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Abstract—Large-scale computation (LSC) systems are often
performed in distributed environments where message passing is
the key to orchestrating computations. In this paper, we present
a new message queue concept developed within the context of
an LSC system (BalticLSC). The concept consists in proposing
a multi-queue, where queues are grouped into families. A queue
family can be used to distribute messages of the same kind
to multiple computation modules distributed between various
nodes. Such message families can be synchronised to implement
a mechanism for initiating computation jobs based on multiple
data inputs. Moreover, the proposed multi-queue has built-in
mechanisms for controlling message sequences in applications
where complex data set splitting is necessary. The presented
multi-queue concept was successfully implemented and applied
in a working LSC system.

I. INTRODUCTION

L
ARGE-SCALE computations (LSC) are often performed

in a distributed environment. Several computation nodes

can be linked together to execute resource-consuming tasks.

One of the main issues is the management of data flow

between these nodes [1]. The goal is to reduce data transfer

overheads and maximise the speed of computations. In a data

flow-driven approach to LSC, computation applications are

divided into computation steps, with data flowing as messages

between these steps. An example of such a system is the Balti-

cLSC platform [18], [13] (www.balticlsc.eu). It is a low-code

computation environment created as part of a project intended

to facilitate easier access to LSC. It performs computations

in the form of Docker-based computation modules that are

orchestrated according to applications defined in a dedicated

graphical language called CAL (Computation Application

Language) [19]. CAL revolves around the flow of data. The

specific sequence of execution for computation modules is

defined by specifying paths through which data flows between

them. This creates the need for means to schedule starting

of computation jobs according to data availability and to

propagate that data between modules as defined by a CAL

application. Other examples of systems where computations

are driven by flowing data and that use graphical languages are

WS-PGRADE [7], [6] and Flowbster [8]. Also, other Scientific

Workflow Systems use this kind of approach [11].

This work was partially funded by the InterReg BSR Programme, grant no.
#075

Figure 1 shows an example application written in CAL.

This application consists of three computation modules (the

boxes) communicating through 6 data flows (the arrows). The

application has two inputs (“Videos” and “Subtitles”) and one

output (“Films”). In this example, the inputs and the output

are sequences of folders containing appropriate files. Module

“A” is a File Synchroniser type. It accepts two folders and,

using certain naming conventions, produces two synchronous

sequences of files (here: a video file matched with a subtitle

file). The video file is processed by module “B” which is a

Video Converter. Finally, module “C” (a VS Mixer) mixes

the processed video file with the subtitle file received directly

from module “A”. Individual files resulting from module “C”

are then placed in appropriate folders at the output.

The flow of data between computation modules in Figure

1 is shown through additional tokens besides data flows. The

numbers in circles relate to the specific flows (numbered 1 to

6 to denote the six flows). The numbers in rectangles denote

sequence numbers. As we can notice, these sequence numbers

can be stacked. For instance, token “1” with sequence number

“0” (T1-S0) denotes a token message representing the first

folder with video files on the “Videos” input. In case more

folders are placed on the input, additional token messages (T1-

S1, T1-S2, ...) are produced (not shown in the figure). Token

number “3” necessitates a stack of two sequence numbers (e.g.

T3-S0-S0, T3-S0-S1, ...). The top element corresponds to the

source folder (cf. T1-S0), and the bottom element represents

the number in the sequence of files in that folder. Note that

these sequence numbers have to be maintained throughout

computations. In our example, each instance of module “C”

has to receive tokens with appropriate sequence stacks. For

instance, token message T5-S0-S1 has to be matched with

token message T4-S0-S1.

As in the example above, the message-passing system

operates on sequences of token messages. It is thus natural

to implement it using queues. However, according to our best

knowledge, no existing solution could offer out-of-the-box

all the functionality required to schedule jobs controlled by

multiple data passing between the jobs. General-purpose queue

systems are heavy-weight and offer extensive functionality for

instantiating multiple queues. However, they do not provide

mechanisms for task scheduling based on many synchronised

queues. After analysing the available options, we have decided
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Fig. 1. Example application in CAL with sample tokens

to develop our own lightweight queue system, suitable for

the CAL execution environment. In this paper, we present

the details of our queue system and its application as part

of a computation orchestration system within the BalticLSC

environment.

