
Performance of Portable Sparse Matrix-Vector

Product Implemented Using OpenACC

Kinga Stec, Przemysław Stpiczyński

0009-0008-6562-8954, 0000-0001-8661-414X

Maria Curie-Skłodowska University, Institute of Computer Science

Akademicka 9, 20-033 Lublin, Poland

Email: kingastec439@gmail.com, przemyslaw.stpiczynski@umcs.pl

Abstract—The aim of this paper is to study the performance
of OpenACC implementations of sparse matrix-vector product
for several storage formats: CSR, ELL, JAD, pJAD, and BSR,
achieved on Intel CPU and NVIDIA GPU platforms to compare
them with the performance of SpMV implementations using
the BSR storage format provided by Intel MKL and NVIDIA

cuSPARSE libraries. Numerical experiments show that vendor-
provided BSR is the best format for CPUs but in the case
of GPUs, the pJAD storage format allows to achieve better
performance.

I. INTRODUCTION

S
PARSE matrix-vector product (SpMV) is a central part

of many numerical algorithms and its performance can

have a very big impact on the performance of scientific and

engineering applications [1], [2]. There are a lot of various

sparse matrix storage formats and sophisticated techniques for

developing efficient implementations of SpMV that utilize the

underlying hardware of modern multicore CPUs and GPUs

[3], [4], [5], [6], [7], [8], [9]. Unfortunately, these methods are

rather complicated and usually depend on particular computer

architecture, thus developing efficient and portable sparse

matrix source code is still a challenge. However, the results

presented in [10] and [11] show that simple SPARSKIT SpMV

routines using various storage formats (CSR, ELL, JAD) [1]

can be easily and efficiently adapted to modern CPU-based

or GPU-accelerated architectures. Loops in source codes can

be easily parallelized using OpenMP [12] or OpenACC [13],

[14] directives, while the rest of the work can be done by

a compiler. Such parallelized SpMV routines achieve perfor-

mance comparable with the performance of the SpMV routines

available in libraries optimized by hardware vendors (i.e. Intel

MKL, NVIDIA cuSPARSE). OpenACC, a standard for accel-

erated computing, provides compiler directives for offloading

C/C++ programs from host to attached accelerator devices.

Such simple directives allow marking regions of source code

for automatic acceleration in a portable vendor-independent

manner. Moreover, OpenACC programs can be compiled using

the multicore option, and then such programs can also be

run on CPU-based architectures [15], [16], [17] without any

changes in source codes.

Recently, the Block Compressed Row (BSR) format [18],

[19], which is a generalization of the Compressed Sparse

Row (CSR) format, has become very popular. Intel MKL and

NVIDIA cuSPARSE provide optimized SpMV implementa-

tions for this format. Moreover, the other formats have been

deprecated. Especially, BSR has replaced the HYB format

in cuSPARSE. In this paper we compare the performance

of portable OpenACC implementations of sparse matrix-

vector product for CSR, ELL, JAD, pJAD, and BSR with

the performance of SpMV implementations using the BSR

storage format provided in Intel MKL and NVIDIA cuSPARSE

libraries.

II. SPARSE MATRIX REPRESENTATIONS

Let us assume that A is a sparse matrix with a significant

number of zero entries, and x, y are dense vectors. The SpMV

operation is defined as follows:

y← Ax. (1)

It is clear that if we do not multiply entries of x by zero

entries of A, then (1) requires 2 ·nnz floating point operations

(one multiplication and one addition per nonzero entry of

A). The structure of a sparse matrix can be characterized

by n, nnz , nnz/n, and maxnz , where n is the number of

rows, nnz is the total number of nonzero elements, nnz/n the

average number of nonzero elements per row, maxnz is the

biggest number of nonzero elements per row. Table I shows

values of these parameters for a set of test matrices, selected

from Matrix Market [20] and University of Florida Sparse

Matrix Collection [21]. It is clear that the performance of

SpMV depends on the matrix storage format that utilizes the

underlying hardware.

For description purposes of several possible sparse matrix

storage formats, let us consider the following matrix as an

example:

A =

7 0 1 0
0 4 2 3
1 8 0 0
0 9 0 0

, (2)

where n = 4, nnz = 8, nnz/n = 2, and maxnz = 3. Now let

us consider a few basic (ELL, JAD, CSR [1], [22]), as well

as, more sophisticated (pJAD [11], BSR [18], [19]) storage

formats for sparse matrices.

