
Resilient s-ACD for Asynchronous Collaborative

Solutions of Systems of Linear Equations

Lucas Erlandson∗, Zachary Atkins†, Alyson Fox∗, Christopher J. Vogl∗, Agnieszka Międlar‡, and Colin Ponce∗

∗Center for Applied Scientific Computing

Lawrence Livermore National Lab

ORCIDS: 0000-0003-4544-6148, None, 0000-0002-3855-694X, 0000-0002-6720-8805

Emails: {erlandson3,fox33,vogl2,ponce11}@llnl.gov
†University of Colorado Boulder

ORCID: 0000-0002-2491-0725

Email: zach.atkins@colorado.edu
‡Department of Mathematics, Virginia Tech

Blacksburg, VA

ORCID: 0000-0002-2995-7426

Email: amiedlar@vt.edu

Abstract—Solving systems of linear equations is a critical
component of nearly all scientific computing methods. Traditional
algorithms that rely on synchronization become prohibitively
expensive in computing paradigms where communication is
costly, such as heterogeneous hardware, edge computing, and
unreliable environments. In this paper, we introduce an s-step
Approximate Conjugate Directions (s-ACD) method and develop
resiliency measures that can address a variety of different data
error scenarios. This method leverages a Conjugate Gradient
(CG) approach locally while using Conjugate Directions (CD)
globally to achieve asynchronicity. We demonstrate with numer-
ical experiments that s-ACD admits scaling with respect to the
condition number that is comparable with CG on the tested 2D
Poisson problem. Furthermore, through the addition of resiliency
measures, our method is able to cope with data errors, allowing
it to be used effectively in unreliable environments.

I. INTRODUCTION

S
OLVING a system of linear equations Ax = b is a

critical kernel in many applications, studied in great detail

across applications, as well as for both iterative [1], [2] and

direct solves [3], [4], [5], [6]. However, even iterative meth-

ods such as Krylov subspace methods, which have reduced

serialization [7], require global synchronization. One of the

most popular of such methods, the Conjugate Gradient (CG)

method, computes global inner product at each iteration [8],

[9]. The burden of this synchronization cost is increasing in

modern computing environments due to two reasons: 1) as

the number of parallel processes rapidly increases, the cost

of global synchronization does too; 2) new environments are

being considered for computationally expensive tasks, e.g. dis-

tributed (drones, power grid) and heterogeneous (accelerators)

computing. Due to these factors, there is a critical need for

This work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract DE-
AC52-07NA27344 and was supported by the LLNL-LDRD Program under
Project No. 21-FS-007 and 22-ERD-045. The work of Agnieszka Międlar
was supported by the National Science Foundation (NSF) under Grant DMS-
2144181 and DMS-2324958. LLNL-CONF-849356.

asynchronous algorithms that can operate without the need

for synchronization at every iteration and are able to handle

the increase of data errors introduced by the increased number

of failure points and unreliabilities.

The contributions of this paper are four-fold:

1) We introduce the s-step Approximate Conjugate Direc-

tions (s-ACD) method, which is a novel asynchronous

Krylov-like linear system solver that achieves scaling

with respect to the condition number that is comparable

with CG on the tested 2D Poisson problem.

2) We introduce and investigate a demonstrative scenario

that results in data errors by introducing unreliabilities

into the calculations.

3) We develop resiliency measures that are used in s-ACD

to detect corruption and could be used in other iterative

methods.

4) We provide a comparative study using numerical exper-

iments of the newly introduced developments.

In Section II, we begin by providing a background of

iterative and asynchronous methods. Additionally, we briefly

discuss Skywing [10], the collaborative autonomy framework

that provides the agent-based approach that our implemen-

tation utilizes. Following this, Section III describes the s-

ACD method for the solution of linear systems. Section IV

discusses how the corruption of calculations in an unreliable

environment are modeled and what situations the resulting

corruption type and failure model might apply to. Then,

Section V introduces methods that can be used for adding

resiliency to iterative solvers, which results in the Resilient

s-ACD method. Section VI provides a variety of numerical

experiments developed to test the properties of the various

methods to demonstrate their efficacy. Final concluding re-

marks are presented in Section VII.

Proceedings of the 18th Conference on Computer

Science and Intelligence Systems pp. 441–450

DOI: 10.15439/2023F8932

ISSN 2300-5963 ACSIS, Vol. 35

IEEE Catalog Number: CFP2385N-ART ©2023, PTI 441 Thematic track: Scalable Computing

II. BACKGROUND

First, let us consider the Krylov subspace methods, a class

of iterative methods where an initial guess of the solution

to Ax = b is updated by iteratively building up a Krylov

subspace span{b, Ab, A2b, . . .}. For symmetric positive def-

inite matrices (SPD), the CG method, a particular Krylov

solver, constructs a series of direction vectors pκ that are

A-conjugate to each other, as well as residual vectors rκ

that span the same Krylov subspace for iteration κ [8], [9].

Asymptotically, this method achieves convergence to a given

tolerance in O(
√

cond (A)) iterations for a problem with

condition number cond (A), making it the solver of choice

for SPD matrices. However, global communication is needed

to ensure the orthogonality necessary for the method to be

robust.

To reduce the cost of global communication, methods such

as the communication-avoiding s-step algorithms [11], [12]

and communication hiding pipeline methods [13], [14] have

been proposed in the synchronous case [15]. To address

the issue of unreliable computing environments, some fault-

tolerant or resilient CG methods are also available [16], [17],

[18]. However, both of these classes of methods still require

a high level of global synchronization for orthogonality to be

preserved. In sufficiently distributed environments, these costs

may become too restrictive, leading to the need of methods that

do not require global synchronization and exact orthogonality.

For the solution of linear systems, chaotic or asynchronous

methods [19], [20], [21] such as asynchronous Jacobi [22],

[23], [24] have been developed to provide asynchronicity to

already existing solvers. Although resiliency has been added

to asynchronous Jacobi [25] to make it more fault-tolerant,

the number of iterations scales proportional to the condition

number, driving the need for more powerful asynchronous

linear solvers.

A. Skywing

Edge computing, in which many small devices exist and

work together in an unstructured setting, is a rapidly growing

field in computing. Edge computing applications pose a unique

set of challenges:

1) Both the physical and cyber environments are highly

unreliable, as devices are placed in uncontrolled loca-

tions, e.g. homes or along power lines. As such, they

can readily and unexpectedly break, get unplugged, or

become compromised by cyberattacks.

