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Abstract—Over the past few years, notable advancements
have been made through the adoption of self-attention mech-
anisms and perceptual optimization, which have proven to be
successful techniques in enhancing the overall quality of image
reconstruction. Self-attention mechanisms in Vision Transformers
have been widely used in neural networks to capture long-range
dependencies in image data, while perceptual optimization has
been shown to enhance the perceptual quality of reconstructed
images. In this paper, we present a novel approach to image
reconstruction by bridging the capabilities of Vision Transformer
and Perceptual Compressive Sensing Networks. Specifically, we
use a self-attention mechanism to capture the global context of
the image and guide the sampling process, while optimizing
the perceptual quality of the sampled image using a pre-
trained perceptual loss function. Our experiments demonstrate
that our proposed approach outperforms existing state-of-the-art
methods in terms of reconstruction quality and achieves visually
pleasing results. Overall, our work contributes to the development
of efficient and effective techniques for image sampling and
reconstruction, which have potential applications in a wide range
of domains, including medical imaging and video processing.

I. INTRODUCTION

C
OMPRESSIVE Sensing (CS) is an important technique

in the field of signal processing and computer vision. CS

is a technique for acquiring and processing signals at a lower

rate than required by the Nyquist-Shannon sampling theorem.

CS is used for image reconstruction, by reconstructing a

high-quality image from a set of low-quality or incomplete

observations. It has emerged as an alternative to traditional

image compression techniques. The potential of CS and im-

age reconstruction in computer vision lies in their ability to

enable high-quality imaging and data acquisition with minimal

resources. Indeed, CS can be used to reduce the amount of data

required to capture an image, making it possible to store or

transmit images more efficiently. It can also be used to reduce

the amount of data required for image processing, enabling

real-time processing of large datasets. Most CS approaches

are CNN-based models, which represent a limitation by the

receptive field of the convolution kernels and their non-ability

to handle long-term dependencies.

Deep learning models have shown impressive success in

various computer vision tasks, but they are not always efficient

at processing large and complex images. One possible solution

to this problem is to incorporate visual attention mechanisms

into deep learning models, inspired by the way humans selec-

tively process relevant information and filter out distractions.

Attention mechanisms allow deep learning models to focus

on important regions of an image and suppress irrelevant

information, leading to improved accuracy and efficiency.

In addition to visual attention, which is a selective process

that allows us to focus on important information in the

environment while ignoring distractions, we can also find

visual perception, which refers to the process of interpreting

and making sense of visual information from the environment.

This process involves multiple stages of processing, where the

basic features of a stimulus (e.g., color, shape, motion) are

detected and encoded then integrated into meaningful objects

and scenes. Overall, visual attention and visual perception are

both important processes in visual recognition. Visual attention

allows us to selectively focus on important information in the

environment, while visual perception allows us to interpret

and make sense of visual information. These processes are

intricately linked and work together to support our visual

experiences.

In this paper, we propose a novel CS approach for image

sampling and reconstruction. Our proposed model combines

self-attention and perceptual information to selectively attend

to different regions of an image at multiple levels of abstrac-

tion. We evaluate the effectiveness of our proposed model

using experiments on benchmark datasets and demonstrate

that it outperforms existing models in terms of reconstruction

quality.

Hence, the main contributions of this paper are :

• We propose a framework based on a hybrid architecture

that combines the self-attention mechanism provided by

vision transformers for image long-range dependencies

and global context modeling with the advantages of

convolutional neural networks for optimal local feature

extraction.

• We propose to add a transformer-based coding path, so

the model coding is done in two paths, a CNN-based

CSNet sampling path, and a transformer path. These two

paths are linked by a fusion layer to merge the features

and produce the vector that presents the input image.

• We use a perceptual optimization in the training process,

to semantically guide the model to learn long-range
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and local high-frequency details of visual and contextual

features.

• Finally, we run extensive experiments to evaluate our ap-

proach in term of reconstruction quality and compare it to

state-of-the-art methods on different image compression

benchmarks.

The remainder of this paper is organized as follows. In sec-

tion II, we present and discuss previous works on image-based

CS reconstruction. In section III, we explain the proposed

approach. In section IV, experimental results and comparisons

with State-Of-The-Art (SOTA) methods are carried out. Fi-

nally, in section V, we summarize our findings and present

some opportunities for future works.