Proceedings of the 18th Conference on Computer

Science and Intelligence Systems pp. 1155–1160

DOI: 10.15439/2023F9640

ISSN 2300-5963 ACSIS, Vol. 35

IEEE Catalog Number: CFP2385N-ART ©2023, PTI 1155 Thematic track: Computer Aspects of

Numerical Algorithms

TABLE I: Set of test matrices [11]

Matrix n nnz nnz/n maxnz

cry10000 10000 49699 5.0 5

possion3Da 13514 352762 26.1 110

af23560 23560 484256 20.6 21

g7jac140 41490 565956 13.6 153

fidapm37 9152 765944 83.7 255

bcsstk36 23052 1143140 49.6 178

majorbasis 160000 1750416 10.9 11

bbmat 38744 1771722 45.7 126

cfd1 70656 1828364 25.9 33

ASIC_680ks 682712 2329176 3.4 210

FEM_3D_thermal2 147900 3489300 23.6 27

parabolic_fem 525825 3674625 7.0 7

ecology2 999999 4995991 5.0 5

pre2 659033 5959282 9.0 628

boneS01 127224 6715152 52.8 81

torso1 116158 8516500 73.3 3263

thermal2 1228045 8580313 7.0 11

atmosmodl 1489752 10319760 6.9 7

bmw3_2 227362 11288630 49.7 336

af_shell8 504855 17588875 34.8 40

cage14 1505785 27130349 18.0 41

nd24k 72000 28715634 398.8 520

inline_1 503712 36816342 73.1 843

ldoor 952203 46522475 48.9 77

cage15 5154859 99199551 19.2 47

A. ELL

The ELL storage format was introduced in Ellpack-Itpack

package. It assumes that a sparse matrix is represented by

two arrays (Figure 1). Nonzero elements are stored in the

first one called a. The second one called ja contains the

corresponding column indices [23]. Both arrays are n× ncol,
where ncol = maxnz . While ELL is simple and provides easy

access to matrix entires, when nnz/n � maxnz , the number

of stored zero entries of the matrix increases significantly.

a: 7 1 * ja: 0 2 *

4 2 3 1 2 3

1 8 * 0 1 *

9 * * 1 * *

Fig. 1: ELL format for (2)

B. JAD

The JAD (i.e. Jagged Diagonal) format storage is repre-

sented by three arrays (Figure 2). It is similar to ELL, but

removes the assumption on the fixed-length rows [22]. Firstly,

a sparse matrix needs to be sorted in non-increasing order of

the number of nonzeros per row

PA =

0 4 2 3
7 0 1 0
1 8 0 0
0 9 0 0

.

The arrays a and ja of dimension nz contain nonzero

elements (i.e. jagged diagonals) and the corresponding column

indices. The array ia contains the beginning position of each

jagged diagonal. Additionally, we can add array rlen which

contains the number of nonzero elements in each row. Entries

of this array can be calculated (in parallel) using the following

formula. Let jdiag be the number of jagged diagonals. Then

for each row, i = 0, . . . , n− 1, we have

rlen[i] = |{j : 0 ≤ j ≤ jdiag − 1 ∧ ia[j + 1]− ia[j] > i}|.

Note that this format is devoid of the inconvenience associated

with the need to store zero elements in rows completed to the

width of maxnz .

a: 4 2 3 ia: 0 rlen: 3

7 1 4 2

1 8 7 2

9 8 1

ja: 1 2 3 0 2 0 1 2

Fig. 2: JAD format for (2)

C. pJAD

The pJAD storage format is an optimized version of JAD

(Figure 3). This format assumes aligning (padding) columns

of the arrays a and ja [11]. We add zero elements, thus the

number of elements of each column should be a multiple of

a given bsize and rows of each block should have the same

length. Entries of the array brlen contain widths of blocks of

bsize rows. Note that pJAD assumes to store at most jdiag ·
(bsize−1) additional zero entries, where jdiag is the number

of jagged diagonals stored in a. Padding of jagged diagonals

is important especially for GPUs. It allows coalesced memory

access and reduces thread divergence within a block of threads

[24].

a: 4 2 3 ia: 0 brlen: 3

7 1 0 4 2

1 8 8

9 0 10

ja: 1 2 3 0 2 0 1 * 2 *

Fig. 3: pJAD format for (2)

1156 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

D. CSR

A sparse matrix in CSR (i.e. Compressed Sparse Rows) is

stored in three arrays (Figure 4). The first array called data

contains nonzero elements, and the second one called cols

contains corresponding column indices of nonzero values.