II. RELATED WORK

There are two main approaches to performing distributed

computations – orchestration and choreography [14], [16].

This follows two global trends of deploying workflows or

composite micro-services. In the first approach, an external

entity manages the flow of computations. BalticLSC and WS-

PGRADE are examples here. In the second approach, this

flow is realized by each participating computation element

that fulfils its role that is known in advance. Flowbster is an

example here.

The usage of FIFO queues is especially important for chore-

ographed computations where they are intensively used. This

includes managing the initiation of jobs in the proper order

(either directly [9] or as part of more complex mechanisms

[12]) and ensuring the exchange of messages between them.

Especially relevant in the context of this paper is the usage of

systems consisting of multiple queues (multi-queues) for task

scheduling [2], [10], [5], [20], [22], [15]. Since such systems

use queues to schedule tasks, they operate by scheduling

computation steps, not data flows. For example, Li et al.

[10] propose a system for scheduling read-write tasks for a

distributed database system. Their solution is based on a multi-

queue feature built into the Cassandra database system.

Generally, using queues provides two main advantages.

Firstly, the responsibility to deliver messages falls on the

queues, without the need to implement any additional mech-

anisms on the side of the message senders. Secondly, queues

create separation in time between sending and receiving mes-

sages. Senders can send messages to yet non-existent recipi-

ents. Moreover, they can finish working before the recipients

even start.

When describing a queue, we distinguish two roles of

entities interacting with it - producers supplying messages to

the queue and recipients interested in receiving these mes-

sages. Most queues utilize the publish-subscribe pattern. In this

pattern, recipients declare to a queue their interest in messages

of a given type. When a message fulfilling appropriate criteria

arrives from a producer, all interested recipients are notified.

The delivery of messages to recipients is generally done in one

of two ways. Either a queue sends messages to its recipients

(the push method), or recipients ask a queue for the messages

and fetch them themselves (the pull method).

There are also a few additional issues that queues need to

address, especially in the case of the push method. Messages

can get lost because communication between queues and

their recipients is never flawless. This necessitates repeating

messages to guarantee their delivery. On the other hand, this

can cause occurrences of unwanted duplicated messages. As

a result, striving to ensure guaranteed delivery or lack of

duplicates leads to hindering one of these features. Repeating

undelivered messages could also change the order of messages,

that is – the order in which messages reach the recipients

can be different than the order in which they arrive from

the producers. It is especially problematic when messages are

delivered to multiple recipients simultaneously.

There are many systems implementing message distribution

using queues [23], [21], but two of them found very wide

usage – RabbitMQ [17] and Apache Kafka [3]. RabitMQ is an

implementation of an extension to the AMQP protocol [24].

It supports delivering messages through both the push and

the pull methods. However, the former is not recommended

in most cases. Message distribution in RabbitMQ is oriented

around the concept of exchanges. Exchanges define how

messages are distributed between queues (which are related

to particular recipients). RabbitMQ supports several types

of exchanges, which allow directing messages to particular

queues (direct exchange), duplicating messages to groups of

queues (fanout exchange), distributing messages according to

predefined topics (topic exchange) or checking for more com-

plex patterns in message headers (header exchanges). The most

commonly used publish-subscribe pattern is typically realized

using topic exchanges through recipients subscribing to partic-

ular topics. To provide messages to recipients using the push

method reliably, RabitMQ introduces a special mechanism for

the acknowledgement of received messages by the recipients.

It works based on the same principles as the mechanism for

acknowledging receiving messages from the producers by the

queue system. The idea was introduced to avoid confirming

message delivery through the transaction system. Even if more

reliable, this was considered as inconvenient for more trivial

cases. Its existence also allows more subtle options used
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Fig. 2. Multiqueue metamodel

in managing the distribution of messages, like defining the

prefetch count – the maximum number of unacknowledged

messages that can be sent to a given recipient.