II. RELATED WORK

In this section, we present a CS image reconstruction

literature review. We first discuss the existing deep learning-

based CS methods. Then we review the recent development

of vision transformers for image reconstruction.

A. Deep learning-based CS approaches

Compressing Sensing theory was first proposed in 2004

by David Donoho [1]. Deep learning-based CS approaches

have been proposed to solve the CS reconstruction problem

through the extraction (learning) of significant features from

the input signal itself. Several reconstruction algorithms based

on CNNs have been proposed to overcome the complexity of

traditional methods. At the outset, Kulkarni et al. [2] developed

a non-iterative reconstruction model using CNN (ReconNet).

Based on iterative thresholding algorithms, Zhang et al. [3]

proposed the convolutional ISTA-Net model for image recov-

ery. Afterward, Shi et al. proposed a Scalable Convolutional

Neural Network (SCSNet), and right after proposed a sampling

reconstruction framework called CSNet [4], which replaces the

sampling model with a convolutional layer. However, these

methods have limitations due to their random sampling. To

address this problem, Siwang Zhou et al. in [5] have proposed

a Block-Based Image Compressive Sensing (BCS-Net), which

uses block correlation for sampling. Nevertheless, the model

training overlooked the semantic information of the image to

draw the prior knowledge. Hence, in order to improve the

reconstruction quality by considering the prior knowledge,

Wenxue Cui et al. [6] have proposed a non-local CSNet (NL-

CSNet) based on non-local self-similarity priors.

However, all the previous methods did not consider percep-

tual information, which is important for visual and semantic

content reconstruction of the images. Recently, in [7], Bairi et

al. proposed a perceptual-optimized CS framework that uses

perceptual information for image reconstruction. The model is

based on an auto-encoder, which is trained using perceptual

optimization. Despite its power in the reconstruction of seman-

tic information, this model still lacks high-frequency feature

extraction.

B. Transformer-based image reconstruction

The first transformer was proposed by Vaswani et al. [8]

for Natural Language Processing (NLP) tasks. In the latter,

the long-range dependencies were given by multi-headed self-

attention and feed-forward Multi Layer Perceptron (MLP)

block. Among the best-known models dealing with this type

of task are BERT [9] and GPT [10]. Based on the transformer

force in NLP, transformers were recently integrated into the

context of image processing. For classification tasks, the

innovative work of Vision Transformer (ViT) [11] divides an

image into 16 by 16 patches, to use the previous multi-headed

self-attention and feed-forward MLP to build a classifier. In

addition to the original ViT, transformer models, with different

versions and architectures were proposed for several computer

vision tasks namely for classification [12], [13], [14], [15],

[16], [17], [8], for object detection [18], [19]and for image

segmentation tasks [20], [21], [22].

Few works have investigated transformers for image re-

construction. Indeed, this task produces images as a final

output, which is more difficult than high-level vision tasks

such as classification, segmentation, and object detection,

whose outputs are labels or areas. For transformer-based image

reconstruction, Hanting et al. [23] proposed a pre-trained

model called IPT that can be used for computer image recon-

struction tasks. This approach suffers from the large number of

parameters and image features are still extracted from CNN.

A concurrent work [24] proposed a U-shaped transformer for

image reconstruction, which is built upon the UNet architec-

ture and based on the Swin’s transformer block. However,

these models, based solely on pure transformers, overlook

local feature identification and low-frequency information. To

preserve the advantages of both CNN-based networks for the

local description and the transformer for long-range depen-

dencies handling, Liang et al. [25] proposed a SwinIR model

for the restoration of compressed or noisy images based on

both Swin transformer blocks and CNNs which were designed

for image classification in [15], this model showed better

results than those obtained by IPT. Similarly, a transformer-

based image reconstruction (TIC) method is developed in

[26]. The latter uses a canonical architecture of the VAE

variational autoencoder in the form of convolutional layers

and Swin transform blocks to capture long and short-term

dependencies of the input image. Test results on the Kodark

dataset show the good performance of this approach. Dongjie

et al. [27] extend the technique of self-attention in compressed

sensing to overcome the limitations of convolution layers in

modeling global features, by a CSformer model that combines

the advantages of CNNs and transformers. The model contains

a sampling module as a convolution layer and a reconstruction

module in the form of two branches that integrate local and

global-range dependencies. Nevertheless, these architectures

need the integration of perceptual information, which helps

the reconstruction of semantic details of the image.