Indices of the beginning of rows in data array are stored

at the ptr array.

data: 7 1 4 2 3 1 8 9

cols: 0 2 1 2 3 0 1 2

ptr: 0 2 5 7 8

Fig. 4: CSR format for (2)

E. BSR

The BSR storage format can be treated as a generalization of

CSR. A sparse matrix is represented by four arrays (Figure 5).

Array vals contains column ordered values from blocks with

nonzero values. Array cols stored columns indices of the first

element per block. The ptrB and ptrE arrays contain the

indices of the beginning and ending positions of the elements

in the block row respectively.

vals: 7 0 0 4 1 2 0 3 1 0 8 9

cols: 0 1 0

ptrB: 0 2

ptrE: 2 3

Fig. 5: BSR format for (2)

III. ALGORITHMS

The SpMV operation for all storage formats presented in

Section II can be implemented using OpenACC to be executed

on both GPU-accelerated and CPU-based systems. OpenACC

offers compiler directives for offloading selected computa-

tions from host to attached accelerator devices. It allows to

indicate regions of source code for automatic parallelization

in a portable manner. Algorithms 1, 2, 3, 4, and 5 show

how to implement SpMV in C/C++ using OpenACC for all

considered formats: ELL, JAD, pJAD, CSR, and BSR formats,

respectively. OpenACC-specific parts of the implementation

start with #pragma acc directives. The parallel loop

directive defines a loop to be accelerated on GPU. Additional

clauses, namely gang and vector_length tell that gangs

(i.e. blocks of threads) should perform an iteration of loops.

Threads within gangs work in vector or SIMD mode [13]. The

loop seq construct placed before a loop within parallel

loop says that such a loop should be executed sequentially

by a single thread. The present clause says that indicated

variables are previously allocated on GPU. It allows to avoid

Algorithm 1 SpMV using ELL in OpenACC

// auxiliary routine

double count_per_row(double *a, double *x, int *ja,

int n, int ncol, int i){

double t = 0;

#pragma acc loop seq

for(int j = 0; j < ncol; ++j) {

t += a[j*n+i] * x[ja[j*n+i]];

}

return t;

}

// driver routine

void ELL_SpMV(int n, double *x, double *y, int ncol,

double *a, int *ja){

#pragma acc parallel loop gang vector_length(128)\

present(y,x,a,ja)

for(int i=0; i<n; i++) {

y[i] = count_per_row(a, x, ja, n, ncol, i);

}

}

Algorithm 2 SpMV using JAD in OpenACC

// auxiliary routine

double count_per_row(int rlen, int *ia, int i,

double *a, double *x, int *ja){

double t = 0;

#pragma acc loop seq

for(int j = 0; j<rlen; j++){

int k = ia[j]+i;

t+=a[k]*x[ja[k]];

}

return t;

}

// driver routine

void JAD_SpMV(int n, int *perm, double *a, int *rlen

, int *ia, int *ja, double *x, double *y){

#pragma acc parallel loop gang vector_length(128)\

present(perm,a,rlen, ia, ja, x, y)

for(int i = 0; i<n; i++){

y[perm[i]] = count_per_row(rlen[i], ia, i, a, x,

ja);

}

}

unnecessary data movements between host and device memory

systems. OpenACC provides the data construct that can be

used to specify such scope of data in accelerated regions. Data

transfers can also be initialized using the enter data and

exit data constructs [13]. Figure 6 shows output messages

generated by the compiler using the -acc=gpu option.

When OpenACC programs are compiled using the

-acc=multicore option, the compiler generates appropri-

ate parallel regions to be executed in parallel on CPU cores

(Figure 7). It should be noticed that if we omit OpenACC

directives, we will get sequential implementations of SpMV.