In the case of Apache Kafka [25], [4], queues are organized

by topics to which particular recipients can subscribe. Each

topic can also be further divided into partitions containing

messages for a given recipient. Message delivery is then done

by the pull method. This means that particular subscribers need

to request messages that are of interest to them, typically as a

part of a so-called pull loop. Kafka by default does not delete

messages after they are delivered, and there is a possibility

to access them again when needed. Accessing messages is

done by means of an offset – the particular position in the

sequence of messages that indicates which of them were

already received. This particular setup obviously makes any

message acknowledgement from the recipient obsolete. Thus,

Kafka supports only the acknowledgement of message deliv-

ery to producers. However, particular client implementations

can simulate an acknowledgement mechanism to manage the

offset.

III. MULTI-QUEUE CONCEPT

As mentioned in the introduction, the orchestration of jobs

in systems like BalticLSC is based on data flowing between

these jobs. This makes message passing extremely important

and imposes additional requirements. First, we need to ensure

a reliable exchange of messages, as in every distributed sys-

tem. In addition, our solution needs to allow representing and

checking orchestration information attached to the messages.

This information can be used to direct messages to appropriate

queues.

Figure 2 shows the data structure of our multi-queue in

the form of a UML model (a meta-model). The exchange

of data between computation modules is handled by “token

messages” (see the “TokenMessage” class), and such mes-

sages are managed by our multi-queue. Each token message

contains a reference that points to a specific data set (see

the “CDataSet” class). Data sets can contain data directly or

can hold information about accessing data held in a storage

system. Each token message is assigned properties that identify

its position in the data flow within an instance of a specific

application. This is reflected by two attributes specialised by

the “TokenMessage” class from the “QueueIdentifiable” class.

The “TaskUid” attribute refers to a specific task or – in other

words – an instance of an application being executed within

the BalticLSC system. The “TokenNo” attribute refers to the

particular token number assigned to a specific data flow within

the respective application (e.g. tokens 1-6 in Figure 1).

Token messages contain additional information about their

sequence numbers. In fact, each token message contains a

stack (“SeqTokenStack) of sequence numbers (“SeqToken”).

This stack is divided into the “QueueSeqStack” and the

“TokenSeqStack”. The first stack corresponds to the specific

queue to which this message is designated, while the second

stack corresponds to a specific sequence of tokens produced by

computation modules. These stacks ensure proper processing

in applications where data can change its “granularity” (e.g.

from folders to files). In such cases, we need to split larger data

sets into many smaller pieces to be processed individually (e.g.

in parallel). On the other hand, we might need to merge many

smaller pieces into a final, larger data set. At the same time,

we need to manage these various sequences so that relations

between and within these sequences are preserved.

The token message stacks (“SeqTokenStack”) allow keeping

track of dependencies between data items and thus enable

proper distribution of computations between computation jobs.

The general rule is that a new level of the stack is added

when a data set (file, folder) is split into smaller elements.

On the other hand, when several data items are merged, one

level of the stack is removed. Note that in some cases, two or

more stack levels can be added or removed, depending on

particular processing (e.g. processing of a two-dimensional

data matrix). Moreover, it can be noted that sequence tokens

contain sequence numbers (“No” in the “SeqToken” class).

This is necessary due to the possible parallel processing of

token messages. In case of delays in the processing of tokens,
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their order has to be maintained regardless of individual

processing times. Moreover, we need a flag denoting the last

token in a sequence (“IsFinal”).

The queue system that handles token messages consists of

two elements. The top-level element is the Message Queue

Family (“MsgQueueFamily”), which contains individual Mes-

sage Queues (“MsgQueue”). The role of the queue family is to

handle messages associated with a single data flow (see Figure

1 again). The individual queues handle messages directed

to specific computation module instances (jobs) deployed in

different distributed computation nodes. Queues are identified

by token sequence stacks similar to the token messages that

they contain. The identification (“Name”) of a message queue

family contains two main values describing a token (TaskUid,

TokenNo). This is appended with a token sequences stack

(“QueueSeqStack”) to form the full identifier of a queue fam-

ily. The message queues contain the suffix part (“NameSuffix”)

of the token sequence stack, identifying the particular jobs

to which tokens should be sent. As we can notice, the main

assumption is that individual queues contain token messages

that are meant to be processed by the same computation

modules. Thus, these token messages point to the same type

of data. The assignment of messages to queues is done in two

steps. First, we assign them to a message queue family and

then – to a particular queue.