348 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



III. PROPOSED APPROACH

In this section, we present the proposed PCST-Net frame-

work by using self-attention through vision transformer for

better feature extraction and visual perception to make sense

of these features. Fig.1 illustrates the proposed approach

architecture. Indeed, it is based on CS sampling/reconstruction

autoencoder which adopts an attention mechanism to capture

long-range contextual information. The learning process is

guided by the image’s visual content information. The pro-

posed approach involves two neural networks, an encoder, and

a decoder. The encoder network compresses the input images

by projecting them into a lower-dimensional space, while the

decoder network restores the original image representation

from the compressed representation. The network is trained

in an end-to-end manner to minimize image reconstruction

error, allowing it to find the optimal parameters that enable

sampling and reconstruction for any input image.

A. Sampling network

The Sampling network (Encoder) is a combination of CNN

and transformer models to take advantage of the spatial locality

and self-attention mechanisms. The CNN model is inspired by

PSCS-Net[7] and is laid out as three Convolution/MaxPooling

blocks. In the original CS framework, encoded data are the

result of sampling the input image. The latter are called

encoded data as they correspond to the rows of the sampled

image. In the context of deep learning, the encoded data is

arranged rather like an ordinary 3D tensor like any CNN

feature map. Theoretically, they still correspond to CS sampled

vectors, just stacked in a 3D tensor. When we apply the

sampling operator SCNN on the input image x, we obtain

y1, which corresponds to the encoded data obtained by the

CNN sampling Network.

SCNN (x) = W 1

s ∗ x (1)

In Eq.1, the network operates on 2D image patches with the

convolution operator (∗) with the sampling Matrix W 1

s . Such

an operation projects an input image x ∈ Rdx onto one of

the encoded vectors y1 ∈ Rdy . The sampling matrix W 1

s is a

composition of convolutions and nonlinear activation functions

f that allows for better features extraction. The obtained result

y1 can be written as:

y1 = SCNN (x) = f(W3∗f(W2∗f(W1∗x+b1)+b2)+b3) (2)

Transformer-based encoder aims to capture long-range vi-

sual dependencies through the self-attention mechanism. It

is composed of a projection layer and a transformer block

which is the architecture of the ViT backbone [11]. An image

projection is a lower-dimensional representation of the image.

In other words, it is a dense vector representation of the

image. First, the image is divided into P × P non-overlapping

patches, then this feature projection layer projects the input

patches having a size of (P x P x C) into a dimension of

(1 x Pd) such that Pd is the projection dimension. The self-

attention mechanism is an integral component of a transformer,

which explicitly models the interactions between all entities

in a sequence. For an input sequence of Np elements, self-

attention captures the interaction between all Np entities and

encodes each entity in terms of global contextual information.

For this fair, three weight learning matrices are defined,

Queries (WQ ∈ R
Pd∗q), Keys (WK ∈ R

Pd∗k), and Values

(WV ∈ R
Pd∗v). The input sequence X is projected onto these

weight matrices to obtain:

Q = XWQ

K = XW k

V = XWV

(3)

Self-attention is formulated by:

A = softmax(
QKT

√
q

)V (4)

Fig.2 shows the transformer block architecture which con-

sists of two LN normalization layers, a multi-headed self-

attention layer MSA and a MLP made up of two fully

connected layers, the τ norm is inserted before MSA and MLP.

The multi-headed self-attention MSA comprises several

blocks of self-attention, each block has its own set of learnable

weight matrices Query, key, and Value. Multi-headed self-

attention runs h times in parallel, such that h is the number

of heads, then concatenated into a single matrix. This block

takes a series of sequences I patches of size (Np x Pd) as input

and globally calculates the self-attention between them. The

whole process of this block can be formulated as follows:

Ft = MSA(τ(I)) + I

y2 = SV iT (x) = MLP (τ(Ft)) + Ft

(5)

The transformer path is composed of four transformer blocks.