IV. PERFORMANCE OF SPMV

All OpenACC implementations of SpMV have been tested

on the computer equipped with two Xeon Gold 6342 @

2.80GHz (48 cores) and NVIDIA A40 GPU (10752 cores,

FP64 Peak perf. 584.6 GFLOPS), running under Linux Oper-

KINGA STEC, PRZEMYSLAW STPICZYNSKI: PERFORMANCE OF PORTABLE SPARSE MATRIX-VECTOR PRODUCT IMPLEMENTED USING OPENACC 1157

Algorithm 3 SpMV using pJAD in OpenACC

// auxiliary routine

double count_per_row(double *a, double *x, int *ia,

int *ja, int brlen, int bsize, int i){

double t = 0;

#pragma acc loop seq

for(int j = 0; j < brlen; ++j) {

int k = ia[j]+i;

t += a[k]* x[ja[k]];

}

return t;

}

// driver routine

void pJAD_SpMV(int n_block, double *x, double *y,

double *a, int *ja, int *ia, int *brlen, int *
iperm, int bsize){

#pragma acc parallel loop gang vector_length(128)\

present(y,x,a,ja,ia,brlen,iperm)

for(int i=0; i<n_block; i++) {

#pragma acc loop

for (int j=0; j<bsize; j++){

y[iperm[i*bsize+j]] = count_per_row(a, x, ia,

ja, brlen[i], bsize, i*bsize+j);

}

}

}

Algorithm 4 SpMV using CSR in OpenACC

// auxiliary routine

double count_per_row(int nz_in_row, int idx_start,

int *cols, double *data, double *x){

double t = 0;

#pragma acc loop seq

for(int j = 0; j<nz_in_row; j++){

t+=x[cols[idx_start+j]]*data[idx_start+j];

}

return t;

}

// driver routine

void CSR_SpMV(int n, double *data, int *cols, int *
ptr, double *x, double *y){

#pragma acc parallel loop gang vector_length(128)\

present(ptr,cols,x,y,data)

for(int i = 0; i<n; i++){

y[i] = count_per_row(ptr[i+1]-ptr[i],ptr[i],cols

,data,x);

}

}

count_per_row:

4, Generating implicit acc routine seq

Generating acc routine seq

Generating NVIDIA GPU code

ELL_SpMV:

13, Generating present(y[:],x[:],ja[:],a[:])

Generating NVIDIA GPU code

15, #pragma acc loop gang, vector(128)

/* blockIdx.x threadIdx.x */

Fig. 6: Compiler output messages for Algorithm 1 compiled

using -acc=gpu

Algorithm 5 SpMV using BSR in OpenACC

// auxiliary routine

void count_per_block(int block_size, int rows_begin,

int rows_end,int *cols, double *vals ,double *x,

double *y, int i){

#pragma acc loop seq

for(int j=rows_begin;j<rows_end;j++){

int base=j*block_size*block_size;

for(int jdx=cols[j]*block_size;jdx<(cols[j]+1)*
block_size;jdx++){

for(int idx=i*block_size; idx<(i+1)*
block_size; idx++){

y[idx]+=vals[base]*x[jdx];

base++;

}

}

}

}

// driver routine

void BSR_SpMV(int rows,int block_size, int *ptrB,

int *ptrE, int *cols, double *vals, double *x,

double *y){

#pragma acc parallel loop gang vector_length(128)\

present(x,y,vals,ptrB,ptrE,cols)

for(int i=0;i<rows;i++){

count_per_block(block_size, ptrB[i], ptrE[i],

cols, vals, x, y, i);

}

}

ELL_SpMV:

13, Generating Multicore code

15, #pragma acc loop gang

Fig. 7: Compiler output messages of Algorithm 1 compiled

using -acc=multicore

ating System with Intel OneAPI and NVIDIA HPC compiler

suits. The results have been compared with SpMV imple-

mentations using the BSR storage format that are provided

in Intel MKL and NVIDIA cuSPARSE libraries. Table II

shows the performance (GFLOPS) obtained for all considered

implementations for both CPUs and GPU and the set of sparse

matrices from Table I calculated as follows:

perf =
2 · nnz

t · 109
GFLOPS, (3)

where t is the execution time of SpMV (in seconds). It should

be noticed that in the case of BSR, the table shows the best

performance achieved for the optimal block size determined

empirically. All experiments have been performed for FP64.