Token messages in each of the queues contain full token

sequence stacks. In addition to the stack defined in the queue

family and its queues, the token sequence stack in a message

contains additional levels defining the sequence of tokens

sent to the particular job. As a result, before putting a token

message to a specific queue, we need to construct a token

sequence stack consisting of two parts. The first part identifies

the queue (and its family), and the other part contains indexing

data that will be forwarded to the recipient (job) to help in

internal processing.

In practice, the relationships indicated by the elements of

each “SeqTokenStack” serve two purposes. Firstly they ensure

that jobs that should process corresponding groups of data

from different queues will receive correct data items. Secondly,

when computations are distributed between separate machines,

related data will be grouped together to reduce unnecessary

data transfer. It is also worth mentioning that there is an ex-

ception to these rules. This is for so-called “simple” modules,

i.e. those that process only one token message from a single

queue at a time. In the case of such queues, there is no need to

use SeqTokenStack elements for either of the two mentioned

purposes, at least at the individual level. However, to maintain

consistency in handling queues, we still use “SeqTokenStack”

to identify such queues.

An example of a queue family is shown in Figure 3. The

outer box represents a family with a task identifier (“Task1”),

a token number (“8”) and a token sequence stack (here with

one level – “0”). The family contains three queues. Each queue

contains a “suffix” for the token sequence stack (“0”, “1” or

“2”). In each queue, we have several token messages. As we

can see, each message contains the same token number (“8”)

Fig. 3. Example structure of a queue family

and token sequence stack prefix (“0”), which reflects the queue

family. Moreover, tokens assigned to each queue in the family

have the second levels of their stacks corresponding with their

appropriate queue stack suffix. Finally, the third level in the

stack reflects the token sequences.

Queues defined according to the presented rules can be

used to initiate jobs (instances of computation modules). In

general, specific modules require either one or many tokens

to be delivered to them from a given queue. For some queues,

the arrival of tokens is required to start a job. In other cases,

tokens arriving at a queue are passed to a job but are not

mandatory to start processing. With our multi-queue, we can

easily determine meeting conditions to start jobs. When a new

token that matches a given queue in a family arrives, we can

check all the queues in queue families assigned to the inputs

of a respective computation module. If all the corresponding

queues contain tokens, the condition for a new processing

job is met. We can then either start a new instance of a

computation module or use an instance that is currently idle.

Apart from this additional functionality, our queues work

like traditional FIFO queues. They use the publish-subscribe

pattern to deliver tokens to jobs using the push method. An

additional non-standard element is the implementation of the

acknowledgement mechanism, which has some similarities

to that of RabitMQ. When a message is delivered to the

queue, it is first stored in it. It then waits for its turn (FIFO)

and gets assigned to one of the available recipients. This is

done by balancing the number of messages each registered

recipient receives. Recipients may reject messages (e.g. have

insufficient resources), which results in attempting to send

the message to another recipient. If the message is accepted,

its status changes accordingly, but it is not removed until

the recipient acknowledges the finishing of its processing.

There is also a possibility of the recipient sending a negative

acknowledgement (processing did not succeed). In this case,

the message status is reverted, which causes a repetition of the

above process.

IV. ILLUSTRATIVE EXAMPLE

In this example, we use the application presented in the

introduction (Figure 1). Each data flow (numbered from 1 to 6)

is associated with one or more queue families. Moreover, these

families are grouped by computation modules depending on
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Fig. 4. Queues for tokens 1 and 2

their inputs. These groups can be used to initiate appropriate

jobs being instances of the computation modules. We assume

that a single task was created from our example application

(“Task1”). Obviously, more such tasks can be executed at the

same time, and thus more queue families can be created whose

identification differs only by the task identifier.