2) The collection of participating devices is often quite

heterogeneous, with a range of vendors and device

capabilities.

3) The computational workflows are frequently streaming

workflows that continually monitor and respond to some

needs, rather than being a single computational task that

terminates upon completion.

While traditional parallel computing paradigms, such as HPC

or database computing, each have some of these challenges in

common, the combination is unique to edge computing.

This paper details a new method in the collaborative

autonomy paradigm, a class of methods in which multiple

computational units work independently of each other but

towards a common goal. Through adapting to unreliability

present in the environment, these methods can provide reliable

computing in unreliable environments.

Existing software platforms like Apache Hadoop [26] and

Apache Spark [27] are designed for large-scale, “big data”

computing work, but they largely implement leader-follower

patterns and perform computing in batches. These approaches,

while effective in controlled cluster environments, lack the

resilience necessary to withstand common faults in edge com-

puting applications such as hardware faults and, increasingly,

cyber intrusions. Other parallel computing frameworks, such

as OpenMP and MPI, do not necessarily rely on leader-

follower paradigms, but are more naturally designed for well-

controlled environments and terminating computational tasks.

Skywing is a software platform developed at Lawrence Liv-

ermore National Lab, which follows a publication/subscription

paradigm. This allows any agent involved in the computation

to subscribe or publish to a stream of data, and any data on

a stream an agent is subscribed to is considered agnostic.

Because of the unstructured nature, this enables increased

flexibility, particularly for consensus based methods. Skywing

aims to provide method composition to enable a modular ap-

proach, allowing users to utilize appropriate levels of resiliency

for each module. The source code of Skywing is available on

GitHub [10].

III. S-ACD

A. Problem Statement

Consider solving the linear system

Ax = b (1)

for x ∈ R
m, where A ∈ R

m×m and b ∈ R
m. Assume the

linear system is distributed across N agents according to a

non-overlapping partition. Denote Ai ∈ R
mi×m, mi < m,

as the block of rows of matrix A that are stored on agent i,
i = 1, . . . , N . Then

A = [AT1 · · ·A
T
N]T . (2)

Given a SPD matrix A, two vectors u,v ∈ R
m are A-

conjugate if and only if

⟨u, v⟩A := ⟨u, Av⟩ = uTAv = 0. (3)

This paper establishes an asynchronous iterative method for

solving Ax = b, where agent i computes successive approxi-

mations to the solution vector x, denoted x0, x1, etc. . .

B. Conjugate Directions Algorithm

Due to the high communication costs of edge computing

environments, the classical Conjugate Gradient (CG) method

cannot be directly used due to the need for significant synchro-

nization when computing orthogonal direction vectors. How-

ever, we can utilize a variant called the Conjugate Directions

442 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

(CD) method by relaxing the global orthogonality constraints.

The CD method, introduced by Hestenes and Stiefel in [9],

is a generalization of the classical CG method. It solves the

problem iteratively by computing a sequence of conjugate di-

rection vectors. CG defines the new search direction based on a

residual vector and the previously computed search directions,

while the CD uses only the previous search directions. In this

section, a short introduction to the CD method is given. For

more details, see Hestenes and Stiefel [9].

Denote a vector z ∈ R
m at iteration κ as zκ. Let x0 be

an initial guess to the solution, then set the initial residual

r0 = b − Ax0 ∈ R
m and select an arbitrary initial direction

p0 ∈ R
m. At each iteration κ = 0, 1, . . ., the new solution

approximation and the residual are computed as

ακ =
⟨pκ, rκ⟩

⟨pκ, Apκ⟩
, (4)

xκ+1 = xκ + ακpκ, (5)

rκ+1 = rκ − ακApκ. (6)

A new direction vector pκ+1 is chosen such that
〈
pκ+1, pι

〉
A
= 0, ι = 0, . . . , κ. (7)

In the special case of the Conjugate Gradient (CG) method,

we initialize the first direction vector as p0 = r0 and compute

the subsequent direction vectors using a three-term recurrence

relation, i.e.,

βκ = −
∥rκ+1∥2
∥rκ∥2

=
⟨rκ+1, pκ⟩A
⟨pκ, pκ⟩A

, (8)

pκ+1 = rκ+1 − βκpκ. (9)

The second formulation for βκ in equation (8) represents

the coefficient used to orthogonalize the new residual vector

rκ+1 against the prior direction vector pκ using Gram-Schmidt

orthogonalization with the A-norm. In other words, pκ+1 is

computed by A-orthogonalizing the new residual vector rκ+1

against the prior direction vector pκ. Our method combines

the Conjugate Direction (CD) method globally while allowing

each device to perform Conjugate Gradient (CG) steps locally.

This approach achieves improved scaling compared to asyn-

chronous Jacobi (for which some convergence is presented in

[23]) without requiring the synchronization at each iteration

as CG does.

C. Asynchronous s-Approximate Conjugate Directions (s-

ACD)

Within the framework of the Conjugate Directions (CD)

method, our objective is to design a fully asynchronous

method. First, we introduce the following notation. Let

zψ(i,j,κ) ∈ R
m denote the local copy of the vector z from

agent j received by node i at iteration κ. Let zi ∈ R
mi denote

the subvector of z corresponding to the block of elements that

agent i is approximating. Each agent has access to its local

portion Ai of the matrix A, the full right-hand side vector b,

and maintains a set of local variables: a local residual vector

rκ ∈ R
m, a local solution vector xκ ∈ R

m, and a local

direction vector pκ ∈ R
m for each iteration κ. In this context,

κ = 1, 2, . . . represents the local iteration count of agent i.
It is important to emphasize that the iteration count may vary

between agents due to the asynchronous nature. Therefore, the

agents may be at different stages of the iterative process at any

given time.

Each agent will initialize its local vectors as follows for

κ = 0:

x0 = 0, (10)

r0 = b, (11)

p0 = b. (12)

Then, each agent will asynchronously advance from local

iteration κ to κ+ 1 using the following steps:

1) Compute the local matrix-vector product wκ := ATi p
κ
i ,

where wκ ∈ R
m and pκi ∈ R

m is the subvector of pκ

corresponding to the block of elements that agent i is

responsible for.

2) Asynchronously send the vector wκ from step 1 and the

vector pκi to the other agents.