V. RESULTS OF EXPERIMENTS

On CPU, the best performance for the majority of matrices

is obtained for Intel MKL BSR implementation. For the

smaller matrices, the best results are achieved by OpenACC

implementation of SpMV using the CSR format. Other Ope-

nACC implementations achieve worse performance than Intel

MKL BSR. Especially, OpenACC BSR is much slower than

its well-optimized counterpart. In most cases pJAD achieves

better performance than JAD, however its performance is

1158 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

TABLE II: SpMV performance results (GFLOPS)

Matrix
OpenACC CPU MKL OpenACC GPU cuSPARSE

CSR ELL JAD pJAD BSR BSR CSR ELL JAD pJAD BSR BSR

cry10000 2.56 1.07 1.16 1.02 1.56 0.71 5.68 6.14 5.21 5.28 4.29 1.06

poisson3Da 7.57 1.43 6.85 6.37 3.62 3.21 18.21 12.47 14.95 16.60 3.28 3.82

af23560 7.78 7.59 5.13 4.76 1.12 4.68 26.74 32.04 29.02 29.76 22.45 9.45

g7jac140 8.47 0.97 2.65 3.11 0.75 3.99 24.47 6.62 18.32 20.85 6.02 6.22

fidapm37 14.36 3.31 7.27 6.91 8.63 7.04 26.75 20.76 18.46 21.85 5.82 10.44

bcsstk36 12.18 2.40 6.46 7.47 2.41 10.23 33.30 19.44 29.40 32.67 18.21 17.65

majorbasis 12.51 11.05 8.38 9.35 0.85 11.09 41.19 51.85 50.34 51.89 10.60 14.82

bbmat 13.41 4.14 5.59 6.09 2.49 12.58 40.97 25.93 47.80 52.15 22.71 22.49

cfd1 14.22 8.38 8.50 8.89 1.55 11.71 32.97 46.88 53.83 55.38 16.61 15.76

ASIC_680ks 4.25 0.21 2.07 2.20 0.52 4.88 37.88 1.42 23.69 25.91 9.40 12.53

FEM_3D_thermal2 14.27 9.76 6.81 9.17 1.49 16.54 37.78 56.75 60.18 64.30 14.63 23.79

parabolic_fem 6.15 5.73 5.45 5.68 0.82 5.76 44.07 50.83 48.88 51.46 4.13 15.39

ecology2 5.86 6.48 5.43 5.67 0.92 7.61 59.81 63.25 56.38 60.11 8.59 29.02

pre2 6.99 0.13 2.34 3.14 1.24 7.35 45.28 1.18 26.94 28.47 6.16 16.49

boneS01 14.03 7.98 5.84 8.91 3.97 24.22 38.42 50.39 72.20 74.71 22.06 41.06

torso1 12.07 0.27 0.71 0.52 4.23 20.15 31.94 1.82 21.03 23.66 6.31 30.01

thermal2 6.19 5.36 4.54 5.43 1.43 7.17 44.80 46.54 26.04 27.73 4.17 22.74

atmosmodl 7.73 8.11 6.88 6.93 1.69 10.38 61.82 72.87 58.44 62.32 7.00 32.63

bmw3_2 10.83 1.53 5.14 9.73 3.54 27.16 36.42 12.38 63.03 68.40 15.74 47.84

af_shell8 4.24 4.98 4.86 6.21 3.30 21.26 38.86 71.83 74.69 79.50 20.64 64.34

cage14 6.29 2.83 4.12 3.68 3.53 11.17 43.37 34.83 45.00 50.33 5.18 29.19

nd24k 10.64 7.00 6.31 5.38 11.38 28.06 23.83 68.88 88.65 90.49 30.91 78.49

inline_1 9.95 0.72 6.08 5.72 5.35 20.26 33.21 8.17 57.97 64.76 9.82 41.29

ldoor 9.42 4.23 5.25 6.22 7.14 25.91 39.40 51.67 51.54 58.89 16.55 67.83

cage15 10.50 3.68 5.60 6.40 4.57 12.72 41.34 31.92 34.23 37.62 4.70 27.75

still worse than the optimized BSR provided by Intel. The

ELL format gives the worse performance for matrices with

nnz/n � maxnz , when the number of stored zero entries

increases significantly.