Figure 4 shows queues responsible for providing token

messages to instances of module A in our application. The

situation shown in step 1) is somewhat advanced in time. We

have two queue families (related to tokens “1” and “2”), which

already have a few token messages in each of them. We also

have one instance of the module (job) running (named “A.1”).

It can be noted that each input of module A has been assigned

a separate queue family. Moreover, separate queues related

to the existing token sequence stacks were created inside the

families. At this moment, we have three queues for tokens of

type “1” and one queue for tokens of type “2”. Note that each

of these queues was created with the arrival of an appropriate

token message. The name suffixes correspond to the token

sequence numbers of these token messages.

When queues 1-0 and 2-0 were created, job A.1 was

initiated and assigned to these queues as their recipient.

Through this mechanism, the job is guaranteed to get the

related pair of token messages. In the situation shown in

step 1), we already have job A.1 running and processing the

pair of token messages denoted with the sequence number

“0” in their token sequence stacks. The queues marked these

messages as delivered but did not delete them, as the job did

not acknowledge finishing their processing. We have also two

additional messages in the first queue family that haven’t been

delivered yet.

In step 2), a new message is inserted into the second queue

family which results in creating an appropriate queue (2-1).

With this arrival, we have a new pair of matching token

Fig. 5. Queues for token 3

messages (1-1 and 2-1). This creates a condition to create

a new job. Depending on the decision of the job broker

module, this can lead to one of two situations shown as 3a)

and 3b) in Figure 4. In the first situation, a new instance of

the computation module A was started (“A.2”). This instance

has immediately subscribed to the two related queues. The

appropriate messages were then delivered and marked as being

processed. In the second situation, a new instance of module

A was not created. The job broker waited until instance A.1

finished its previous processing. Only then could the instance

subscribe to queues 1-1 and 2-1. This is followed by delivering

the new pair of token messages to A.1 and marking them as

being processed. Note that the second situation can occur in

the situation of limited resources. If we cannot create a new

instance of module A, we must wait for an existing instance

to finish its current job.

Figure 5 presents queues that serve to provide messages

from instances of module A to instances of module B. Note

that module B is a simple module – it has only one single-

token input. Thus, the incoming messages do not need to be

grouped. However, we need to preserve the grouping made for

module A at the start of the application. In step 1) we create

a new queue family when a message arrives from one of the

jobs being instances of module A. We note that this message

has a stack with two layers. The first layer corresponds to

the sequence numbering preserved from the tokens messages

for token no. “1”. This reflects a series of folders placed on

the application input “Videos”. The second layer contains a

new sequence (a sub-sequence), corresponding to messages

created from one instance of module A. These messages reflect

individual files present in a given folder.

The first queue family is identified by the token number
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Fig. 6. Queues for tokens 4 and 5

and the top-level sequence number (here: 3-0). It has one

default queue that does not need any additional identification.

In Figure 5, we can see that the queue already has one job

(B.1) assigned as its recipient and the first token message (3-

0-0) is already being processed by this job. In step 2), another

message in the sequence (3-0-1) is delivered to the queue. This

creates an occasion to start another job of type “B” (assuming

that job B.1 still processes token 3-0-0). Such a new job (here:

B.2) would subscribe to the queue the same way as job B.1.

In this case, further token messages can be processed by two

jobs.

Step 3) in Figure 5 shows the configuration of queues after

several other messages for token “3” arrive. As we can see,

further queue families were created. These families reflect

the token message sequence arriving at module A. For each

such token message (1-0, 1-1, 1-2), we create a separate

queue family (3-0, 3-1, 3-2). The reason for applying such

a mechanism is to facilitate the distribution of computations.

Each of the queues can be assigned to a different computation

node potentially located in different geographical locations. In

such a case, e.g. jobs for queue 3-0 will obviously not be able

to process token messages in queue 3-1. On the other hand,

if both queues are assigned to a single node, it is fairly easy

to assign a job to both queues as their recipient.