3) Receive available updates from other agents
{
wψ(i,j,κ), p

ψ(i,j,κ)
j

}

j∈Uκ
i

,

where Uκi is the set of updates, i.e. j ∈ Uκi if and only

if agent i during its local iteration κ received an update

from agent j.

Note that for the restart mechanism introduced later, rκ and xκ

are also sent and received during these communications. Note

that the non-blocking communication allows agents to send

and receive information in an asynchronous fashion, which

enables parallelism while avoiding the need for synchroniza-

tion at every iteration.

Once the updates have been received, each agent i will

assemble the asynchronous direction vector p̃κ ∈ R
m block-

wise according to the partition:

p̃κ =

pκi , j = i;

p
ψ(i,j,κ)
j , j ∈ Uκi ;

0j , otherwise,

where p
ψ(i,j,κ)
j represents the partial local direction vector

agent i received from agent j at iteration κ. Since the matrix

A is SPD,

Az = AT z =
N∑

j=1

Aj
T zj for z ∈ R

m.

Thus, the exact A matrix-vector product of the asynchronous

direction vector, denoted w̃κ := Ap̃κ, can be computed using

only the received and local partial matrix-vector products:

w̃κ := Ap̃κ = ATi p
κ
i +

∑

j∈Uκ
i

Aj
Tp

ψ(i,j,κ)
j ,

= wκ +
∑

j∈Uκ
i

wψ(i,j,κ).

LUCAS ERLANDSON ET AL.: RESILIENT S-ACD FOR ASYNCHRONOUS COLLABORATIVE SOLUTIONS OF SYSTEMS OF LINEAR EQUATIONS 443

We use the asynchronous direction vector w̃ to construct

the s-conjugate direction vector, denoted dκ. It is essential

that dκ is A-conjugate to the s prior s-conjugate direction

vectors dκ−s−1, . . . ,dκ−1. To achieve this, we can employ

a method such as Gram-Schmidt orthogonalization. In order

to ensure conjugacy with prior direction vectors, additional

storage of the prior s conjugate direction vectors,
{
dκ−ℓ

}s
ℓ=1

,

and their A-products,
{
vκ−ℓ

}s
ℓ=1

, is necessary. These vectors

are defined recursively, with d0 = p̃0, v0 = w̃0, and for

κ > 0,

dκ = p̃κ −

min(s,κ)∑

ℓ=1

GSA
(
p̃κ,dκ−ℓ

)
dκ−ℓ, (13)

vκ = Adκ = w̃κ −

min(s,κ)∑

ℓ=1

GSA
(
p̃κ,dκ−ℓ

)
vκ−ℓ,

where GSA(p̃
κ,dκ−ℓ) is the magnitude of the projection of

the vector p̃κ onto the vector dκ−ℓ under the A-inner product,

i.e.,

GSA
(
p̃κ,dκ−ℓ

)
:=

〈
p̃κ, dκ−ℓ

〉
A

⟨dκ−ℓ, dκ−ℓ⟩A
,

=

〈
p̃κ, vκ−ℓ

〉

⟨dκ−ℓ, vκ−ℓ⟩
.

Note that the exact matrix-vector product vκ = Adκ is

ensured due to the definition of w̃κ := Ap̃κ.

In the following theorem, we prove that dκ is A-conjugate

to the prior s conjugate direction vectors
{
dκ−ℓ−1

}s
ℓ=1

.

Theorem 1. Let dκ,vκ be defined as in (13). Then for ℓ =
1, . . . ,min(s, κ),

〈
dκ, dκ−ℓ

〉
A
= 0.

Proof. We proceed by induction on the iteration number κ. For

κ = 0, the statement holds trivially. Suppose that the statement

holds true for κ = 0, . . . , ι − 1. We now show the statement

holds true for κ = ι.

By the definition of dκ, for 1 ≤ ℓ ≤ min(s, κ)

〈
dκ, dκ−ℓ

〉
A

=

〈
p̃κ −

min(s,κ)∑

ν=1

GSA
(
p̃κ,dκ−ν

)
dκ−ν , dκ−ℓ

〉

=
〈
p̃κ, dκ−ℓ

〉
A
−

min(s,κ)∑

ν=1

GSA
(
p̃κ,dκ−j

) 〈
dκ−ν , dκ−ℓ

〉
A
.

By the induction hypothesis,
〈
dκ−ν , dκ−ℓ

〉
A
= 0 for all ν =

1, . . . ,min(s, κ) such that ν ̸= ℓ. Hence,
〈
dκ, dκ−ℓ

〉

=
〈
p̃κ, dκ−ℓ

〉
A
−GSA

(
p̃κ,dκ−ℓ

) 〈
dκ−ℓ, dκ−ℓ

〉
A
,

=
〈
p̃κ, dκ−ℓ

〉
A
−

〈
p̃κ, dκ−ℓ

〉
A

⟨dκ−ℓ, dκ−ℓ⟩A

〈
dκ−ℓ, dκ−ℓ

〉
A
,

= 0.

Thus at iteration κ, we have that
〈
dκ, dκ−ℓ

〉
A
= 0 for ℓ =

1, . . . ,min(s, κ).

Using this definition of dκ, we can proceed in a manner

similar to the Conjugate Directions (CD) method. Define the

step size

ακ :=
⟨rκ, dκ⟩

⟨dκ, vκ⟩
. (14)

Using the step size ακ, the approximate solution and residual

vectors are updated

xκ+1 := xκ + ακdκ, (15)

rκ+1 := rκ − ακvκ. (16)

Finally, the next local direction vector is computed by en-

forcing the new residual rκ+1 to be s-conjugate with the s-

conjugate direction vectors dκ−ℓ, 0 ≤ ℓ ≤ min(s, κ)− 1,

pκ+1 := rκ+1 −

min(s,κ)−1∑

ℓ=0

GSA
(
rκ+1,dκ−ℓ

)
dκ−ℓ. (17)

Restarting: Due to the asynchronous nature of the s-

ACD algorithm, it is possible that the direction vectors, and

consequently the approximate solution vectors, differ between

agents at each local iteration. To address the potential stag-

nation that can result from such a scenario, we incorpo-

rate an asynchronous restarting procedure. By introducing

these asynchronous restarts, we provide an opportunity for

the agents to realign their progress, mitigate the effects of

asynchronicity, and make collective advancements towards the

true solution. The frequency of the restarts can be adjusted

based on the specific requirements and characteristics of the

problem being solved. As mentioned earlier, during the s-ACD

communication stage, each agent will send its local solution

vector xκ and local residual vector rκ. This exchange allows

each agent to have an updated understanding of the current

state of the (global) computation, enabling more efficient

choices of direction vectors for the subsequent iterations.