On GPU, we can observe that pJAD implementation

achieves the best results for the largest number of matrices

(eleven matrices). It outperforms JAD format for all matrices

and Nvidia cuSPARSE BSR for almost all matrices. More-

over, for several matrices pJAD outperforms Intel MKL BSR

significantly. The second best format is CSR. It gains the

best results for seven matrices. For the others, the pJAD

format is always better and the JAD format is almost always

better. The ELL format achieves best results for five matrices

(cry10000, af23560, ecology2, thermal2, atmosmodl), most of

which have almost the same row length (nnz/n ≈ maxnz).

Nvidia cuSPARSE BSR gains the highest performance for

only one matrix (i.e. ldoor), however for larger matrices it is

much faster than OpenACC BSR. As with CPU, the difference

between OpenACC and Nvidia cuSPARSE implementations of

BSR is significant.

VI. CONCLUSIONS AND FUTURE WORK

We have shown that sparse matrix-vector product using

several formats can easily be implemented using OpenACC

in order to utilize underlying hardware of modern CPUs and

GPUs. Our implementations achieve reasonable performance

on GPU and CPU, in some cases comparable with the perfor-

mance of vendor optimized implementations using the BSR

format, and sometimes even better.

It seems that the use of pJAD is very promising for GPUs.

Its OpenACC portable implementation achieves much better

performance than BSR optimized by the vendor. In the future

we plan to provide non-portable optimized version of SpMV

using pJAD.

REFERENCES

[1] Y. Saad, Iterative methods for sparse linear systems. SIAM, 2003.
[2] R. Helfenstein and J. Koko, “Parallel preconditioned conjugate gradient

algorithm on GPU,” J. Computational Applied Mathematics, vol. 236,
no. 15, pp. 3584–3590, 2012. doi: 10.1016/j.cam.2011.04.025

[3] X. Feng, H. Jin, R. Zheng, Z. Shao, and L. Zhu, “A segment-based sparse
matrix-vector multiplication on CUDA,” Concurrency and Computation:

Practice and Experience, vol. 26, no. 1, pp. 271–286, 2014. doi:
10.1002/cpe.2978

[4] J. C. Pichel, J. A. Lorenzo, F. F. Rivera, D. B. Heras, and T. F. Pena,
“Using sampled information: is it enough for the sparse matrix-vector
product locality optimization?” Concurrency and Computation: Practice

and Experience, vol. 26, no. 1, pp. 98–117, 2014. doi: 10.1002/cpe.2949
[5] F. Vázquez, G. O. López, J. Fernández, and E. M. Garzón, “Improving

the performance of the sparse matrix vector product with GPUs,” in
10th IEEE International Conference on Computer and Information

Technology, CIT 2010, Bradford, West Yorkshire, UK, June 29-July 1,

2010, 2010. doi: 10.1109/CIT.2010.208 pp. 1146–1151.
[6] S. Williams, L. Oliker, R. W. Vuduc, J. Shalf, K. A. Yelick, and

J. Demmel, “Optimization of sparse matrix-vector multiplication on
emerging multicore platforms,” Parallel Computing, vol. 35, no. 3, pp.
178–194, 2009. doi: 10.1016/j.parco.2008.12.006

KINGA STEC, PRZEMYSLAW STPICZYNSKI: PERFORMANCE OF PORTABLE SPARSE MATRIX-VECTOR PRODUCT IMPLEMENTED USING OPENACC 1159

[7] K. K. Matam and K. Kothapalli, “Accelerating sparse matrix vector mul-
tiplication in iterative methods using GPU,” in International Conference

on Parallel Processing, ICPP 2011, Taipei, Taiwan, September 13-16,

2011, 2011. doi: 10.1109/ICPP.2011.82 pp. 612–621.
[8] C. Stylianou and M. Weiland, “Exploiting dynamic sparse matrices

for performance portable linear algebra operations,” in IEEE/ACM

International Workshop on Performance, Portability and Productivity

in HPC, P3HPC@SC 2022, Dallas, TX, USA, November 13-18, 2022.
IEEE, 2022. doi: 10.1109/P3HPC56579.2022.00010 pp. 47–57.