Figure 6 presents queues that handle messages coming

from instances of modules A and B and sent to instances

of module C. The situation is to some extent similar to the

previous ones, so we present only one “snapshot” of the

queues. The main difference is the existence of many queues

in queue families with split token sequence stacks. This split is

caused to facilitate the distribution of jobs. Queue families are

assigned to specific computation nodes, and individual queues

in these families are assigned to specific computation module

instances.

Fig. 7. Queues for token 6

In our example, we have two jobs already created based on

two sets of token messages (5-0-0 with 4-0-0 and 5-0-1 with

4-0-1). These two jobs are running on one computation node.

Another job (C.3) starts based on messages 5-1-0 and 4-1-0.

This job can potentially be started on a different computation

node.

Finally, Figure 7 shows queues containing token messages

with the final results of the application. Here we can see three

queue families created for a single token (“6”). These families

correspond to the initial token message sequence shown in

Figure 4. For instance, queue family 6-0 corresponds to tokens

1-0 and 2-0 sent initially to queues “1” and “2”. As we

remember, these initial tokens reflected folders with video

and subtitle files. At this final stage, the results should also

be grouped into folders according to the CAL application

(see the output “Films” in Figure 1). Messages assigned to

each of the queues in Figure 7 reflect individual files with

the resulting films. Queues reflect folders into which these

files should be sent. These output folders will contain films

created from videos and subtitles contained in synchronised

input folders.

Note that the application can be easily extended with further

modules. In such a case, the queues for token “6” could be

exactly the same (depending on how we exactly extend our

application). In such a hypothetical case, the first arrival of

a token message will create an occasion to start a new job,

to which all messages from the given queue would be sent.

It has to be stressed that our multi-queue mechanisms allow

for the fully automatic creation of queues, as in the presented

example. The execution engine can create queues based on

the definition of the application in CAL and the arrival of

consecutive token messages. In the next section, we present

the implementation of these mechanisms.

V. MULTI-QUEUE IMPLEMENTATION

The BalticLSC system consists of several components that

cooperate to orchestrate jobs in a distributed computation

environment. An extract of the BalticLSC logical architectural

model (see https://www.balticlsc.eu/model/) is shown in Figure

8. The multi-queue mechanisms presented in this paper are
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Fig. 8. Multi-queue usage in a computation system

implemented within a separate component – “MultiQueue”.

This component works in cooperation with the middleware

responsible for orchestrating computations. As we can see

in Figure 8, this middleware contains two components that

work as intermediaries between the multi-queue system and

the actual computation modules.

The “TaskProcessor” component is responsible for invoking

most of the presented multi-queue mechanisms. It receives

token messages from computation modules through the Baltic-

ServerAPI. It then appends them with all the necessary infor-

mation (including the sequence stacks) and inserts them into

the multi-queue. It also checks all the conditions for starting

new computation module instances. When a condition is met,

it passes an appropriate command to the “JobBroker” compo-

nent. This component is responsible for the actual initiation

of new module instances, which includes making decisions

regarding job balancing and sensing these jobs to specific

computation nodes. It also registers these new instances in

the queues, allowing appropriate tokens to be transmitted.

To communicate with the multi-queue, the Task Processor

uses the IMessageProcessing interface, and the Job Broker

uses the IMessageBrokerage interface. The details of these

interfaces are shown in Figure 9. The first of the interfaces

groups operations to enqueue new token messages, acknowl-

edge the finishing of their processing and check the status of

tokens in specific queues. For managerial purposes, there is

also the possibility to create queue families. Finally, there is

the possibility of forming a tree-like structure from the queues

by defining queue predecessors. This additional mechanism

is used by an automatic queue-cleaning mechanism. This

ensures that empty queues will not be deleted as long as

preceding queues have unacknowledged tokens left. The IMes-

Fig. 9. Interfaces of the multi-queue implementation

sageBrokerage interface contains an additional method that

allows registering new recipients for specified queues. Figure

9 also shows the IQueueConsumer interface that should be

implemented by a computation module. This simple interface

allows module instances to receive messages.