The algorithm is restarted periodically after detecting stag-

nation in the residual norm. The detection of stagnation and

following restart is purely a local decision and calculation.

The restarting will be performed if a specified number of

iterations have passed since the last restart and the residual

norm has decreased less than a prescribed tolerance. This

involves resetting the necessary variables, such as solution

vectors, residual vectors, and direction vectors, to a common

starting point. By doing so, the agents can restart from a

more unified state and resume the algorithm to overcome the

444 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

convergence stagnation. When a restart is deemed necessary,

the local approximation to the asynchronous residual vector r̃κ

is constructed by averaging the most recent updates
{
rψ(i,j,κ)

}

received from each neighbor. If no updates have been received

from agent j, then set rψ(i,j,0) := b, i.e.,

r̃κ =
1

N

N∑

j=1

rψ(i,j,κ),

where rψ(i,i,κ) = rκ. Then, local approximation to the

asynchronous solution vector x̃κ is computed by averaging

the most recently received solution vectors
{
xψ(i,j,κ)

}
. If

no updates have been received from an agent j, then set

xψ(i,j,0) = 0, i.e.,

x̃κ =
1

N

N∑

j=1

xψ(i,j,κ), (18)

where xψ(i,i,κ) = xκ. Note that

b−Ax̃κ = b−
1

N

N∑

j=1

Axψ(i,j,κ),

=
1

N

N∑

j=1

(
b−Axψ(i,j,κ)

)
,

=
1

N

N∑

j=1

rψ(i,j,κ),

= r̃κ.

Thus, the restarting procedure maintains the accuracy of the

residual. Additionally, we found empirically that explicitly

recomputing the local partial residual as

r̃κi = bi −Aix̃
κ

generally improves convergence and enables convergence for

some non-symmetric matrices A. Modifications to (13) and

(17) are required to account for the possibility that the s
prior s-conjugate direction vectors may no longer be consistent

after a restart. To address this issue, we introduce the set S ,

which represents the subset of “active” s-conjugate direction

vectors. After a restart, this set is reset to S = ∅. After each

iteration, we update S by taking the union of the set with

the newly computed direction vector dκ, i.e., S = S ∪ {dκ}.
Only the vectors within the set S can be used in the s-step

orthogonalization process. Thus, (13) and (17) need to be

modified accordingly, i.e.,

dκ = p̃κ −

min(s,|S|)∑

ℓ=1

GSA
(
p̃κ,dκ−ℓ

)
dκ−ℓ, (19)

vκ = Adκ = w̃κ −

min(s,|S|)∑

ℓ=1

GSA
(
p̃κ,dκ−ℓ

)
vκ−ℓ,

and

pκ+1 := rκ+1 −

min(s,|S|−1)∑

ℓ=0

GSA
(
rκ+1,dκ−ℓ

)
dκ−ℓ. (20)

To complete the restarting procedure, all the agents set their

local vectors accordingly: xκ = x̃κ, pκ = r̃κ, and rκ = r̃κ.

IV. DATA ERRORS AND CORRUPTION MODELING

As increased parallelism and new environments are con-

sidered, the likelihood of errors increases and so too does the

costs associated with data errors. Practical Krylov methods in-

troduce restarts to handle errors introduced through finite pre-

cision calculations. However, the restarts alone are not enough

when larger or more discrete data errors happen, the methods

can lose the underlying subspace and orthogonality properties

that they rely on. Thus, additional resiliency measures must

be considered in environments where such large disruptions

are expected. Even the s-ACD method above, which has the

self-correcting restart mechanism, is still susceptible to errors

introduced through numerous pathways including malicious

injection, disconnection of agents, corruption introduced into

the signal, delays in communication, agents entering a failed

state, bit-errors introduced locally, etc. We focus on data

corruption where the original data being communicated at a

single iteration is replaced by other values.

One important note is that we only corrupt one vector at

a time. Because the x and r vectors are only used during

the restart, to accurately model the errors, we must force a

restart after a corruption occurs, otherwise corruptions in x

and r may be masked. To understand this, imagine we corrupt

a transmission of vector x at iteration ι, and we do not force

a restart. The receiving agent receives this corrupted x at

iteration κ, stores it, but it does not use it in the calculation

because a restart does not happen. However, at iteration κ′ > κ
when a restart occurs, the transmitted vector x from iteration

κ′ is stored (overwriting the previous corrupted vector with an

uncorrupted vector) and is used during the restart. Thus, the

corrupted x that was stored at iteration κ was overwritten and

never used, leading to the corruption being masked.

The failure model we consider is that of one-off corruption,

meaning that at some point in time, one or more agents all have

corruption applied to one of the vectors transmitted during

that iteration. This failure model has been chosen for multiple

reasons:

• such corruption clearly partitions time into a “before” and

“after” corruption portions, where the “before” portion

should be identical to the uncorrupted case,

• one can easily visually identify where the corruption

occurs,

• it is simple to implement,

• it forms the basis for other forms of corruption and can

relatively easily be generalized to the other forms.

V. RESILIENT S-ACD

While the s-ACD method has the self-correcting restart

mechanism that allows it to be resilient to the presence of

non-orthogonal directions introduced by the asynchronous ap-

proach (and somewhat resilient to other data errors), additional

resiliency measures would be able to decrease the impact of

other data errors. In this section, we introduce resiliency in

LUCAS ERLANDSON ET AL.: RESILIENT S-ACD FOR ASYNCHRONOUS COLLABORATIVE SOLUTIONS OF SYSTEMS OF LINEAR EQUATIONS 445

Algorithm 1 s-Approximate Asynchronous Conjugate Direc-

tions.

for node i← 1 to N do

INPUT: global vector b, local portion Ai of the A matrix

OUTPUT: Each node i has a local approximation xκ to

the solution vector x

for j ← 1 to N, j ̸= i do

initialize xj = 0, rj = bj ,pj = bj
end for

for κ← 0 to tmax do

wκ ← ATi p
κ

Send wκ, pκi , xκ, rκ{
wψ(i,j,κ),p

ψ(i,j,κ)
j ,xψ(i,j,κ), rψ(i,j,κ)