Feature fusion aims to extract the most discriminating informa-

tion and eliminate redundant information. The fusion function

combines the global features of the transformer and the local

features of the CNN by a fusion strategy, such as addition or

average. The fusion of y1 and y2 is given by Eq.6.

y = Fusion(y1, y2) (6)

Since the stems of the transformer and the CNN have different

dimensions, we need to modify the characteristics of the

transformer to match those of the CNN.

B. Reconstruction Network

The upsampling network (Decoder) is designed in [7] as

a three-block de-convolutional network to learn the inverse

convolution filters to reconstruct images. The decoder returns y
to the input space by obtaining the feature representation in the

image recovery process. The decoder represents a nonlinear

mapping that is learned from measurements y to its original

image x by training. The decoder is symmetric with the CNN

sampling network and consists of three layers: the input layer

and two hidden layers. The decoder function (Eq. 7) is used to
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recover the reconstruction images x̃ from measurement vector

y.

x̃ = R(y) = f(W6 ∗ f(W5 ∗ f(W4 ∗ y + b4) + b5) + b6) (7)

C. Training of PCST-Net

To semantically guide our model to learn visual and con-

textual features, we use perceptual loss optimization in the

training process as shown in [7]. The used perceptual loss

measures the distance between images in high-level feature

space using a pre-trained compressing sensing network [4]

(CSNet). This model is originally trained on ImageNet dataset.

The PCST-Net network is trained in an end-to-end fashion

through the minimization of the global loss term expressed

as:

Ltotal(x, x̃) = α1Lp(x, x̃) + α2L2(x, x̃) + α3Ls(W, b) (8)

With : Lp in Eq.9 is the perceptual loss, Ls in Eq.10 is the

sparsity loss, and L2 in Eq.11 is the L2 Norm between the

original and reconstruted image. The three terms are weighted

by α1, α2, and α3, respectively.

Lp(x, x̃) = MSE(φ(x)− φ(x̃)) (9)

Where φ is the sampling operator of CSNet to compute the

difference between the feature vector of the input image x and

the predicted image x̃.

Ls(W
1

s , b) = 1/2β1

∑
||W 1

s ||2 + β2

∑
j=1

KL(ρ||ρj) (10)

The first term of Ls in Eq.10 limits the weight parameters

W with L2 norm as to penalize large weight. The second term

is the sparsity regularizer. β1 is the penalty term and KL is the

Kullback-Leibler divergence for penalizing active code units.

β2 is the intensity of the sparsity, ρ is the sparse factor, and

ρj represents the mean value of activation of the jth neuron

in each batch of the training set.

L2(x, x̃) =

√√√√
M−1∑

i=0

N−1∑

j=0

(x(i, j)− x̃(i, j))2 (11)

The L2 Norm is used to profit from the qualities of pixel-

wise loss functions.

The goal of training PCST-Net model is to minimize Ltotal

as shown in Algorithm 1. First, parameters W 1

s , WQ, WK ,

and WV are randomly initialized to serve the purpose of sym-

metry breaking. Then, encoded data y and the reconstruction

images x̃ are obtained through the encoder and decoder sub-

networks, respectively.
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Algorithm 1 PCST-Net training

Input:

Input original image x
Output:

Sampling Network weights W 1

s , WQ, WK , and WV

Encoded data y
Reconstruction Network weights Wr

Instructions:

Ws, Wr : Randomly initialize

for epoch = 1 to number of epochs

y1 = SCNN (x)
y2 = SV iT (x)
y = Fusion(y1, y2)
x̃ = R(y)
Compute encoded image y
Compute perceptual loss Ltotal(x, x̃) (Eq.8)

Minimize final loss by gradient descent algorithm

Update W 1

s , WQ, WK , WV , and Wr

end for

IV. EXPERIMENTS AND RESULTS

In this section, we first introduce the dataset used for

PCST-Net model training and the evaluation metrics. Second,

we present the model settings for better training (Section

IV-B). Next, in section IV-C, we conduct an experimental

study on image compression benchmarks for model objective

evaluation and compare the proposed approach with state-of-

the-art methods. Finally, in Section IV-D, we evaluate the

quality of PCST-Net image reconstruction with a subjective

evaluation.