Operation of the TaskProcessor component when processing

a token message is presented in Figure 10. The whole process

is initiated by invoking the PutTokenMessage method in

reaction to the incoming token message. First, the method

checks if there is the need to start a so-called job batch. This

feature of the BalticLSC system allows for grouping of jobs so

that they would be computed on the same computation nodes

making data transfer more efficient (see CAL specifications

[19]). Starting of job batches is similar to starting of jobs.

The TaskProcessor needs to check all the queues related to

the inputs of all jobs that are also inputs of the particular

job batch. For this, it calls the CheckQueue operation which

returns the number of messages in a given queue. Presence of

at least one message in all the input queues required to start

the job batch results in calling the ActivateJobBatch operation

of the JobBroker component. Obviously, if the job batch is

already activated, there is no need to perform queue checks

and activate it again.

A similar approach is used to activate the specific job related

to the processed token. Again, the procedure includes checking

of all the required input queues. Note that the queue for the

processed token message does not need to be checked. Instead,

the message is enqueued after all the necessary checks are

done.

Details of the multi-queue implementation are shown in

Figure 11. The MultiQueue class is responsible for the func-

tioning of the MultiQueue component and implements its

provided interfaces. It runs a thread (the “Run” operation)

that periodically sends tokens to consumers registered with

the various queues. Message distribution is performed through

handles to queue families grouped by task identifiers. These

queue families are implemented by the MsgQueueFamily
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Fig. 10. Sequence diagram illustrating processing of a token message

class, which groups queues with a common ‘name’. This name

is formed using the same data structure (“QueueIdentifiable”)

as in the original data model (Figure 2). The queue family class

has various operations that allow to enqueue and acknowledge

messages, distribute them to the registered consumers, and

check queue statuses.

As expected, the MsgQueueFamily class contains the Ms-

gQueue class. This class holds the actual queue contents, i.e.

the messages. It also contains the name suffix in the form of a

token sequence stack and has handles to the queue consumers.

Operations of this class are typical for a queue and do not

necessitate a detailed explanation.

To illustrate the usage of our multiqueue within the Balti-

cLSC system we will use the CAL program fragment pre-

sented in Figure 12. The main module in this fragment is

the “ImgChannelJoin” module. It has three input pins and

one output pin. The three inputs are connected with certain

processing modules, where one of them is shown in the figure.

The input pins are associated with appropriate tokens (np. 3, 9

and 10). In the figure, we can see three tokens arriving, each of

them having the same sequence number (0) and thus causing

initiation of a new job instance for the “ImgChannelJoin”

module.

In Figure 13 we can see a fragment of execution log for

the situation in Figure 12. The log contains information about

processing of a single token message arriving at one of the

inputs of the “joiner” module. The first entry in the log denotes

the arrival of the message at the Task Processor component

(see also Figure 8). As we can see, the message is related

to Token number 3. It is the first in a sequence of messages

for this Token, and thus contains the index number 0 on its

sequence stack (see the ‘seq_stack’ section).
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Fig. 11. Code structure of the multi-queue implementation

Fig. 12. CAL program fragment to illustrate queue module usage

Immediately after receiving the message, the Task Processor

performs a sequence of checks to determine if the incoming

message would trigger a new job instance (see the “Check-

Queue” operation). In our case, three queues are checked –

the ones related to the three inputs of the “joiner” module,

including the queue for the incoming message. As we can

see, the Task Processor requests checking queues for Tokens

3, 9 and 10 with the sequence index 0.

In the presented situation, queues “9.0” and “10.0” already

had messages in them. This means that arrival of the message

to the queue “3.0” should trigger a new job instance. The log

in Figure 13 thus contains information about creating a new

job message. This new message contains information about

the queues for input tokens and about the output token. It also

determines technical details of the module to be executed by

the runtime. Some of these details (image file, configuration

file) are shown in the figure but other are omitted as not

relevant here. Note that the information about the module to

be executed are determined by the Task Processor based on

information compiled from the appropriate CAL program.