}

j∈Uκ
i

←

ReceiveAsync

Set Uκi := set of node indices from which updates were

received

p̃κi = pκi
w̃κ = wκ

for j ∈ Uκi do

p̃κj = p
ψ(i,j,κ)
j

w̃κ = w̃κ +wψ(i,j,κ)

xψ(i,j,ℓ) = xψ(i,j,κ)

xψ(i,j,ℓ) = rψ(i,j,κ)

end for

dκ = p̃κ −
∑min(s,|S|)
ν=1 GSA(p̃

κ,dκ−ν)dκ−ν

vκ = w̃κ −
∑min(s,|S|)
ν=1 GSA(p̃

κ,dκ−ν)vκ−ν

ακ = ⟨rκ, d
κ⟩/⟨dκ, v

κ⟩

xκ+1 = xκ + ακdκ

rκ+1 = rκ − ακvκ

pκ+1 = rκ+1
i −

min(s,|S|−1)∑

ν=0

GSA(r
κ+1,dκ−ν)dκ−ν

(21)

if ∥rκ+1∥/∥b∥ < ϵ then

return xκ+1

end if

if ShouldRestart(rκ+1, κ) then

xκ = 1
N

(
xκ +

∑N

j=0,j ̸=i x
ψ(i,j,ℓ)

)

rκ = 1
N

(
rκ +

∑N

j=0,j ̸=i x
ψ(i,j,ℓ)

)

rκi = bi −Aix
κ

pκ = rκ

S = ∅
end if

end for

end for

two stages: the detection stage and the correction stage. The

benefit of this approach is to separate the tasks of identifying

deviations from “normal” behavior and the ability to correct

said behavior.

A. Detection Stage

To detect data errors, we need to be able to identify when

the method is in a state that is not “normal.” In CG, this can

be done through the orthogonality conditions or monotoni-

cally decreasing quantities — which if violated indicate that

something is not as expected. However, in order to achieve

asynchronicity, s-ACD loses the orthogonality conditions. In-

stead, we can develop different detection schemes leveraging

knowledge from CG.

1) Checksum: The checksum method is based off on idea of

checksums, i.e., calculating a quantity locally, transmitting it

with the information, and checking that the received quantity,

when recalculated locally, is consistent. One simple way of

doing this is using the inner-product of two vectors. The

downside of this method is that it relies on a trustworthy

sender (the sender can adjust both the checksum and sent

vectors accordingly) and requires additional communication.

However, it comes with a number of pros, e.g., it requires

only a small amount of local computation (perhaps some that

is being performed anyway), provides per-agent detection, puts

constraints on the possible malicious vectors that can be used,

and is cheap and easy to implement. In particular, we use

pTw, where only the local portions of both vectors are used

(as only the local portion of p is sent and available to check

with). This is done by calculating the checksum before an

agent sends its vectors (Alg. 2), and comparing the received

value against the recalculated value at the arrival (Alg. 3).

Algorithm 2 Checksum calculation before sending.

γκ ← wκ
i
Tpκi

Send wκ, pκi , xκ, rκ, γκ

Algorithm 3 Checksum calculation after receiving.

for j ∈ Uκk do

if γκ == wψ(i,j,κ)Tp
ψ(i,j,κ)
j then

p̃κj = p
ψ(i,j,κ)
j

w̃κ = w̃κ +wψ(i,j,κ)

xψ(i,j,ℓ) = xψ(i,j,κ)

xψ(i,j,ℓ) = rψ(i,j,κ)

else

Mark update κ from agent j as corrupted

end if

end for

2) General: As mentioned previously, one way of detecting

corruption is to detect when the result from a calculation

is different from what it should be. One can use “metrics”

(also called indicator variables), which are simple scalars that

change over time, and see when they change in unexpected

446 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

ways. This allows us to adapt to different convergence speeds

and parts of the convergence without relying too heavily

on tunable parameters. While we lose precise orthogonality

conditions and monotonically decreasing quantities in s-ACD,

we do still have some relations that are roughly predictable.

For example, as iterations progress, ⟨dκ, vκ⟩, ⟨pκ, pκ⟩A, and

⟨rκ, rκ⟩ all tend to decrease. Thus, we can monitor these

values and determine when they increase between successive

iterations more than expected.

Because there is significant variation of the metrics over

the course of the solve, we should not look directly at the

successive difference of a timeseries metric ξ between itera-

tions. Instead, we apply a smoothing step, take the difference

between the smoothed values, and compare that against a

smoothed version of the difference of smoothed values. When

the ratio of these quantities gets above a specified value (which

tends to be quite robust), we mark this iteration as corrupted.

To perform the smoothing we use a running average with

a window size σ of 15 iterations, which allows us to perform

these calculations online. If we let ξ be a R
κ timeseries with ξi

being the value at point i in time, then we define the smoothed

timeseries as

smooth(ξ, σ, i) =

i∑
j=max(0,i−σ)

ξj

min(i, σ)
.

We define the relative successive difference to be

diff(ξ, i) =
ξi+1 − ξi

|ξi|
.

We consider a timeseries ξ to be corrupted at time i if

smooth(diff(smooth(ξ, size, i), i), size, i) > ϵ for some tol-

erance ϵ > 0.

In particular, we track the timeseries defined by ⟨vκ, dκ⟩
and ⟨rκ, rκ⟩. The biggest drawbacks of this method are that it

does not provide per-agent detection and introduces additional

computational steps. However, it is easily generalizable to

other methods, requires only local computation, doesn’t rely

on a trustworthy sender, and the computational complexity

can be mitigated by updating the differences and smoothed

timeseries at each time step rather than recalculating the entire

timeseries.

3) Algorithm-Based: The final class of detection methods

that we will discuss are the algorithm-based metrics. These

rely on knowing specific analytical relations within the calcu-

lations, such as the orthogonality conditions in CG. Although

we do not have the orthogonality conditions, we do know

that, Ax = b and r = b − Ax. There are many solution

approximations and associated residuals that can be calculated,

all of which should be similar to each other. Thus, if one of

these vectors differs significantly from the others (or what is

expected via explicit calculation of the residual), this indicates

that a corruption is likely to have occurred. We compare

the incoming solution and residual vectors from other agents

against the updated value of the currently considered solution

and residual, as well as the most recent solution and residual

that have been checked by the detection mechanisms and

identified as uncorrupted.

