 62.02 -7.43 21
JEA + spatial transforms 34.32 -44.48 25
SimCLR 72.80 -8.44 36
JEPA 57.50 -24.19 17
MSN 56.30 -25.39 58
SwAV 55.40 -26.29 39
Dino 61.90 -8.00 65

more differences could be observed among different mod-

els. The previously top-performing AE with clustering only

achieved a poor accuracy of 49.44% (c.f. Table II). Further

investigation strongly suggested that the model failed to learn

a meaningful distribution to generate data, thus the clustering

loss was blocking the training, rather than helping, by creating

confusing samples. Generally, the generative AE approaches

performed worse than the JEA ones. This is likely because data

complexity was too high for the small number of samples.

As this is an unavoidable condition for numerous practical

scenarios, generative AE approaches showed a systematic

weakness here.

Among the JEA approaches, surprisingly, the baseline

model performed best, with 72.80% accuracy. It’s notewor-

thy to say that JEPA and MSN, however, took the shortest

training time, as they already showed stable results after a

few ten epochs. JEPA also had the fastest processing time per

epoch. The distillation scenario showed the least difference

to the supervised pendant, but similar to the generative AE

approaches, the dataset size was possibly too small. The ViT-

based Dino model likely suffers from the same problem. For

the SwAV model, loss froze at an early stage of the training,

at around epoch 50. This indicates that only a trivial solution

was found in swapped prediction problem. Thus, training

loss failed to converge to the global minimum. The effect

could be compensated slightly by using a buffer to collect

multiple batches, which increased the batches’ variability,

before solving the swapped prediction problem. The results

were, however, inferior. The SimCLR approach, overall, could

be found to work reasonably well, when compared to the

supervised pendant. This also aligns with the findings of

Zhong et al. [54].

The results on the Oxford datasets, opposing to the ones of

the MNIST data, showed that systematic problems occurred

for all the presented approaches, given a higher complexity

of the data. Thus, the confusion matrices of the models we’re

examined, to see what the limitations are. Table III shows the

result for the AE with clustering task, which was performing

best on the MNIST dataset, and the JEA baseline. The AE with

clustering model achieved a correct classification of flowers

against the pets of 91%. For the more challenging part of

distinguishing the pets themselves as cats, or respectively

dogs, the model, however, performed only slightly better

than a random classifier. The JEA Baseline provides better

TABLE III: Confusion matrix of the AE with latent variations

and the JEA baseline on the Oxford-Flower+IIIT-Pet dataset.

AE with clustering SimCLR

True
Pred

Cat Dog Flower Cat Dog Flower

Cat 0.23 0.45 0.31 0.47 0.24 0.29

Dog 0.16 0.53 0.31 0.07 0.77 0.17

Flower 0.03 0.06 0.91 0.01 0.04 0.95

results with TP rates of 47, 77 and 95% for cats, dogs, and

flowers. Similar to the AE, the less challenging task was

solved remarkably well, while the dog vs. cat problem was

characterized by a strong overfitting to the dog class.

As the training data only contained a few thousand images

per class, the low data amount, in contrast to results created

on the ImageNet dataset, seemed to be a limitation for all

approaches. It’s also noticeable that even more sophisticated

JEA approaches generated worse solutions, as the results of the

remaining models aligned with the ones of the clustering AE.

An explanation for this may be that the dataset provided too

few inputs to solve the optimization problem for a sufficient
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number of parameters, given the relatively small dataset size.

This was especially the case for multi-loss training such as

Dino, SwAV and JEA with distillation. The problem is likely

caused by the non-contrastive loss-term. For example, in the

clustering-based approaches (clustering AE and SwAV), the

optimization of the clustering problem is only possible, if

the batches are large enough at each step and have enough

variability between the epochs. As this is not necessarily the

case using a small dataset, the clustering-loss part will hinder

training and eventually cause convergence to a suboptimal or

trivial solution. Analogously, the second loss term of Dino and

plain distillation do not contribute positively to the training.

The AEs with ensemble and input variations showed improve-

ments, when compared to the AE baseline, but couldn’t keep

up with the more capable JEA.

IV. FUTURE PERSPECTIVES FOR SSL

From our results, we conclude that SSL can open new

perspectives for future AI research. Even though the validated

architectures failed to solve the most fine-grained task without

specific modifications (i.e., separating pets and flowers of the

Oxford data), various practical applications can be found in

the literature that serve as a proof-of-concept for adapting

SSL in industry and medical applications. In most of the

cases identified in the literature, at least SSL-pretraining was

helpful to extract more robust features or even such ones, that

supervised learning was missing.

Future work should concentrate on facilitating the im-

plementation of SSL in practice. Additionally, it should be

investigated, how SSL can help in curating and understanding

data, rather than simply using it as a tool to pretrain a model.

Figure 5 shows such a scenario. After initially processing the

Data Samples

Data Samples

Dataset

Uncurated Embeddings

SSL

Annotation Request / Proposal

Visualization Tool

Labels

Annotation Tool

Embeddings

Supervised Learning

Visualization Tool

Expert

Fig. 5: SSL as a tool for data annotation.

unlabelled data, latents get annotated by an expert. To decrease

the annotation burden, suggestions for annotation can be made

by group selection of latents or labelling closest neighbours.

That way, a larger dataset could be annotated using only a few

examples. For uncertain latents, e.g., those that show similar

logits for all pseudo classes, concepts such as active learning

may be used for sampling. This way, experts could focus on

conceptual work and result validation, rather than on searching

for significant/anomalous data. Such a tool could bring major

improvements to scenarios such as clinical applications, where

initial annotation will likely result in subjective bias, or in

scenarios where a-priori annotation is unfeasible due to the

data set size.

V. CONCLUSIONS

In this work, we presented a comparative overview of

current SSL methods. We conclude that SSL is a promising

method to change the paradigms of machine learning, even

though none of the approaches yet achieves identical or better

performance than the supervised pendant on more complex

datasets. The models solved less challenging tasks without

problems, and showed promising initial results for more chal-

lenging tasks. Overall, they provided good baseline results

that suggest SSL may be capable of achieving or surpassing

performance of supervised training.

Regarding the training setups, we acknowledge that grid

search may be a suboptimal choice to get optimal accuracies,

especially as models with fewer hyperparameters benefit more

from grid search than more complex ones due to search

complexity. The performance results thus can only be seen

as an indicator for certain characteristics of SSL approaches.

In addition to presenting the reviewed work, we performed

an experimental validation using a selection of approaches.

From the qualitative analysis, we conclude that all mod-

els generally capture important information from the data.

The models, however, failed to solve the more challenging

task. The latter finding is supported by the results of the

performance analysis. Among all approaches, JEA methods

outperformed generative (AE) ones. The SimCLR approach

even showed a rudimentary solution to the challenging task of

separating cats from dogs.

The biggest problem for all the models still seemed to

be related to small dataset size. This may be the most

significant weakness of SSL, as this condition typically can’t

be compensated. Additionally, many hyperparameters such

as temperature [11], patch size (in case of using ViTs) or

batch size need to be examined when using SSL (c.f. [3]).

Especially the fact that approaches such as SimCLR, SwAV,

MSN and JEPA require gigantic batch sizes of more than

1000 images, unnecessarily limits SSL applicability as multi-

GPU clusters will be needed for calculation, with a data set

of according size. In practice, this means a high technical

burden to implement such a solution. Therefore, future re-

search should focus on small-dataset SSL, that also works

under real-world conditions, rather than focusing on ImageNet

benchmarks. Additionally, more effort should be spent to

understand structural differences between supervised and SSL

models, and the exact effects leading to this behaviour.
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