The new job message is passed to the “JobBroker” com-

ponent through the “IJobBroker” interface (see again Figure

8). The broker then selects an appropriate computation node

for execution of the job and sends the job message to this

node. Note that job brokerage algorithm is out of scope

of this paper. After determining the job’s executing module

at the computation node, the broker registers it in all the

relevant queues through the “IMessageBrokerage” interface.

Finally, the Task Processor inserts the incoming token message

into the multi-queue using the “Enqueue” operation of the

“IMessageProcessing” interface (see Figure 9). This finishes

processing of the token message by the Task Processor. This

is signalled by the last entry in the presented log. Further

steps involve the computation node that accesses the queues

according to the description in the previous sections.

By examining the log in Figure 13 we can also determine the

efficiency of the queue system. Each entry contains informa-

tion about its time with the precision of tenths of milliseconds.

As we can see, it took the engine around a millisecond to

process the message – put it into the queue module, check
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Fig. 13. CAL program execution log fragment

associated queues and create a job message. This time is

negligible in relation to the time used for computations which

usually takes minutes, hours or even days. It thus can be

argued that such message processing times allow for signifi-

cant scalability of the system. Even with a single instance of

the runtime engine, many parallel tasks could be processed

without noticeable delays related to message processing. If

needed, this could be further improved by adding additional

runtime engine instances running on several machines. Note

that determining detailed performance characteristics of our

solution are subject to future work.

An important additional feature worth noting as facilitated

by the existence of queue families is “queue garbage collec-

tion”. Each queue has information about its successors, and

each queue family has information about its predecessors. This

allows the multi-queue to keep track of queues that are not

used and will not be used in the future (within the current ap-

plication instance). The garbage collector mechanism traverses

queues and queue families to determine all the relations for a

given queue and based on an appropriate algorithm removes

“dead” queues. Discussion on the details of this mechanism is

out of the scope of this paper.

VI. CONCLUSION

The presented multi-queue concept was validated in a fully

operational distributed computation system. It has proven to

be effective means of orchestrating computations with diverse

configurations of data sets, flowing between instances of

computation modules. The users of the BalticLSC system have

developed various computation applications with different

configurations of data flows. Examining of computation logs

from the system acknowledges the effectiveness of message

distribution by the queue system. Message handling times are

short (in the scale of milliseconds) and thus negligible within

the whole computation process.

The characteristics of our multi-queues facilitate the si-

multaneous delivery of multiple token messages to many

instances of the same computation module running on different

computation nodes. It also allowed the implementation of a

job initiation mechanism that is based on the availability of

data transmitted through complex data processing paths. At

the same time, the implementation of our multi-queue system

is quite simple and results in a lightweight queue component

that can be used in similar contexts.
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[19] Kamil Rybiński, Michał Śmiałek, Agris Sostaks, Krzysztof Marek,

Radosław Roszczyk, and Marek Wdowiak. Visual low-code language
for orchestrating large-scale distributed computing. Journal of Grid

Computing, 21(3), jul 2023.
[20] Gaurav Sharma, Neha Miglani, and Ajay Kumar. PLB: a resilient

and adaptive task scheduling scheme based on multi-queues for cloud
environment. Cluster Computing, 24(3):2615–2637, 2021.

[21] T Sharvari and Nag K Sowmya. A study on modern messaging systems-
Kafka, RabbitMQ and NATS streaming. 2019.

[22] Jaspreet Singh and Deepali Gupta. An smarter multi queue job
scheduling policy for cloud computing. International Journal of Applied

Engineering Research, 12(9):1929–1934, 2017.
[23] John Vineet and Liu Xia. A survey of distributed message broker queues.

2017.
[24] Steve Vinoski. Advanced Message Queuing Protocol. IEEE Internet

Computing, 10(6):87–89, 2006.
[25] Guozhang Wang, Joel Koshy, Sriram Subramanian, Kartik Paramasivam,

Mammad Zadeh, Neha Narkhede, Jun Rao, Jay Kreps, and Joe Stein.
Building a replicated logging system with Apache Kafka. Proceedings

of the VLDB Endowment, 8(12):1654–1655, aug 2015.
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