Due to the many comparisons and matrix-vector products

involved, this is a computationally expensive check. However,

it doesn’t require any additional communication and provides

per agent detection. Furthermore, the adaptive properties of

the general metrics can be explored, although they are not

currently used in our implementation (Alg 4).

Algorithm 4 Algorithm-based check for agent i, which com-

pares the proposed update when applied to the incoming

solution and residual vectors from agent j, with baseline

updated solution and residual vectors.

for j=1, . . . , N do

Xj := xψ(i,j,κ) + ακdκ

Rexp := bi −AiXj
Riter := rψ(i,j,κ) + ακdκ

xS := the last xψ(i,j,ι) vector considered to be uncor-

rupted

rS := the last xψ(i,j,ι) vector considered to be uncor-

rupted

for (x, r) ∈ ((xκ, rκ), (xS , rS)) do

Xj := x+ ακdκ

R
exp := bi −AiXj

R
iter := r − ακvκ

if (
||Xj ||−||Xj ||

min(||Xj ||,||Xj ||)
> ϵ1) or (||Rexp||−||Rexp||

min(||Rexp||,||Rexp||) >

ϵ2) or (||Riter||−||Riter||
min(||Riter||,||Riter||) > ϵ3) then

Agent i considers agent j’s communication at itera-

tion ι as corrupted.

end if

end for

end for

B. Correction Phase

Once a transmission has been identified to contain a data

error, a correction must be performed. Under traditional meth-

ods, this might require restarting the entire computation [28],

however, we are able to utilize a more nuanced approach which

reduces the amount of redundant calculations. We introduce a

simple rejection approach, which performs well for the class

of investigated data errors. The simplest form of correction is

to ignore the updates associated with an iteration that has been

flagged as corrupted. If a specific agent has been identified as

the source of the corruption, it is possible to ignore the updates

from that agent only.

VI. NUMERICAL EXPERIMENTS

To demonstrate the performance of the newly proposed s-

ACD and resiliency methods, a number of numerical experi-

ments are conducted. These experiments are performed on a

MacBook Pro (2019) with a 2.4GHz 8-Core Intel Core i9 CPU,

and 64GB of 2667 MHz DDR4 Memory. Unless otherwise

stated, experiments are run with four agents. When a 2D

Poisson problem is used, it has homogeneous Dirichlet bound-

ary conditions and is discretized with first order central finite

LUCAS ERLANDSON ET AL.: RESILIENT S-ACD FOR ASYNCHRONOUS COLLABORATIVE SOLUTIONS OF SYSTEMS OF LINEAR EQUATIONS 447

differences with a right-hand side g(x, y) = sin(πx) sin(πy)
for a point at location (x, y). When a random SPD matrix is

used, it has a condition number of 50, with a right-hand side

defined by a vector of all ones.

Fig. 1 displays a variety of restarting frequencies f and s-

step sizes s when using s-ACD over five runs, where the mean

of the runs is plotted in a solid line and the 95% confidence

interval displayed in the corresponding shaded region. We can

see that having a large s-step size s relative to restart size f ,

such as the cases of f = 15, s = 10 and f = 5, s = 5 results

in both a higher iteration count and a slower convergence.

This is likely due to when the s-step size and restart sizes are

similar, the number of full s sized s-step updates performed is

small. There was not a significant difference in the other tested

combinations. For the following tests, f = 15 and s = 5.

Fig. 2 demonstrates the scaling of the s-ACD method

against the scaling of the asynchronous Jacobi and serial

CG methods when changing the number of rows (and hence

the condition number) of a 2D Poisson matrix with five

runs, with the means plotted with solid lines and the 95%

confidence interval plotted in the shaded region. We can see

that our s-ACD method achieves better asymptotic scaling

than the asynchronous Jacobi method, although not as good

as serial CG, especially for larger condition numbers. The

scaling achieved on systems with condition numbers in the

range of 102 to 103 is comparable with CG, with a significant

improvement in the absolute number of iterations compared

to asynchronous Jacobi. The development of convergence

theory could be used to better understand the results seen, and

asynchronous preconditioning can improve the convergence

further.

A 100×100 random SPD problem is used for Fig. 3, where

different vectors are corrupted during communication, and the

resulting l2-norms are plotted for each agent, demonstrating

the impact of these data errors on the metrics. The metrics are

very noisy, due to the loss of orthogonality and independent

nature of each agent. We see spikes around each restart, as the

local residual and solution vectors are changed, potentially sig-

nificantly, compared to the previous iteration. We observe that

in all cases, the convergence slows down after the corruption

at one second, while in the x,p, r cases, there is a significant

spike in the observed metrics. This is because corrupting the

x, r,p vectors (directly or indirectly) permanently destabilizes

the subspace and has immediate consequences, while the w

vector is recalculated at each iteration from the p vector.

The varying steps of the “generic” correction scheme are

demonstrated in Fig. 4, which is a random SPD problem

with a data error occurring after one second, separating out

the global post-processed metrics from the metrics visible to

each agent (Fig. 4a). We see that the global post-processed

metric is very smooth, ignoring the spike at each restart,

indicating that the overall behavior of the agents approximates

is similar to the behavior of CG. We observe that the local

metrics do correlate strongly with the trend of the global post-

processed metrics, indicating that they can be used as a proxy

for the overall convergence. While in synchronous CG, we

2× 10
2

3× 10
2
4× 10

2
6× 10

2

matrix condition number

2× 10
2

3× 10
2

4× 10
2

6× 10
2

av
er
ag
e
it
er
at
io
n
co
u
n
t

f = 15, s = 5 Mean

f = 5, s = 5 Mean

f = 20, s = 5 Mean

f = 15, s = 10 Mean

f = 15, s = 3 Mean

(a) Comparing by iteration count.

2× 10
2

3× 10
2
4× 10

2
6× 10

2

matrix condition number

10
1

av
er
ag
e
w
al
l-
cl
o
ck

ti
m
e
(s
)

f = 15, s = 5 Mean

f = 5, s = 5 Mean

f = 20, s = 5 Mean

f = 15, s = 10 Mean

f = 15, s = 3 Mean

(b) Comparing by time.

Fig. 1: Comparing the scaling of different restarting frequen-

cies f and s-step sizes s for s-ACD on a 2D Poisson problem

discretized with finite differences with four agents and five

runs proceeding until a tolerance of 1e-5 is reached. The

shaded region represent a 95% confidence interval.