A. Datasets and evaluation metrics

PCST-Net is trained using a large-scale dataset which is

COCO 2017 dataset 1. 118k and 40k images have been used

for training and validation respectively.

We evaluate our PCST-Net on different widely used bench-

mark datasets, such as Set5 [28], Set14 [29], and BSD100

[30].

To evaluate the model, two metrics are computed: Peak Sig-

nal to Noise Ratio (PSNR) and Structural Similarity (SSIM).

PSNR measures image reconstruction quality, while SSIM, a

perceptual metric, quantifies image degradation.

B. PCST-Net model settings and training

1) Model hyper-parameters selection: After an axial em-

pirical study, the hyper-parameters of the model are set to 256

x 256 x 3, 8 x 8 x 3, and 8 x 8 x 3 for Image size, Patch size,

and Block size, respectively. The perceptual loss function is

optimized using the Adam optimizer with a batch size equal

to 32 and a learning rate of 0.002 for 100 epochs.

1https://cocodataset.org/home

2) Fusion strategy selection: Our method adopts an ad-

dition strategy to merge the features of different paths. To

illustrate the effectiveness of this method, we construct a

variant in which the features of the CNN and the transformer

are averaged rather than summed.

Fig.3 shows the PSNR results of the two models on Set5,

Set14, and BSD100. The feature addition fusion operation

shows superior PSNR performance with different compression

ratios. The feature averaging operation achieves a close perfor-

mance when the compression ratios are lower than 10%, but

above this compression ratio, the addition shows its efficiency

against the average.

3) Path selection: PCST-Net is a Dual Path model that

aims to combine the efficiency of convolution in extracting

local features with the capability of the transformer in model-

ing global representations. To compare the advantages of the

two branches-based approach, we created a Single Path model

called SPCST-Net, which uses only the transformer path for

compression. The results of the tests on three datasets (Set5,

Set14, and BSD100) are presented in Fig.4.

Obtained results on Set5, Set14, and BSD100 datasets

confirm that PCST-Net helps in recovering more details and

semantic information of the images compared to PSCS-Net

(based only on CNN) or SPCST-Net (based only on trans-

formers).

C. Objective Evaluation

The results of the comparative study of PSNR and SSIM,

between the different state-of-the-art reconstruction meth-

ods namely ISTA-Net+[3], CSNet+[4], NL-CSNet*[6], DPA-

Net[31], CSFormer[27], PSCS-Net[7], and our PCST-Net, ap-

plied on the Set11, Set5, and BSD100 reconstruction datasets

are shown in Table I-III, while varying the compression ratio

between 0.1 and 0.5.

Our experimental results show that our approach achieves

higher performance for image reconstruction compared to

state-of-the-art algorithms.

TABLE I: Comparaison of PSNR(dB) and SSIM on Set5

Algorithm/Ratio 0.1 0.2 0.3 0.4 0.5

ISTA-Net+[3]
28.61
0.8315

33.12
0.9058

35.45
0.9408

36.94
0.9612

38.42
0.9804

CSNet+[4]
32.59
0.9062

36.05
0.9481

38.25
0.9644

40.11
0.9740

41.79
0.9803

NL-CSNet*[6]
33.84
0.9312

36.91
0.9589

38.86
0.9703

41.20
0.9895

43.15
0.9942

DPA-Net[31]
30.32
0.8713

-
36.17
0.9495

38.05
0.9632

39.57
0.9716

CSFormer[27]
34.20
0.9262

36.88
0.9514

39.74
0.9689

-
43.55
0.9845

PSCS-Net[7]
33.75
0.9422

38.68
0.9893

47.10
0.9946

49.92
0.9950

52.27
0.9973

Ours
33.25
0.9387

39.19
0.9747

48.40
0.9899

50.02
0.9955

53.04
0.9975

The results obtained by PCST-Net on the different compres-

sion datasets benefited from the coupling between perception

and self-attention to give the best PSNR and SSIM values

compared to other state-of-the-art reconstruction methods.
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Fig. 3: PSNR(dB) histogram for each fusion strategy on Set5(a), Set14(b), and BSD100(c).
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Fig. 4: Average PSNR(dB) for different Path-based methods on Set5(a), Set14(b), and BSD100(c).