[9] B. Yilmaz, “A novel graph transformation strategy for optimizing
SpTRSV on CPUs,” Concurrency and Computation Practice and Ex-

perience, 2023. doi: 10.1002/cpe.7761
[10] B. Bylina, J. Bylina, P. Stpiczyński, and D. Szałkowski, “Performance

analysis of multicore and multinodal implementation of SpMV oper-
ation,” in Proceedings of the Federated Conference on Computer Sci-

ence and Information Systems, September 7-10, 2014, Warsaw, Poland.
IEEE, 2014. doi: 10.15439/2014F313 pp. 575–582.

[11] P. Stpiczyński, “Semiautomatic acceleration of sparse matrix-vector
product using OpenACC,” in Parallel Processing and Applied Math-

ematics, 11th International Conference, PPAM 2015, Kraków, Poland,

September 6-9, 2015, Revised Selected Papers, Part II, ser. Lecture Notes
in Computer Science, vol. 9574. Springer, 2016. doi: 10.1007/978-3-
319-32152-3_14 pp. 143–152.

[12] R. van der Pas, E. Stotzer, and C. Terboven, Using OpenMP – The Next

Step. Affinity, Accelerators, Tasking, and SIMD. Cambridge MA: MIT
Press, 2017.

[13] S. Chandrasekaran and G. Juckeland, Eds., OpenACC for Programmers:

Concepts and Strategies. Addison-Wesley, 2018.
[14] R. Farber, Ed., Parallel Programming with OpenACC. Morgan Kauf-

mann, 2017.
[15] H. J. Eberl and R. Sudarsan, “OpenACC parallelisation for diffusion

problems, applied to temperature distribution on a honeycomb around
the bee brood: A worked example using BiCGSTAB,” in Parallel

Processing and Applied Mathematics - 10th International Conference,

PPAM 2013, Warsaw, Poland, September 8-11, 2013, Revised Selected

Papers, Part II, 2013. doi: 10.1007/978-3-642-55195-6_29 pp. 311–321.

[16] P. Stpiczyński, “Algorithmic and language-based optimization of Marsa-
LFIB4 pseudorandom number generator using OpenMP, OpenACC and
CUDA,” Journal of Parallel and Distributed Computing, vol. 137, pp.
238–245, 2020. doi: 10.1016/j.jpdc.2019.12.004

[17] B. Dmitruk and P. Stpiczyński, “Solving tridiagonal Toeplitz systems
of linear equations on GPU-accelerated computers,” Concurrency and

Computation Practice and Experience, vol. 34, p. 6449, 2022. doi:
10.1002/cpe.6449

[18] R. W. Vuduc and H. J. Moon, “Fast sparse matrix-vector multipli-
cation by exploiting variable block structure,” in High Performance

Computing and Communications, First International Conference, HPCC

2005, Sorrento, Italy, September 21-23, 2005, Proceedings, ser. Lec-
ture Notes in Computer Science, vol. 3726. Springer, 2005. doi:
10.1007/11557654_91 pp. 807–816.

[19] R. Shahnaz and A. Usman, “Blocked-based sparse matrix-vector mul-
tiplication on distributed memory parallel computers,” Int. Arab J. Inf.

Technol., vol. 8, no. 2, pp. 130–136, 2011.
[20] R. F. Boisvert, R. Pozo, K. A. Remington, R. F. Barrett, and J. Dongarra,

“Matrix Market: a web resource for test matrix collections,” in Quality

of Numerical Software - Assessment and Enhancement, Proceedings of

the IFIP TC2/WG2.5 Working Conference on the Quality of Numerical

Software, Assessment and Enhancement, Oxford, UK, 8-12 July 1996,
ser. IFIP Conference Proceedings, R. F. Boisvert, Ed., vol. 76. Chapman
& Hall, 1997, pp. 125–137.

[21] T. A. Davis and Y. Hu, “The University of Florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, pp. 1–25, 2011.
doi: 10.1145/2049662.2049663

[22] R. Li and Y. Saad, “GPU-accelerated preconditioned iterative linear
solvers,” The Journal of Supercomputing, vol. 63, no. 2, pp. 443–466,
2013. doi: 10.1007/s11227-012-0825-3

[23] R. Grimes, D. Kincaid, and D. Young, “ITPACK 2.0 user’s guide,”
Center for Numerical Analysis, University of Texas, Tech. Rep. CNA-
150, 1979.

[24] J. Cheng, M. Grossman, and T. McKercher, Eds., Professional CUDA

C Programming. Wiley and Sons, 2014.

1160 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