2× 10
2

3× 10
2
4× 10

2
6× 10

2

matrix condition number

10
2

10
3

av
er
ag
e
it
er
at
io
n
co
u
n
t

s-ACD Mean

O (12.01κ0.55)

ASJ Mean

O (16.28κ0.85)

CG Mean

O (2.21κ0.50)

Fig. 2: Scaling of s-ACD vs asynchronous Jacobi (ASJ) and

serial CG method on a 2D Poisson problem discretized with

finite differences with four agents and five runs proceeding

until a tolerance of 1e-5 is reached. The shaded region

represents the 95% confidence interval.

would expect these metrics to be monotonically decreasing,

the asynchronous algorithm removes these guarantees. Thus,

the procedure of smoothing and successive differences must be

used and through this adaptive method is able to detect when

the corruption happens via local computations. It is clear that

after these procedures (Fig. 4e) the aberration can be easily

detected.

Finally, Fig. 5 shows the residual of a 100 × 100 random

SPD problem for four agents for the s-ACD method with and

without the resiliency measures, for 30 runs with the mean of

runs plotted as the solid line, while the dotted lines correspond

to individual runs and the shaded region to the 95% confidence

interval. By enabling all three sets of resiliency measure

discussed above, the data errors are successfully detected and

corrected. We can see that adding the resiliency measures

annihilates the impact of the corruption, leading to four times

faster convergence than without resiliency measures.

448 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

0 1 2 3 4 5
time

10 10

10 8

10 6

10 4

10 2

100

102

so
lu

tio
n

L2
 n

or
m

s

||r0||2
||r1||2
||r2||2
||r3||2
vT0d0

vT1d1

vT2d2

vT3d3

(a) Corruption in w

0 2 4 6 8 10
time

10 9

10 7

10 5

10 3

10 1

101

103

105

so
lu

tio
n

L2
 n

or
m

s

||r0||2
||r1||2
||r2||2
||r3||2
vT0d0

vT1d1

vT2d2

vT3d3

(b) Corruption in r

0 2 4 6 8 10
time

10 9

10 7

10 5

10 3

10 1

101

103

105

so
lu

tio
n

L2
 n

or
m

s

||r0||2
||r1||2
||r2||2
||r3||2
vT0d0

vT1d1

vT2d2

vT3d3

(c) Corruption in x

0 2 4 6 8 10
time

10 10

10 8

10 6

10 4

10 2

100

102

104

so
lu

tio
n

L2
 n

or
m

s

||r0||2
||r1||2
||r2||2
||r3||2
vT0d0

vT1d1

vT2d2

vT3d3

(d) Corruption in p

Fig. 3: Demonstrating the impact of errors introduced into

different vectors of s-ACD after one second into all agents,

where the metric of each agent is displayed. The problem

considered is a 100×100 random SPD problem with condition

number 50.

VII. CONCLUSION

We have seen that due to the increased parallelism and new

computational paradigms, asynchronous and resilient methods

should be developed. In this paper, we have developed the

s-ACD method that combines the CD method globally with

the CG method locally. This provides scaling with respect

to the condition number comparable with CG on the tested

2D Poisson problem, while ensuring complete asynchronicity,

as global orthogonalization is no longer required, as well

as some resiliency. Furthermore, we developed three detec-

tion techniques: a “generic” detection scheme, a “checksum”

detection scheme, and an algorithm-based detection scheme.

These methods were applied to s-ACD, creating the resilient

s-ACD method. Numerical experiments were performed to

demonstrate that this resilient s-ACD method is able to handle

the introduction of data errors into the communication pattern,

resulting in a significant decrease of iterations compared to

the uncorrupted case. Future improvements include developing

theory for the s-ACD method and resilient variation, adding

more elaborate correction methods such as rollback, as well

as developing asynchronous preconditioners to allow the con-

sidered methods to scale to larger problems.

REFERENCES

[1] Y. Saad, Iterative methods for sparse linear systems. SIAM, 2003.

[2] C. T. Kelley, Iterative methods for linear and nonlinear equations.
SIAM, 1995.

[3] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct methods for sparse

matrices. Oxford University Press, 2017.

[4] T. A. Davis, Direct methods for sparse linear systems. SIAM, 2006.

0 2 4 6 8 10
time

10 4

10 3

10 2

10 1

100

101

102

so
lu

tio
n

L2
 n

or
m

s

||r||2
||b Ax||2

(a) Global metrics via post-processing.

0 2 4 6 8 10
time

10 9

10 7

10 5

10 3

10 1

101

103

105

so
lu

tio
n

L2
 n

or
m

s

||r0||2
||r1||2
||r2||2
||r3||2
vT0d0

vT1d1

vT2d2

vT3d3

(b) Metrics

0 2 4 6 8 10
time

10 7

10 5

10 3

10 1

101

103

105

so
lu

tio
n

L2
 n

or
m

s

||r0||2
||r1||2
||r2||2
||r3||2
vT0d0

vT1d1

vT2d2

vT3d3

(c) Smoothed Metrics

0 2 4 6 8 10
time

10 5

10 3

10 1

101

103

105

107

109

so
lu

tio
n

L2
 n

or
m

s

||r0||2
||r1||2
||r2||2
||r3||2
vT0d0

vT1d1

vT2d2

vT3d3

(d) Difference of Smoothed Metrics

0 2 4 6 8 10
time

10 1

101

103

105

107

so
lu

tio
n

L2
 n

or
m

s

||r0||2
||r1||2
||r2||2
||r3||2
vT0d0

vT1d1

vT2d2

vT3d3

(e) Smoothed Differences of Smoothed
Metrics

Fig. 4: Different stages of the post-processing pipeline applied

to the metrics when an error is introduced after one second into

all agents for the s-ACD method (without resiliency measures).

The problem considered is a 100 × 100 random SPD with

condition number 50.

[5] J. J. Dongarra, I. S. Duff, D. C. Sorensen, H. A. Van der Vorst, and
others, Solving linear systems on vector and shared memory computers.
SIAM Philadelphia, 1991.

[6] J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A. Van der Vorst,
Numerical linear algebra for high-performance computers. SIAM,
1998.

[7] Y. Saad, “Krylov subspace methods on supercomputers,” SIAM Journal

on Scientific and Statistical Computing, vol. 10, no. 6, pp. 1200–1232,
1989. doi: https://doi.org/10.1137/0910073

[8] C. Lanczos, “Solution of systems of linear equations by minimized
iterations,” J. Res. Nat. Bur. Standards, vol. 49, no. 1, pp. 33–53, 1952.