TABLE II: Comparaison of PSNR(dB) and SSIM on Set14

Algorithm/Ratio 0.1 0.2 0.3 0.4 0.5

ISTA-Net+[3]
26.49
0.8010

30.79
0.8950

33.76
0.9345

36.03
0.9547

38.49
0.9127

CSNet+[4]
29.13
0.8169

32.15
0.8941

34.34
0.9297

36.16
0.9502

37.97
0.9754

NL-CSNet*[6]
30.16
0.8527

32.96
0.9150

34.88
0.9405

37.21
0.9752

40.17
0.9891

DPA-Net[31]
27.22
0.8401

31.51
0.9249

33.37
0.9395

35.91
0.9592

37.84
0.9701

CSFormer[27]
30.85
0.8515

34.02
0.9274

36.47
0.9459

-
40.41
0.9730

PSCS-Net[7]
29.68

0.8987

34.65
0.9644

45.89
0.9920

49.65
0.9967

51.89
0.9981

Ours
29.31
0.8921

37.25

0.9720

46.11

0.9929

49.81

0.9967

52.30

0.9985

TABLE III: Comparaison of PSNR(dB) and SSIM on

BSD100

Algorithm/Ratio 0.1 0.2 0.3 0.4 0.5

ISTA-Net+[3]
24.79
0.6726

27.64
0.7906

29.86
0.8580

31.70
0.9003

33.02
0.9513

CSNet+[4]
28.53
0.7834

31.05
0.8721

33.08
0.9171

34.91
0.9443

36.68
0.9618

NL-CSNet*[6]
28.61
0.8361

31.20
0.9141

33.30
0.9354

36.91
0.9627

39.94
0.9845

DPA-Net[31]
26.47
0.7388

29.87
0.8611

30.23
0.8894

32.70
0.9241

34.19
0.9488

CSFormer[27]
28.28
0.8078

31.62
0.9110

33.57
0.9399

-
38.01
0.9712

PSCS-Net[7]
29.34
0.8884

35.40
0.9632

43.16
0.9924

50.38
0.9969

52.66
0.9982

Ours
30.71

0.9044

37.72

0.9680

45.33

0.9932

51.14

0.9971

54.37

0.9989

D. Subjective Evaluation

In this section, we describe the subjective evaluation to

visualize the quality of reconstructed images. This qualitative

assessment is done with the naked eye by noting the differ-

ences between images at a ratio of 0.25. We also provide

PSNR and SSIM values for each image to highlight quan-

titative differences.

The visualization obtained by PCST-Net in Fig.5 shows

again that the use of both perception and self-attention gives

the best result compared to other reconstruction methods.

Obtained results suggest that the combination of self-attention

and perceptual optimization can provide a powerful tool for

improving the quality of image reconstruction. The use of self-

attention mechanisms to capture long-range dependencies in

the image data can lead to better sampling performance, while

the incorporation of perceptual optimization can enhance the

perceptual quality of the reconstructed images.

V. CONCLUSION

In this paper, we proposed a novel approach for image sam-

pling and reconstruction that combines Vision Transformer and

perceptual optimization techniques. Our approach leverages

the power of self-attention to capture the global context of the

image and guide the sampling process while optimizing the

perceptual quality of the sampled image using a perceptual

loss function. We have demonstrated the effectiveness of our

proposed approach through experiments on several benchmark

datasets, and we have shown that it outperforms existing

state-of-the-art methods in terms of reconstruction quality
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Original image 
PSNR/SSIM

PCST-Net 
38.32/0,9812

CSFormer  
31,65/0,9543

(a)

Original Image 
PSNR/SSIM

PCST-Net 
45,61/0,9941

CSFormer 
36,17/0,9750

(b)

Fig. 5: Comparison of the visual quality of image reconstruction using a ratio of 0.2(a) and 0.4(b).

and visual fidelity. Our approach has potential applications

in a wide range of domains, including medical imaging,

video processing, and computer graphics. In conclusion, our

work contributes to the development of efficient and effective

techniques for image sampling and reconstruction, which are

critical components in the field of multimedia processing. We

believe that our proposed approach can serve as a foundation

for future research in this area, and we hope that it will inspire

further innovations in the field of computer vision.
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