[9] M. R. Hestenes, E. Stiefel, and others, “Methods of conjugate gradients
for solving linear systems,” Journal of Research of the National Bureau

of Standards, vol. 49, no. 6, pp. 409–436, 1952.

[10] C. Ponce, K. Harter, A. Fox, and C. Vogl, “Skywing,” [Computer
Software] https://doi.org/10.11578/dc.20221110.2, nov 2022. [Online].
Available: https://doi.org/10.11578/dc.20221110.2

[11] E. C. Carson, “An adaptive s-step conjugate gradient algorithm with
dynamic basis updating,” Applications of Mathematics, vol. 65, no. 2,
pp. 123–151, 2020. doi: https://doi.org/10.21136/AM.2020.0136-19

LUCAS ERLANDSON ET AL.: RESILIENT S-ACD FOR ASYNCHRONOUS COLLABORATIVE SOLUTIONS OF SYSTEMS OF LINEAR EQUATIONS 449

0.0 2.5 5.0 7.5 10.0 12.5

time (s)

10
−4

10
−3

10
−2

10
−1

10
0

10
1

en
se
m
b
le
m
ea
n
re
la
ti
ve

er
ro
r

s-ACD

Resilient s-ACD

Fig. 5: Comparing the convergence of s-ACD (f = 15, s = 5)

with and without correction where the x vector is corrupted

on all four agents after one second for a random 100 × 100
SPD matrix with condition number 50 until a tolerance of 1e-

5 is reached, averaged over 30 runs with the 95% confidence

interval shown in the shaded region. The tail seen at the end

is due to the agents ensuring that global convergence has been

reached.

[12] A. Chronopoulos and C. Gear, “s-step iterative methods for symmetric
linear systems,” Journal of Computational and Applied Mathematics,
vol. 25, no. 2, pp. 153–168, 1989. doi: https://doi.org/10.1016/0377-
0427(89)90045-9. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/0377042789900459

[13] S. Cools, J. Cornelis, P. Ghysels, and W. Vanroose, “Improving strong
scaling of the conjugate gradient method for solving large linear systems
using global reduction pipelining,” arXiv preprint arXiv:1905.06850,
2019. doi: https://doi.org/10.48550/arXiv.1905.06850

[14] P. R. Eller and W. Gropp, “Scalable non-blocking preconditioned con-
jugate gradient methods,” in SC’16: Proceedings of the International

Conference for High Performance Computing, Networking, Storage and

Analysis. IEEE, 2016. doi: https://doi.org/10.1109/SC.2016.17 pp. 204–
215.

[15] M. Tiwari and S. Vadhiyar, “Pipelined Preconditioned s-step Conjugate
Gradient Methods for Distributed Memory Systems,” in 2021 IEEE

International Conference on Cluster Computing (CLUSTER). IEEE,
2021. doi: https://doi.org/10.1109/Cluster48925.2021.00061 pp. 215–
225.

[16] M. Shantharam, S. Srinivasmurthy, and P. Raghavan, “Fault tolerant
preconditioned conjugate gradient for sparse linear system solution,” in
Proceedings of the 26th ACM international conference on Supercomput-

ing, 2012. doi: https://doi.org/10.1145/2304576.2304588 pp. 69–78.
[17] M. E. Ozturk, M. Renardy, Y. Li, G. Agrawal, and C.-S. Chou, “A Novel

Approach for Handling Soft Error in Conjugate Gradients,” in 2018

IEEE 25th International Conference on High Performance Computing

(HiPC), 2018. doi: 10.1109/HiPC.2018.00030 pp. 193–202.
[18] A. Schöll, C. Braun, M. A. Kochte, and H.-J. Wunderlich, “Efficient on-

line fault-tolerance for the preconditioned conjugate gradient method,”
in 2015 IEEE 21st International On-Line Testing Symposium (IOLTS),
2015. doi: 10.1109/IOLTS.2015.7229839 pp. 95–100.

[19] D. Chazan and W. Miranker, “Chaotic relaxation,” Linear alge-

bra and its applications, vol. 2, no. 2, pp. 199–222, 1969. doi:
https://doi.org/10.1016/0024-3795(69)90028-7

[20] A. Frommer and D. B. Szyld, “On asynchronous iterations,” Journal of

computational and applied mathematics, vol. 123, no. 1-2, pp. 201–216,
2000. doi: https://doi.org/10.1016/S0377-0427(00)00409-X

[21] J. M. Bahi, S. Contassot-Vivier, and R. Couturier, Parallel iterative

algorithms: from sequential to grid computing. CRC Press, 2007.
[22] J. Hook and N. Dingle, “Performance analysis of asynchronous par-

allel Jacobi,” Numerical Algorithms, vol. 77, pp. 831–866, 2018. doi:
https://doi.org/10.1007/s11075-017-0342-9

[23] J. Wolfson-Pou and E. Chow, “Convergence models and surprising
results for the asynchronous Jacobi method,” in 2018 IEEE International

Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2018.
doi: 10.1109/IPDPS.2018.00103 pp. 940–949.

[24] ——, “Modeling the asynchronous Jacobi method without communi-
cation delays,” Journal of Parallel and Distributed Computing, vol.
128, pp. 84–98, 2019. doi: https://doi.org/10.1016/j.jpdc.2019.02.002.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0743731518304751

[25] H. Anzt, J. Dongarra, and E. S. Quintana-Ortí, “Tuning stationary
iterative solvers for fault resilience,” in Proceedings of the 6th Workshop

on Latest Advances in Scalable Algorithms for Large-Scale Systems,
2015. doi: https://doi.org/10.1145/2832080.2832081 pp. 1–8.

[26] Apache Software Foundation, “Hadoop,” 2021, version Number: 3.3.03.
[Online]. Available: https://hadoop.apache.org

[27] ——, “Spark,” 2021, version Number: 3.3.0. [Online]. Available:
https://spark.apache.org

[28] A. Moody, G. Bronevetsky, K. Mohror, and B. R. De Supinski, “De-
sign, modeling, and evaluation of a scalable multi-level checkpointing
system,” in SC’10: Proceedings of the 2010 ACM/IEEE International

Conference for High Performance Computing, Networking, Storage and

Analysis. IEEE, 2010. doi: https://doi.org/10.1109/SC.2010.18 pp. 1–
11.

450 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

